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Abstract

The BXD family of mouse strains are an important reference population for systems biology and genetics that have been fully sequenced
and deeply phenotyped. To facilitate interactive use of genotype–phenotype relations using many massive omics data sets for this and
other segregating populations, we have developed new algorithms and code that enable near-real-time whole-genome quantitative trait
locus (QTL) scans for up to one million traits. By using easily parallelizable operations including matrix multiplication, vectorized operations,
and element-wise operations, our method is more than 700 times faster than a R/qtl linear model genome scan using 16 threads. We used
parallelization of different CPU threads as well as GPUs. We found that the speed advantage of GPUs is dependent on problem size and
shape (the number of cases, number of genotypes, and number of traits). Our approach is ideal for interactive web services, such as
GeneNetwork.org that need to display results in real-time. Our implementation is available as the Julia language package LiteQTL at
https://github.com/senresearch/LiteQTL.jl.
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Introduction
The BXD family is a deeply phenotyped cohort of recombinant in-

bred mouse strains that have been used since the early 1970s for

genetic analysis and quantitative trait locus (QTL) mapping

(Ashbrook et al. 2019). For the past 20 years, they have been used

in many large-scale omics and expression quantitative trait locus

(eQTL) studies (Chesler et al. 2004). There are currently 150 fully

inbred BXD strains, all of which have been repeatedly genotyped

at many thousands of SNPs and SSLPs. Thus any new omics data

can be immediately used for quantitative expression trait locus

(QTL or eQTL) mapping and for association analyses with previ-

ously collected phenotypes. For omic data sets collected using

high-throughput technologies, additional analyses, such as tran-

scriptional network construction or causal mediation analyses,

are also practical.
The open-source GeneNetwork web service (www.genenet

work.org) (Chesler et al. 2004; Sloan et al. 2016; Mulligan et al.

2017) facilitates systems genetics and mapping by providing a

searchable and exportable database of phenotypes and geno-

types for a variety of organisms (including mouse, rat, and

Arabidopsis). It also provides a suite of interactive tools for brows-

ing data, generating QTL maps, correlational analyses, network

construction, and genome browsing. We wanted to develop a

backend for web services such as GeneNetwork to perform real-

time eQTL analysis of tens of thousands of omics traits using key

populations such as the BXDs.

To perform eQTL scans in the BXD family, one has to perform
as many genome scans as there are phenotypes. This can be
done in an “embarrassingly parallel” fashion by using standard
algorithms for QTL analysis, such as those employed by R/qtl
(Broman et al. 2003). In practice, this is too slow, and speedup
tricks are useful. For example, by using the Haley-Knott algo-
rithm (Haley and Knott 1992) using genotype probabilities instead
of the Expectation-Maximization (EM) algorithm (Lander and
Botstein 1989), and processing phenotypes with the same missing
data pattern in batches, instead of processing each phenotype in-
dividually, substantial speedups are possible. This is a well-
known trick and is used by R/qtl. In addition, if only additive
effects are tested, or if the population has only two genotype cat-
egories (as in a backcross or recombinant inbred line), then ma-
trix multiplication can be used to perform Haley-Knott regression
(Shabalin 2012).

Processing large data sets have been a challenge for genome
scans. We have benefited from Moore’s Law for decades, but the
central processing unit (CPU) technology is approaching the
physical limits of packing transistors. Graphical processing units
(GPUs), originally used as an image processing component of a
computer, have shown some compelling results to accelerate
computation in various fields. General purpose graphics proces-
sor units (GPGPUs) became popular in the early 2000s because of
their ability to natively handle matrix and vector operations.
Such power is attractive to the scientific computing community.
Zhang et al. (2015) used GPUs to simultaneously dissect various
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genetic effects with a mixed linear model. Chapuis et al. (2013)
utilized GPU to offset heavy computation to deploy various ways
for a more precise calculation of a QTL detection threshold. By
using GPU-backed machine learning libraries such as PyTorch,
Taylor-Weiner et al. (2019) re-implemented QTL mapping and
Bayesian nonnegative matrix factorization and reported achiev-
ing greater than 200-fold speedup compared to CPU versions. The
ease of using such libraries has motivated the development of
new methods for genomic research.

