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Abstract

Identifying quantitative trait loci

in experimental crosses
by

Karl William Broman

Doctor of Philosophy in Statistics
University of California, Berkeley

Professor Terence P. Speed, Chair

Identifying the genetic loci responsible for variation in traits which are quantitative
in nature (such as the yield from an agricultural crop or the number of abdominal bristles
on a fruit fly) is a problem of great importance to biologists. The number and effects of
such loci help us to understand the biochemical basis of these traits, and of their evolution
in populations over time. Moreover, knowledge of these loci may aid in designing selection
experiments to improve the traits.

We focus on data from a large experimental cross. The usual methods for analyzing
such data use multiple tests of hypotheses. We feel the problem is best viewed as one of
model selection. After a brief review of the major methods in this area, we discuss the
use of model selection to identify quantitative trait loci. Forward selection using a BIC-
type criterion is found to perform quite well. Simulation studies are used to compare the
performance of the major approaches. In addition, we present the analysis of data from a

real experiment.
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Chapter 1

Introduction

In this thesis we consider the problem of identifying the genetic loci (called quan-
titative trait loci or QTLs) that contribute to variation in a quantitative trait. We focus
on data from a large experimental cross, and assume that the genes act additively. Most
of the current statistical methods for this problem use multiple tests of hypotheses. We
feel the problem is best viewed as one of model selection, and so in this thesis, we develop
the use of model selection ideas for identifying QTLs, and compare the results of this ap-
proach to the methods currently in use. We concentrate almost exclusively on detecting
QTLs, considering the estimation of the QTLs’ effects and precise locations of secondary
importance.

Classical genetics has historically concentrated on binary traits, such as whether or
not an individual has a particular disease. Such traits are often the result of a mutation at a
single gene. However, most natural traits exhibit quantitative variation. Examples include
the yields of agricultural crops, the number of abdominal bristles on fruit flies, and the
heights and weights of people. Variation in quantitative traits often results from the action
of multiple genes, called polygenes or quantitative trait loci (QTLs). The contribution
of each particular gene may be quite small, while environmental (non-heritable) variation
may be quite large. As a result, one cannot immediately infer an individual’s genotype
(its genetic composition) from its phenotype (the trait value), making it a difficult task to
identify and characterize the QTLs.

Knowledge of the locations and actions of the QTLs helps us to understand the
biochemical basis of these traits, and of their evolution over time, and may aid in designing

selection experiments to improve the traits.



The idea that the quantitative variation in a trait could be due to the action of
multiple genes was proposed in Gregor Mendel’s seminal paper (Mendel 1866), in which
he wrote that complex variation in the color of flowers might be due to the independent
action of several genetic factors. Nilsson-Ehle (1909) demonstrated that this was indeed
true. He showed that differences in the color of the grains of two varieties of wheat were
due to segregation at three different loci.

By the 1920’s, the chromosome theory and the concept of genetic linkage were well
developed, primarily a result of experiments with Drosophila melanogaster (the fruit fly) in
Thomas Hunt Morgan’s lab. Sax (1923) demonstrated an association between seed weight
and seed coat color in beans, and proposed that this association was due to linkage between
the genes controlling color and one or more genes controlling size.

Thoday (1961) put forth the idea to use multiple genetic markers to systematically
map the individual polygenes which control a quantitative trait, and noted that the only
barrier to this approach was the small number of available markers. Another problem was
that the phenotypic markers in use often displayed a larger effect on the quantitative trait
than did the individual polygenes (Tanksley 1993).

Recently, biochemical markers have been developed: first protein polymorphisms
and then DNA polymorphisms, such as restriction fragment length polymorphisms (RFLPs)
and microsatellites. These markers have a number of useful properties. They are generally
phenotypically neutral, they can be highly polymorphic, and, most importantly, they exist
in great abundance, spanning entire genomes.