We build upon these efforts to perform real-time eQTL scans
for the BXD family using both CPU and GPU systems. Since pro-
gramming for GPUs is often nontrivial, needing the use of low-
level languages such as Cþþ, we used the Julia programming lan-
guage (Bezanson et al. 2017) that offers GPU programming capa-
bilities while retaining the simplicity of a high-level language
such as R or MATLAB. Finally, since most phenotype-marker
associations are null, we examined the impact of storage preci-
sion, and of only returning the highest association (log of odds,
LOD) score for each trait instead of a matrix of LOD scores for ev-
ery pair of marker and phenotypes (returning the maximum LOD
per trait speeds computation by reducing output size). We have
achieved computing speeds to the extent that almost all response
latency is now related to data transfer and browser display,
rather than the computation. This makes real-time eQTL scans
practical for the BXDs and many other similar populations.

Materials and methods
We used two BXD transcriptome datasets for developing and re-
fining our methods. All data were downloaded from
GeneNetwork (see Data Availability section). The genotype file
includes 7321 markers by 198 BXD strains; the spleen dataset has
data for 79 BXD strains and for 35,556 transcripts while the hip-
pocampus dataset has data for 70 BXD strains and 1,236,087
probe sets. Data cleaning and wrangling were performed using R/
qtl (Broman et al. 2003) and R/qtl2 (Broman et al. 2019).

Linear model
Let yi denote a vector for the i-th expression trait (i ¼ 1; . . . ;m) for
n individuals. We define a univariate linear model as follows:

yi ¼ Xjbj þ ei; ei � Nð0;r2
i IÞ;

where Xj is a matrix including the intercept and the j-th candi-
date genetic marker (j ¼ 1; . . . ; p) without covariate(s), bj is a vec-
tor of the j-th eQTL effects, and ei is random error distributed as
Nð0;r2

i IÞ. We assume to be interested in one-df tests as would be
the case for genome scans in the BXDs. Suppose RSS0i is the resid-
ual sum of squares under the null hypothesis of no eQTL, and
RSS1ij is the residual sum of squares under the alternative of
existing eQTL at the i-th trait and the j-th genetic marker. Then,
the LODij score for a one-df test can be written as:

LODij ¼
n
2

log10
RSS0i

RSS1ij

 !

¼ n
2

log10ð1� r2
ijÞ;

where rij is the correlation between the i-th expression trait and j-th
marker. If Y� and G� are respectively standardized trait (Y) and ge-
notype (G) matrices (i.e., with the columns centered and scaled to
have mean 0 and variance 1), then the correlation matrix is simply

R ¼ 1
n

Y�0G�:

Since matrix multiplication is a parallelizable operation for

which optimized routines are available, this formula is very at-
tractive for bulk calculation of LOD scores. The formula can be
extended for LOD scores adjusted by covariates. The idea is to

project genetic markers and gene expressions onto the space or-
thogonal to the covariates and to compute the corresponding cor-
relation matrix just as we did for the case without covariates. In

other words, let Z be a matrix of covariates including intercept.
The projection orthogonal to the covariate space is then
P ¼ I� ZðZ0ZÞ�1Z0. The genotype matrix (G) and gene expressions

(Y) are now transformed into Gz ¼ PG, Y z ¼ PY, respectively. This
is the same as calculating the residuals after regressing on Z.
Standardization followed by multiplication of the matrices yields

the correlation matrix (Rz ¼ 1
n Y�0z G�z) just as shown above. Figure 1

gives a visual representation of the matrix multiplication.

Acceleration techniques
While it is true that many programs can achieve 10- or even 100-

fold speedup by utilizing GPUs, the difference needs to be exam-
ined with care. Sometimes, a reported CPU time is using a single
thread, and multithreaded CPU time may bring the performance

gap between CPU and GPU narrower than claimed. Also depend-
ing on the library chosen for the CPU, the speed might vary
depending on whether the library is optimized for such computa-

tion or hardware. We believe for a fair comparison, both CPU and
GPU functions should be optimized at maximum performance
and should account for all necessary overhead. The following

section explains optimization efforts of CPU and GPU functions.