The development of biochemical markers has led to a proliferation of studies aimed
at identifying and characterizing the QTLs responsible for variation in quantitative traits.
A very large number of traits have been studied in many different organisms, such as pigs
(Andersson et al. 1994), maize (Edwards et al. 1987; Beavis et al. 1991; Stuber et al. 1992),
mice (Berretini et al. 1994), tomatoes (Paterson et al. 1990, 1991; deVicente and Tanksley
1993) and eucalyptus trees (Grattapaglia et al. 1996).

In the remaining part of this chapter, we describe the typical experiments used to
identify QTLs and the statistical models which relate genotype to phenotype. In Chapter 2,
we give a critical review of the methods which have been developed to identify QTLs in
experimental crosses. In Chapter 3, we discuss the application of model selection ideas to
this problem. Chapter 4 contains the results of some large simulation studies to compare

the different methods for identifying QTLs, and to evaluate the power to detect QTLs for



different sizes of experiments. Chapter 5 contains an analysis of some data on the number
of bristles in Drosophila. In Chapter 6, we discuss some further important issues, and

summarize our conclusions.

1.1 Experiments

Most experiments aimed at identifying quantitative trait loci (QTLs) begin with
two pure-breeding lines which differ in the trait of interest. We’ll call these the low (L)
and high (H) parental lines. The lines are the result of intensive inbreeding, so that each
is essentially homozygous at all loci (meaning that, at each locus, they received the same
allele from each of their two parents). Crossing these two parental lines gives the first filial
(or F1) generation. The F; individuals receive a copy of each chromosome from each of the
two parental lines, and so, wherever the parental lines differ, they are heterozygous. All Iy
individuals will be genetically identical, just as the individuals in each of the parental lines
were.

In a backcross (see Figure 1.1), the F'; individuals are crossed to one of the two
parental lines, for example, the low line. The backcross progeny, which may number from
100 to over 1000, receive one chromosome from the low parental line, and one from the
Fy. Thus, at each locus, they have genotype either LL or HL. As a result of crossing over
during meiosis (the process during which gametes or sex cells are formed), the chromosome
received from the Fy parent is a mosaic of the two parental chromosomes. At each locus,
there is a half a chance of receiving the allele from the low parental line (L) and a half a
chance of receiving the allele from the high parental line (H). The chromosome received will
alternate between stretches of L’s and H’s.

The goal is to look for an association between the phenotype of an individual and
whether it received the L or H allele from the F; parent at various marker loci.

Another common experiment is an intercross (see Figure 1.2). Here, the F; in-
dividuals are either selfed or crossed to each other. The individuals in the resulting I,
generation each receive two chromosomes from the I'y generation, each of which will be a
combination of the two parental chromosomes. Thus, at each locus, the Fy individuals will
have genotypes LL, HL or HH.

We use the backcross as our chief example, because of its simplicity. At each locus

in the genome, the backcross progeny have one of only two possible genotypes. The inter-
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Figure 1.1: A backcross experiment, with four progeny. (Typical experiments contain
more than 100 progeny.) Only one pair of homologous chromosomes is shown.
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Figure 1.2: An intercross experiment, with four progeny. (Typical experiments contain
more than 100 progeny.) Only one pair of homologous chromosomes is shown.



cross is more commonly used in practice, but the analysis of the two types of experiments
is similar. The strategies developed for analyzing backcross experiments will generally work

for intercross experiments as well.

1.2 Data

In an experiment like a backcross, each of the progeny is scored for one or more
traits. (We’ll consider only one trait.) In addition, the progeny are typed at a number of
genetic markers: at each marker, it is determined whether the allele an individual received
from the F; parent was that from the low or high parental line. Thus, at each of these
marker loci, we determine, for each of the progeny, whether its genotype is LL or HL.

A genetic map, specifying the relative locations of the markers, may be known,
or will be estimated using the data from the current experiment. Such a map gives the
linear order of the markers on the various chromosomes. The distance between markers in
a genetic map is given by genetic distance, in the units centiMorgans (cM). Two markers
are separated by d cM, if d is the expected number of crossovers between the markers in
100 meiotic products.

Generally, we’ll write y; for the phenotype (trait value) of individual ¢, and z;; =
1 or 0 according to whether individual ¢ has genotype HL or LL at the jth marker.

Typical experiments involve 100 to 1000 progeny, and use between 100 and 300

genetic markers.

1.3 Models

1.3.1 Model for recombination

A diploid organism has two copies of each chromosome, one from its mother and
one from its father. During the formation of gametes (sex cells), in the process of meiosis,
the two homologous copies of a chromosome may undergo exchanges, called crossovers.
Each of the gametes formed contains one copy of each chromosome, and each of these will
be a mosaic of the two original homologs.

The locations of the crossovers along a chromosome are often modelled as a Poisson

process (the assumption of “no interference”), with the processes in different individuals



and on different chromosomes in one individual being independent. Moreover, at each locus,
there is an equal chance that the allele is either paternally or maternally derived.

Consider a chromosome with k£ markers, and let z;; = 1 or 0if the ¢th individual has
genotype HL or LL, respectively, at the jth marker. Then Pr(z;; = 1) = Pr(z;; = 0) = 1/2,
for all 7, 7, and letting z; = (z;;), the z; form a Markov chain.

Consider markers 7; and j3, separated by a distance of d ¢cM (so that d is the
expected number of crossovers between these two markers in 100 meioses). If an odd
number of exchanges occur between these markers, then z;;, # z;;,. This event is called
a recombination. Let r = Pr(z,;, # zij,). Then r = 1(1 — e24/1%0)_ This is called the

Haldane map function (Haldane 1919).

1.3.2 Model connecting genotype and phenotype

Let y denote the phenotype for an individual derived from a backcross experiment.
Let g be a vector giving its genotype at all loci. Let p, = E(y|g), the average phenotype
for individuals with genotype g, and 0g2 = var(y|g), the variance of the phenotypes of
individuals with genotype g. In principle, these could be arbitrary functions of g. But
imagine that there are a finite number, p, of loci which affect the trait. Let (¢1,...,¢,)

denote the genotypes of the individual at these loci. Then

E(ylg) =tg,...g,

and var(yl|g) :Ug21~~~9p'

Often, we assume that the trait is homoscedastic—that the variance is constant

within the genotype groups:

var(ylg) = o”.

There are 2P different possible genotypes at the p QTLs. Each genotype could
have a distinct trait mean. But often we assume that the loci act additively. Let z; = 1 or

0, according to whether g; = HL or LL. We imagine that

P
E(ylg)=n+>_ Bz

i=1
Deviation from additivity (i.e. interactions between the QTLs) is called epistasis.

Most current methods use this assumption of additivity. Pairwise interactions

are occasionally included, but few studies have found significant effects when using such an



approach (Tanksley 1993), possibly because of the enormous number of pairwise interactions
which must be considered. Strong evidence for epistasis has been demonstrated in one of the
most studied quantitative traits, the number of abdominal bristles in Drosophila (Shrimpton
and Robertson 1988; Long et al. 1995). Thus one should not discount the importance of
epistasis.

A further often used assumption is that, given the genotypes at the QTLs, the trait
y follows a normal distribution. Thus, if we group the backcross progeny according to their
genotypes at the p QTLs, the phenotypes within each group will be normally distributed.
The phenotypes for the backcross progeny, considered as a whole, will follow a mixture of
normal distributions.

In this thesis, we will focus on the case of strict additivity, with the further as-
sumption of normality. This is not because we feel that it is the best approach, but rather
because this simple case is still not well solved. We would like to reframe the problem of
identifying QTLs as one of model selection rather than hypothesis testing, and this will be

done most clearly if we avoid the added difficulties which accompany a search for epistasis.

1.4 Goals

Consider a backcross giving n progeny. For individual ¢, we obtain the phenotype,
Yy;, and the genotype at a set of M markers. Let z;; =1 or 0, according to whether individual
t has genotype HL or LL at the jth marker.