Figure 1 Schematic of data and correlation calculation: Y� is a
standardized expression phenotype matrix, G� is a standardized
genotype matrix, and R is a correlation matrix. An entry in R (shaded
dark gray) is obtained by summing the product of the entries of the
corresponding row of Y�0 and the corresponding column of G� (both
shaded light gray). The matrix of LOD scores is an element-wise function
of the correlation matrix.
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Multithreaded CPU operations
Our goal was to build a backend for web services such as
GeneNetwork that allow researchers to interact with data in real-
time. That requires that the genome scan finish within seconds.
To bring out the best performance of CPUs, we use multi-
threaded operations whenever possible. Julia (Bezanson et al.
2017), our choice of programming language, provides simple yet
safe syntax for multi-threading. It is done by adding the
Threads.@thread macro to indicate to Julia that the following for
loop is the multi-threaded region. The Threads.nthreads()
function shows the number of threads in Julia, and the default
number of threads we use is 16.

GPU operations
Originally used in graphics, GPUs have taken off as a general
computing device in recent years because they provide a massive
number of cores at a lower price range and because of the avail-
ability of fast GPGPU libraries such as CUDA (Compute Unified
Device Architecture) and OpenCL (Open Computing Language).
Based on our profiling results, the time consuming parts of our
genome scan method are matrix multiplication and element-
wise operations. Both are amenable to GPU heterogeneous com-
puting architecture since they have no data race conditions
(where processes depend on each other’s results) and low data
dependencies. However, the GPU also has its own limitations. To
truly utilize the maximum computing power of GPUs, one needs
to think creatively to work around those limitations. For example,
during our experiments, we found that memory transfer between
host and device is really slow. Profiling the result shows that 98%
of total genome scan time is spent on memory transfer. This is
because the size of the output matrix (of genome scan LOD
scores) is much larger than the size of the input matrices (of ge-
notype probabilities and phenotypes). To cope with this capacity
constraint, instead of offloading the entire correlation matrix, we
use the GPU to calculate the maximum LOD score of each expres-
sion trait and output the maximum. The output matrix is now
much smaller, and the memory transfer times are reduced. This
allows us to identify transcripts with at least one eQTL and
speeds up the computation substantially.

Matrix and vectorized operations
Since our algorithm largely depends on matrix operations, it is
natural to find the fastest way to achieve the best result regard-
less of computing platforms. There are various matrix libraries
available for CPU, such as gslBLAS and OpenBLAS (Wang et al.
2013). They target different hardware or use various techniques
to get optimal results. Multi-threaded matrix multiplication is
the default in OpenBLAS, and does not require extra coding effort
to parallelize the CPU version of matrix multiplication. We, there-
fore, chose OpenBLAS as our CPU computing library.

Matrix multiplication and element-wise operations are algo-
rithmically free of data and function dependency, so that they
are amenable to GPU’s parallel computing power. Julia provides
various packages for GPU including CUDA (Nickolls et al. 2008)
bindings. Our chosen hardware for GPU is from Nvidia, which
requires its proprietary library, CUDA, which is mature and well-
recognized in the scientific computing community. For matrix
operations on GPU, we used the cuBLAS library (Nvidia 2021a),
which provides a fast GPU implementation of BLAS (Basic Linear
Algebra Subprograms) from Nvidia.

We investigated the effect of matrix shape on the speedup in ad-
dition to the effect of using the GPU for multiplication. Of course,

most of the time, one cannot pick the size and shape of data in a
matrix form, but such information would help researchers as a
rough guidance of whether it is worth considering the GPU option
before investing programming efforts for GPUs. We ran matrix mul-
tiplication with different shapes of matrices and compared the run-
time of CPU and GPU. CPU time is measured by matrix
multiplication from the OpenBLAS library using 16 threads. GPU
time includes all overhead of using GPU, which involves device
launch, data transfer, and all necessary API calls. In order to make
a fair comparison between CPU and GPU, we needed to use maxi-
mum strength of both and include all necessary cost.

The experiment setup was to multiply two input matrices,
A(m�n), and B(n�p), and produce an output matrix C (m�p).
The range of m, n, and p is between 24 and 217 in powers of 2. We
compared the result when the size of input and output (I/O size)
matrices, in total, was between 11 and 16 GB.