We imagine that there are a set of p QTLs, and write 2;; = 1 or 0, according to

whether individual 7 has genotype HL or LL at the jth QTL. Let

P
yi=n+ Y Bzt
j=1
where the ¢; are independent and identically distributed (iid) normal(0, o?).

The ultimate goal is to estimate the number of QTLs, p, the locations of the QTLs,
and their effects, 3;. In estimating the number and locations of the QTLs, we may make
two errors: we may miss some of the QTLs, and we may include additional, extraneous loci.

In practice, a scientist may be satisfied with finding a few QTLs with large effect.
In QTL experiments aimed at improving an agricultural crop, one seeks only the major

QTLs, which may then be introgressed from one line into another. Furthermore, with a



few major QTLs in hand, it may be possible to design experiments which identify the other
QTLs segregating in a cross.

How one chooses to balance the two errors, of missing important loci and of in-
cluding extraneous loci, depends on the goals of the scientists who designed the cross. In
some cases, one may wish to find as many of the QTLs as possible and be undeterred by
the possibility that several of the identified loci are, in fact, extraneous ones, of no effect.
In other situations, one may be satisfied with identifying only a few major QTLs, in order

to avoid including extraneous ones.
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Chapter 2

Major approaches

There are a large number of different methods for identifying the QT Ls segregating
in an experimental cross (such as a backcross or an Iy intercross, obtained from two inbred
lines). In this chapter, we describe most of the proposed methods and briefly discuss
their advantages and disadvantages. We focus on the example of a backcross. Two highly
inbred lines, differing in the trait of interest, are crossed. The resulting F; generation is
crossed back to one of the two parental lines. The backcross progeny obtained are either
heterozygous (with genotype HL, say) or homozygous (with genotype LL) at each locus in
the genome.

It’s best to distinguish between methods which model a single QTL at a time from
those which attempt to model the effects of several QTLs at once. In Section 2.1, we review
the single QTL methods, and in Section 2.2, we review the multiple QTL methods. Section

2.3 contains a discussion of the relative merits of the methods.

2.1 Single QTL methods

We will consider five basic single QTL methods: analysis of variance at a sin-
gle marker, maximum likelihood using a single marker, interval mapping (i.e., maximum
likelihood using flanking markers), an approximation to interval mapping called “regression

9

mapping,” and a further method which gives results approximating interval mapping, called

“marker regression.”

Each of these methods includes a so-called “genome scan.” The loci
are considered one at a time, and a significance test for the presence of a single QTL is

performed at each. Generally, the significance level used for the tests is adjusted to account
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for the multiple tests performed. Areas of the genome which give significant results are

indicated to contain a QTL.

2.1.1 Analysis of variance

Analysis of variance (ANOVA) is the simplest method for identifying QTLs (see
Soller et al. 1976). Consider a single marker locus, and group the progeny according to
their genotypes at that marker. To test for the presence of a QTL, we look for differences
between the mean phenotype for the different groups using ANOVA. If a QTL is tightly
linked to the marker, then grouping the progeny according to their marker genotypes will
be nearly the same as grouping them according to their (unknown) QTL genotypes, with
recombinants being placed in the wrong groups.

Consider a backcross with a single segregating QTL. Suppose that the progeny with
QTL genotype HL have mean phenotype ppr, and that progeny with QTL genotype LL have
mean phenotype pur,, so the QTL has effect § = ppr — pr,. Consider a marker locus which is a
recombination fraction r away from the QTL. Of the individuals with marker genotype HL, a
fraction (1—r) of them have QTL genotype HL, while the remainder have QTL genotype LL,
and so these individuals have mean phenotype (1 —r)ug + rpr, = pg — Gr. The individuals
with marker genotype LL have mean phenotype (1 —7)ur,+ rug = pr, + 8r. Thus the mean
difference between the two marker genotype groups is (ug — 8r) — (pr, + pr) = p(1 — 2r).
And so a non-zero mean difference between the marker genotype groups indicates linkage
between the marker and a QTL.