Single precision
Precision means the smallest difference between two representable
numbers. Floating point numbers, in scientific computing, are usu-
ally stored in double precision. Double precision floating point num-
bers take up 8 bytes in memory while single-precision numbers
take up 4 bytes. In addition to the difference in storage size, the
speed for calculation using single and double precision also varies
by hardware. For example, the GPU throughput (the number of
floating point calculation per second, measured in FLOPS) for dou-
ble precision is 1/32 of single precision on a Nvidia GTX 1050 GPU,
and 1/4 on a Nvidia Tesla K80. Thus, single-precision brings multi-
ple benefits when precision is not the primary concern.

Julia language
Although a programming language cannot really be classified as
an optimization technique, the choice of programming language
can affect run time as well as development time. We chose Julia,
an interpreted language with a just-in-time compiler, that pro-
vides fast runtimes approaching compiled languages such as C/
Cþþ with the development ease of interpreted languages such as
Python or R. Julia also has packages that make it easy to use
GPUs, and even program some GPU kernels purely in Julia with-
out resorting to C or Cþþ.

Comparison with tensorQTL
TensorQTL (Taylor-Weiner et al. 2019) is a GPU-enabled QTL map-
per that reported approximately 200- to 300-fold faster QTL map-
ping compared to CPU-based implementations. We compared our
implementation to tensorQTL noting that our implementation was
primarily developed for experimental cross populations (such as
the BXD population) while tensorQTL was optimized for outbred
populations such as humans. We used the open-source code of
tensorQTL to time key parts of the computational pipelines: data
transfer (getting data to and from device), core computation (eQTL
scans), post processing (other related cost to generate a meaningful
output, such as calculating P-values, concatenating dataframes,
adding additional genotype and phenotype information, type con-
versions, and so on), and the total elapsed time. No alterations to
the tensorQTL algorithm were made. For each program, we timed
two versions, one that returned the full matrix of LOD scores
(LiteQTL) or P-values (tensorQTL), and the other that returned a fil-
tered set: maximum LOD score for each transcript, (LiteQTL) or all
P-values lower than 10�5 (tensorQTL). Both programs filtered for
MAF (minor allele frequency).

Runtimes were based on the mean of 10 runs on the same
hardware using the GEUVADIS dataset provided by tensorQTL.
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We analyzed 19,836 traits and 20,000 genotypes on chromosome

9 to ensure that the data fitted in the GPU. For a more detailed de-

scription, please see the Supplementary material.

Platform
Our platform for computation:

Hardware:

• CPU: Intel(R) Xeon(R) Gold 6148 CPUs @ 2.40 GHz; 80 cores,

187 GB
• GPU: Tesla V100-PCIE-16 GB; 5120 CUDA cores

Software:

• OS: Debian GNU/Linux 10
• Programming environment: Julia v1.5
• Libraries: CUDA v10.1 and cuBLAS; OpenBLAS
• Profilers: Julia Profiler; nvprof
• tensorQTL v1.0.4; LiteQTL v0.2.0; R/qtl v1.47

Software availability
We have created a Julia package for performing the computa-

tions mentioned in this study. It can be installed from the Julia

command line as the LiteQTL package from the Julia General

registry. The source code for this package is publicly available

on Github (https://github.com/senresearch/LiteQTL.jl) The re-

pository contains an example directory with a Jupyter notebook

that shows how to compute eQTL scans for the BXD spleen

dataset and make a plot of the eQTLs. To benefit from the GPU

options, users will need an Nvidia GPU in their machine and

have the Julia executable, openBLAS, and CUDA libraries

installed. The Supplementary material accompanying this

study can be found at https://github.com/senresearch/

LiteQTL-G3-supplement.

Results
We performed eQTL scans in the spleen dataset (36K traits) in
0.06 seconds, and for the hippocampus dataset (1.2M traits) in
2.82 s with our hardware. Below, we show how the algorithm
choice, CPU/GPU, precision, and programming language im-
pacted our results. For the spleen dataset, Figure 2 shows the po-
sition of the strongest eQTL for transcripts with a maximum LOD
score greater than 5 against the physical position of the cognate
gene, if known, of the transcripts. Of the 35,554 transcripts, 2057
(5.8%) had a maximum LOD exceeding 5.