There are two drawbacks to this method. First, we do not receive separate esti-
mates of the location of the QTL relative to the marker () and its effect (). QTL location
is indicated only by looking at which markers give the greatest differences between geno-
type group means. Second, when the markers are widely spaced, the QTL may be quite far
from all markers, and so the power for detection will decrease, since the difference between
marker genotype means decreases linearly as the recombination fraction between the marker

and the QTL increases.

2.1.2 Maximum likelihood with a single marker

To get around the problems with ANOVA, several authors have proposed to ex-

plicitly model the location of the QTL with respect to the marker, and then use maximum
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likelihood (ML), or an approximation to ML, to estimate the distance between the marker
and the QTL as well as the QTL’s effect (Weller 1986, 1987; Simpson 1989). This method
makes use of the fact that the marker genotype groups are not quite the same as the QTL
genotype groups.

Consider again the backcross discussed in the previous section. Suppose that the
individuals who are HL at the QTL have phenotypes which are normal(ug,o?), and the
individuals who are LL at the QTL have phenotypes which are normal(yy,,o?). Then at a
marker which is a recombination fraction r away from the QTL, the phenotype distribution

for individuals who are HL is a mixture of two normals, with density

filys e, pr,o,r)=(1-1)¢ <y UMH)Jr d)(y HL),

where ¢ is the density of the standard normal distribution. The phenotype distribution for

individuals who are LL at the marker has density

fQ(yQNHaML7U,T):(1—T)¢<y ML)+ ¢<y uH)

Let z; = 1 or 0, according to whether individual ¢ has marker genotype HL or LL. Let

y; denote the phenotype for individual i. Then the likelihood under this model, letting 6
denote the vector of parameters (ug, pr,, ), is
L8,y @) = [0 (i3 0, [ falyis 0,1)] =
i
Maximizing this function over 6, using, for example, the EM algorithm (Dempster et al.
1977), gives the maximum likelihood estimates. This is done for a particular value of the
recombination fraction r. We then maximize the likelihood over r to obtain 7.

Linkage between the marker and the QTL is tested by performing a likelihood
ratio test, comparing the above model, with a single QTL linked to the marker, to the null
hypothesis of no segregating QTLs, where the individuals are assumed to have phenotypes
which are normal(yu, o?).

The likelihood under the null hypothesis, letting 6y = (p, ), is

ot =ITe (2).

The likelihood ratio test is performed by calculating the likelihood ratio, or, as seems to be

preferred by geneticists, the LOD score, which is the log (base 10) likelihood ratio

maxg L(8,r;y, :U)]
LOD(r) =1
OD(r) = logro maxg, Lo(fo; y)
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and comparing it to the distribution of the maximum LOD score under the null hypothesis
(that is, under the assumption that no QTLs are segregating).

This method has the advantage of giving separate estimates of the QTL’s location
with respect to a marker and its effect. One disadvantage is the great increase in computa-
tion associated with maximizing the likelihood function to obtain parameter estimates. But
a bigger problem involves combining the information for different markers to give a single

estimate of the QTL location; it is not at all clear how this can be done.

2.1.3 Interval mapping

Lander and Botstein (1989) improved on the previous single marker approaches

> and is

by considering flanking markers. Their method has been called “interval mapping,’
currently the most popular method for identifying QTLs in experimental crosses.

Again, they assume that there is a single segregating QTL, and that backcross
individuals have phenotypes which are normally distributed with mean pg or uy,, according
to whether their QTL genotype is HL or LL, and common variance o2. Further, they use the
assumption of no crossover interference, and require a genetic map specifying the locations
of the markers.

Consider two markers which are separated by d cM, corresponding to a recombi-
nation fraction of r = %(1 — €—2d/100)’ and a putative QTL located dy, cM from the left
marker, corresponding to a recombination fraction of rz, = (1 — e~241/100) " The recom-
bination fraction between the QTL and the right marker is thus rgp = (r — r1,)/(1 — 2rg,).
There are four possible sets of genotypes at the two marker loci; for each, we can calculate
the conditional probability for each of the two QTL genotypes, given the marker genotypes.
These are displayed in Table 2.1. Note that, with fully informative markers, the flanking
markers provide all of the information about the QTL genotypes.

For each of the four sets of marker genotypes, we can now write down the con-
ditional phenotype density, which has the form of a mixture of two normal distributions,
similar to those seen in Section 2.1.2. Thus we can obtain the likelihood for our four
parameters, (pgr, i1, 0, TL).

Lander and Botstein (1989) proposed to maximize this likelihood, for fixed rp,
using the so-called EM algorithm (Dempster et al. 1977). They then calculated the LOD

score, which is the log (base 10) likelihood ratio comparing the hypothesis of a single QTL
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Table 2.1: Conditional probabilities for the QTL genotypes given the two flanking marker
genotypes.

marker genotype QTL genotype

left right HL LL

HL HL (1-=rp)(1=rp)/(1=71) rrr/(1—1)

HL LL (1 —=rp)rr/r ri.(1—rg)/r

LL HL ri.(1 —rg)/r (1=r)rr/r

LL LL rrrr/(1—1) (1-=r)(1=rp)/(1—=71)

at the current locus (i.e., the current value of r7,) to the null hypothesis of no segregating
QTLs (meaning that the individuals’ phenotypes follow a normal(u,o?) distribution). The
two likelihoods in this ratio must be maximized over their respective parameters.

The procedure outlined above is performed for each locus in the genome. The
likelihood under the null hypothesis is calculated just once. The likelihood for the hypothesis
of a single QTL must be calculated at each locus in the genome (or, really, just every 1 ¢cM
or s0), and so the EM algorithm must be performed at each locus.

The LOD score is then plotted against genome location, and is compared to a
genome-wide threshold. Whenever the LOD curve exceeds the threshold, we infer the
presence of a QTL. The point at which the LOD is maximized is used as the estimate of the
QTL location. A one- or two-LOD support interval, the region around the inferred QTL in
which the LOD score is within one or two of its maximum, is used as an interval estimate
for QTL location.

The genome-wide threshold, used to indicate the significance of a peak in the LOD
curve, is obtained by finding the 95th percentile of the maximum LOD score, across the
entire genome, under the null hypothesis of no segregating QTLs.

Figure 2.1 gives an example of a LOD curve. We simulated 200 backcross progeny,
having a single chromosome of length 100 ¢M with 11 equally spaced markers, using a
model with a single QTL located 35 ¢cM from the left of the chromosome. The effect of the
QTL (the difference between the means for HL versus LL individuals) was 0.750, giving a
heritability, the proportion of the total phenotypic variance due to the QTL, of 0.36. The
dots plotted on the curve point out the locations of the marker loci. Using a LOD threshold

of 2.5, the observed peak is significant. The inferred QTL is estimated to be at 37 cM, with
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a maximum LOD score of 3.4. The one-LOD support interval covers the region from 27 cM

to 47 cM, which does indeed include the actual location of the simulated QTL.

LOD
N

0 20 40 60 80 100

location (cM)

Figure 2.1: An example LOD curve for some simulated data.

A great deal of effort has been expended in trying to understand the appropriate
LOD threshold to use. Lander and Botstein (1989) performed simulations to estimate the
threshold for various different genome sizes and marker densities. They gave analytical
calculations for the case of a very dense marker map. These guidelines should suffice for
most uses. If one is concerned, additional simulations, conforming to the particular case
under study, can be performed quite easily, or one can use a permutation test (Churchill and
Doerge 1994), which has the advantage of avoiding the assumption of normally distributed
environmental variation.