Effect of matrix shape on matrix multiplication
speed in GPU
The result of our experiment is shown in Figure 3. The x-axis of
Figure 3 is the dimensions of matrix. The two ends of x-axis rep-
resent matrices with slender or wider matrices, while the middle
of x-axis represents matrices closer to square shape. The y-axis is
the speedup of GPU compared with CPU on a linear scale. From
this figure, we see that matrices whose shapes are relatively
closer to square get better speedups from GPU. Matrix multiplica-
tion is up to 3.85 times faster on GPU than on 16 threaded CPU on
our hardware.

Benefit of customized algorithm for eQTL scans
R/qtl is a general-purpose QTL mapping program. To provide a
baseline for our approach customized for eQTL scans, we com-
pared runtimes to R/qtl. The timing of our method and R/qtl is
shown in Table 1. By simplifying the genome scan process, using
matrix multiplication, and returning the maximum LOD, we ob-
served a significant speedup. For the spleen data, our method
was 48 times faster (0.83 s for LiteQTL on CPU only vs 40.02 s for
R/qtl). For the hippocampus data the speedup was 125 times
(16.57 s on CPU only vs 2070.71 s for R/qtl), and 734.2 times if R/
qtl is compared with LiteQLTL’s CPU & GPU option.

Benefit of using GPU
In parallel computing, Amdahl’s law indicates the theoretical
maximum speedup that could be attained when improving a par-
ticular part of a program. For example, if a program takes 10 min
for a serial processor and a function that takes nine of those 10

Figure 2 Distribution of eQTL across genome in the BXD spleen dataset.
On the vertical axis, we plot the physcal location of the cognate gene for
a transcript; transcripts without a good match to a known gene are not
shown. On the horizontal axis, we plot the location of the marker with
the highest LOD score for each transcript provided it exceeded 5.

Figure 3 Variation of GPU vs CPU speedup with matrix shape for
calculating C ¼ AB. The matrix with more squared shapes gains
relatively better speedup compared to the ones with long or wide shapes.
The x-axis shows m, n, p, where dimension of A is m�n, n�p for B, and
m�p for C.
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mins can be parallelized, then the theoretical speedup, no matter
how many processors are used, cannot be more than 10 times be-
cause the minimum execution time of this program is 1 min.
Therefore, profiling the entire genome scan process is a prerequi-
site for optimization. Often, profiling would consider space and
time complexity. Our primary concern is the time taken by each
function, and therefore only timing information is considered in
our profiling. We used Julia’s built-in sampling profiler to find our
target functions for GPU because it is less intrusive than the other
profiling methods.

The genome scan process includes the following steps:

• Calculate standardized matrices ( 1ffiffi
n
p G�; 1ffiffi

n
p Y�) for input matri-

ces (G, Y)
• Get a correlation matrix (R) by multiplying the standardized

matrices
• Calculate LOD scores

Our profiling result shows that the second and third steps take
up over 90% of the computation time and involve parallelizable ma-
trix operations. Hence, they are our candidates for GPU acceleration.

We used a GPU profiler nvprof (Nvidia 2021c) to identify bottle-
neck of GPU. The results indicate that 98% of the GPU running
time is spent on data transfer from GPU to CPU (device to host). As
shown in Figure 1, the input matrices Y’ and G are small compared
with the output matrix R. For the BXD spleen dataset, Y’ matrix is
17 MB, G matrix is 21 MB, but R matrix is about 4GB. Data offload-
ing is the main bottleneck for our GPU implementation.

To overcome this limitation of GPUs, we only offload the maxi-
mum of LOD score of every phenotype since that is the primary
interest for initial exploration. Finding the maximum is highly
parallelizable, can utilize GPU’s massive cores, and reduces the
amount of data that needs to be transferred back to host.

The timing shown in Table 1 is the total execution time and
necessary overhead for genome scan. We ran the genome scan
process 10 times and chose the median to remove the random-
ness of each run and warm-up time of GPUs.

In Table 1, CPU & GPU implementation gains 5–14 times speedup
compared to CPU only. The former took only 0.83 and 16.57 s for
spleen and hippocampus dataset, while the latter took 0.06, and
2.82 s respectively. Our algorithm exploits parallelism in two ways,
by simplifying the genome scan process to matrix multiplication,
and by getting the maximum LOD score of each phenotype. Such ar-
rangement is ideal for GPU processing: maximum parallelization for
computation while minimizing data input and output.

Benefit of using single precision
Table 1 also shows the execution time using single and double pre-
cision. In all cases, genome scans run faster using single precision
than using double precision. The speedup are more appreciable in
the larger, hippocampus dataset compared to the spleen dataset.

Using single precision provides benefits in three aspects: memory

storage, data transfer, and arithmetic calculation.

Benefit of using Julia
In our explorations of matrix multiplication, Julia’s speed is compa-

rable to C/Cþþ (results not shown). However, the low learning

curve, clean syntax, as well as support for GPU programming librar-

ies such as CUDAnative (Besard et al. 2018) reduce programming ef-

fort relative to C/Cþþ. Compared with writing GPU functions in C/

Cþþ, writing in Julia is cleaner and easier because it requires much

less boilerplate code. Below are some example code snippets. The

first example shows how to call cuBLAS from Julia, and the second

example shows how to write a custom kernel in Julia. To respect

page limits, we will not show the corresponding C code. An example

of using cuBLAS with C can be found online (Nvidia 2021b).

## Example 1:

using CUDA

A ¼ rand(1000,1000)

B ¼ rand(1000,1000)

# Data transfer from CPU to GPU

d_a ¼ CuArray(A)

d_b ¼ CuArray(B)

# GPU matrix multiplication calling CuBLAS library

d_c ¼ CUDA.CUBLAS.gemm(’T’, ‘N’, d_a, d_b);

# Data Transfer from GPU to CPU

C ¼ collect(d_c)

## Example 2:

# Custom kernel for matrix element-wise calculation

function log_kernel(data, MAX)

# calculating GPU thread ID

i ¼ (blockIdx().x-1) * blockDim().x þ threadIdx().x

# Check thread ID is in bound.

if(i < MAXþ1)
# Call log function on GPU

data[i] ¼ CUDAnative.log(data[i])

end

return

end

# initialize and transfer data to GPU.

MAX ¼ 64000

d_data ¼ CuArray(rand(MAX))

# Launching GPU

d_res ¼ @cuda blocks¼1000 threads¼64
log_kernel(d_data, MAX)

# Transfer result back to CPU

res ¼ collect(d_res)

Table 1 eQTL scan runtimes for R/qtl and LiteQTL

Dataset Precision LiteQTL R/qtl LiteQTL speedup vs R/qtl

CPU only CPU and GPU GPU speedup CPU only CPU and GPU

Spleen (35K
traits)

Single 0.56 s 0.04 s 14.0x — — —
Double 0.83 s 0.06 s 13.8x 40.02 s 48.2x 667.0x

Hippocampus
(1.2M traits)

Single 12.36 s 1.66 s 7.4x — — —
Double 16.57 s 2.82 s 5.4x 2070.71 s 124.9x 734.2x

We show the time taken in seconds to perform eQTL genome scans with LiteQTL and R/qtl. LiteQTL times are shown by precision (single vs double), and whether
the GPU was used or not. The GPU speedup column computes the speedup for LiteQTL using the CPU and GPU vs using the CPU only. LiteQTL was used with the
maximum LOD output option to reduce data transfer time.
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Comparison with tensorQTL
Table 2 shows the comparison of runtimes broken down by time
taken for data transfer, core computation, and post processing.
The main finding is that the data transfer and core computation
take about the same time for tensorQTL and LiteQTL for both
CPU and GPU. Both program timings indicate a speedup factor of
20 times for the core computation of the full matrix. For the fil-
tered version, the GPU was about 56 times faster than CPU only
for tensorQTL and about 18 times faster for LiteQTL.

Depending on user-defined options, the output may need fur-
ther processing after the core computation. This post processing
is responsible for the main differences in elapsed time. Because it
depends on user options, both programs exclude that time in cal-
culating the GPU speedup. In our tests, the elapsed time for
tensorQTL was longer than for LiteQTL.

Discussion
We examined the effectiveness of using GPUs for speeding up
eQTL scans in the BXD family of recombinant inbred lines. We
are able to run genome scans for the spleen data (36K traits) in
0.06 s and for the hippocampus data (1.2M traits) in 2.82 s. This
meets the requirements for real-time performance. Although
there are additional hurdles in deploying the GeneNetwork front-
end web service, this is very encouraging. Users can use our
stand-alone Julia package for running eQTL scans.