A number of studies have assessed the performance of interval mapping in compar-
ison to ANOVA (van Ooijen 1992; Knott and Haley 1992; Darvasi et al. 1993; Rebai et al.
1995; Hyne et al. 1995). The chief benefit of interval mapping is that it gives more precise

estimates of the location and effect of a QTL. It does not give an appreciable increase in
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the power for detecting QTLs, and it requires a great deal more computational effort than
does single marker ANOVA.

Hyne et al. (1995) stated that when a QTL is located very near one end of a
linkage group, its estimated location, as given by interval mapping, will be biased, since if
one looks for QT Ls only within the two extreme markers on the linkage group, its estimated
location will never be outside of the last marker. It is possible to extend the LOD curves
beyond the most extreme markers, however; outside of these markers, we can use the single
marker maximum likelihood method, described in the previous section. Doing this should
eliminate the bias problem. (Of course, a slight increase in variance, and a slight decrease
in power, will accompany this approach.)

Look again at Figure 2.1. The dots on the LOD curve are at the marker loci. At
these points, interval mapping is really just ANOVA, since the genotypes there are known
exactly. If we performed only ANOVA, we’d get exactly those points on the LOD curve.
Interval mapping links these points together, and indicates that the best estimate for the
QTL position is at 37 ¢cM. But the markers at both 30 and 40 cM are within the one-LOD

support interval.

2.1.4 Regression mapping

Knapp et al. (1990), Haley and Knott (1992), and Martinez and Curnow (1992)
independently developed a method which approximates interval mapping quite well, but
requires much less computation. The method has come to be called “regression mapping.”
The presentation in Haley and Knott (1992) is by far the best.

Consider again the model of the previous section, with two markers separated by
a recombination fraction r, and a putative QTL located between them, at a recombination
fraction rz, from the left marker. The conditional expected value of the phenotype for an

individual, given its marker genotypes, is
E(y|marker gen.) = ur, + (ug — pr)Pr(QTL gen. is HL|marker gen.),

where Pr(QTL gen. is HL|marker gen.) is as shown in Table 2.1 (page 14).
In regression mapping, we regress the individuals’ phenotypes on their conditional
probabilities for having the genotype HL at the putative QTL, given their marker genotypes.

The log likelihood is calculated assuming that

y|marker gen. ~ normal(§, 0?)
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where § = E(y|marker gen.). This gives the LOD score

RSSO)

n
LOD = 510g10 (W

where n is the number of progeny, RSS is the residual sum of squares from the above
regression, > ,(y; — 9;)?, and RSSy is the residual sum of squares under the null hypothesis
of no segregating QTLs, > ,;(v; — ¥)?.

Like interval mapping, the LOD score is calculated at each locus in the genome,
but here, we need only calculate a single regression at each locus, rather than perform
the EM algorithm at each locus, which requires a number of iterations, each containing a
regression. Thus, there is a great savings in computation time. Also, because regression
mapping requires only simple regression calculations, it is much easier to include additional
effects into the analysis, such as sex or treatment effects. This may translate into large
increases in performance.

Figure 2.2 displays the difference between the LOD curves calculated by regression
mapping and interval mapping, for the data used in the previous section. The difference
between the two curves is very subtle, being less than 0.1 in absolute value. Regression map-

ping gives results every bit as good as interval mapping, with a great deal less computation.

2.1.5 Marker regression

Kearsey and Hyne (1994) and Wu and Li (1994) independently developed a fur-
ther method, which seems to approximate interval mapping quite well, with less intensive

computation. But this method, which Kearsey and Hyne call “marker regression,” seems

> and has

more awkward and less adaptable than Haley and Knott’s “regression mapping,’
not been shown to provide any further benefits.

Consider a linkage group with M markers, and fix the location for a putative
QTL. Let r; be the recombination fraction between the QTL and the jth marker. Group
the individuals according to whether they have genotype HL or LL at marker j. Let Bj be

the difference between the phenotype means for these two groups. As shown in Section 2.1.1,

E(f;) = B(1 = 2r)),

where = pup — pr, the effect of the QTL.
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Figure 2.2: The difference between the LOD curves calculated using regression mapping
and interval mapping for some simulated data.