For us, the GPU speedup compared to CPU implementation is
best when the matrices are closer to square shapes. On our test
hardware, matrix multiplication is up to 4 times faster on GPU
than on 16 threaded CPUs. The exact speedups with our algo-
rithm and software will depend on the hardware configurations.

The 200–300 times speedup reported by Taylor-Weiner et al.
(2019) does not include data transfer, and for this specific
speedup, reported CPU time is single-threaded. The supplement
of Taylor-Weiner et al. (2019) reported the speedup when GPU
data transfer is included, and that brought it down in the range
of 10–100. This is the same as our observation. Data transfer time
needs to be included when reporting GPU time, since this is a cost
associated with using GPU. Sometimes, it is a very significant
cost. When LiteQTL returns the full matrix of LOD scores, the
data transfer time amounts to more than 90% of total GPU time.
It is also more realistic to report a multithreaded CPU time (16
threads or more), since the speedup for CPU from multithreading
is easily achievable. These two factors shrink the gap between
CPU and GPU. However, when the CPU multithreading accelera-
tion is capped (the cost of maintaining multithread

communication surpass the computation time), GPU can provide

that extra boost, for time critical use cases.
Returning the maximum LOD score for each transcript

reduces data size and speeds up computations substantially.

However, this comes at a cost: to identify all eQTLs, one would

need to run a secondary genome scan with all transcripts with at

least one eQTL.
Our experience in this project indicates that the excitement

about using GPUs for speeding computations needs to be tem-

pered by the limitations of GPU. It takes significant additional de-

velopment time and therefore, is most useful for high-value

(deep learning) or routine-use (graphics rendering) projects. We

also need to reconsider algorithms with the GPU in mind, and

pay attention to the speed and size of data to be transfered to/

from CPU to GPU. In many problems it is much easier to throw

additional CPU cores to the problem with minimal programming

than to devote effort into GPU programming. Both Taylor-Weiner

et al. (2019) and LiteQTL attempt to address this barrier, making

GPU algorithms more available to a broader range of users.
LiteQTL only supports a 1-degree freedom test currently and

assumes missing data in the input data set; any missing data has

to be handled in pre-processing and will add to the computation

time. Currently, the LOD scores are fit using a linear model; for

many problems a linear mixed model (LMM) (Lippert et al. 2011) is

of interest. We expect to build on the current work to tackle that

problem in the future.
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Data availability
The BXD Genotype Database (GN Accession: GN600) and two sets

of transcriptome data, UTHSCAffy MoGene 1.0 ST Spleen (GN

Accession: GN283) and UMUTAffy Hippocampus Exon (GN

Accession: GN206) can be obtained from GeneNetwork https://

GeneNetwork.org. The GEUVADIS data for tensorQTL comparison

can be obtained from tensorQTL’s Github repository: https://

github.com/broadinstitute/tensorqtl/blob/master/example/ten

sorqtl_examples.ipynb Supplemental material is available at fig-

share: https://doi.org/10.25387/g3.14622603.

Table 2 Timing comparison between tensorQTL and LiteQTL: Times are averaged over 10 runs and expressed in seconds

tensorQTL LiteQTL

Full matrix Filtered P-value Full matrix Filtered max

CPU only CPU and GPU CPU only CPU and GPU CPU only CPU and GPU CPU only CPU and GPU

Data transfer 0.015 0.561 0.018 0.069 0.000 0.660 0.000 0.020
Core compu-

tation
0.940 0.055 1.601 0.029 1.022 0.054 0.536 0.030

Post process-
ing

9.865 8.060 0.777 0.719 0.000 0.785 0.000 0.030

Elapsed 10.820 8.676 2.396 0.817 1.022 1.499 0.536 0.080

Full matrix timings are done without any filtering threshold. Filtering threshold is different for tensorQTL and LiteQTL. For tensorQTL, the MAF (Minor Allele
Frequency) threshold is 0.05, and the P-value threshold is 10�5. For LiteQTL, the MAF threshold is 0.05, and the maximum LOD score for each transcript. The main
conclusion is that the core computation and data transfer between tensorQTL and LiteQTL is very similar. The difference lies in post processing, which varies a lot
depending on filtering threshold, and user-defined output.
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