Kearsey and Hyne (1994) suggest regressing the Bj for the M markers on the values
(1 —2r;), without an intercept. This is performed for each locus on the linkage group; we
seek the locus giving the minimum residual sum of squares in this regression.

Wu and Li (1994) point out that the ﬁAj do not have constant variance. The
variance of ﬁj is approximately 4[c? 4+ r;(1 — r;)3?]/n, where n is the number of progeny,
and o2 is the environmental variance. They suggest using weighted least squares, using
weights inversely proportional to the variances of the ﬁj. But since ¢ and § are not known,
it is not clear how to do this, unless one were to use a form of iteratively re-weighted least
squares.

Wu and Li (1996) further point out that the Bj are correlated, and recommend
using general least squares using an estimate of the covariance matrix.

We applied the method of Kearsey and Hyne (1994) to the simulated data analyzed
in Sections 2.1.3 and 2.1.4. Figure 2.3 displays the residual sum of squares curve. The

minimum is realized at 42 ¢M.
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Figure 2.3: The residual sum of squares curve calculated using the marker regression
method for some simulated data.

Kearsey and Hyne (1994) gave a small amount of simulations which suggested
that marker regression performs as well as interval mapping. But they have not made a
case for real improvements, aside from ease of computation. The method seems to have no

advantages over regression mapping.

2.2 Multiple QTL methods

Recent efforts in developing methods to identify QTLs have focused on multiple
QTL methods. There are three principal reasons for modelling multiple QTLs: to increase
sensitivity, to separate linked QTLs, and to estimate epistatic effects (i.e., interactions
between alleles at different QTLs).

When several QTLs are modelled, one can control for much of the genetic variation
in a cross, and thus individual QTLs can be more clearly seen. In contrast, when one models

a single QTL at a time, the genetic variation due to other segregating QQTLs is incorporated
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into the “environmental” variation. When two QTLs are linked, single QTL methods, such
as interval mapping, often view them as a single QTL. Searches which allow multiple QTLs
do a better job of separating the two loci, and identifying them as distinct. The presence
of epistasis can only be detected and estimated using models which include multiple QTLs.
Incorporating epistatic effects into multiple QTL models will be very difficult, however. If
one were to include all possible pairwise interactions, the number of parameters in the model
would quickly explode. The methods discussed here all neglect the possibility of epistasis.
In this section, we discuss four important methods which explicitly consider multi-
ple QTLs: multiple regression, interval mapping type methods using either forward selection
or multi-dimensional searches, composite interval mapping (also called MQM mapping), and

Markov chain Monte Carlo using a full Bayesian model.

2.2.1 Multiple regression

The obvious extension of analysis of variance is multiple regression. We attempt
to form a model which includes a number of different marker loci, rather than looking at
the markers one at a time. Let M be the number of markers, let z;; = 1 or 0, according to
whether individual ¢ had genotype HL or LL at the jth marker, and let y; be the phenotype
for individual 7. We write o

E(yilzi) = n+ ) Bz
=1
where z; = (2;;). We presume that most of the markers have 5; = 0. We seek the set of
markers, 5, with non-zero coefficients, 3;, so that
E(yilzi) = n+)_ Bizij.
j€s
The markers in 5" are indicated to be near QTLs.

There are two problems associated with this method. First, we must find a way
to search through the set of possible models, in order to seek good ones. In an experiment
with 100 genetic markers, there are 2!1%° ~ 103° possible models to consider; it will be
impossible to look at each of them. Second, we must form a criterion for choosing from
these models. For models that include the same number of markers, one generally picks
the one with the smallest residual sum of squares. The difficulty is in choosing between
models of different sizes: what change in the residual sum of squares must we see before

we’ll accept an additional marker into the model?



21

Cowen (1989) discussed using stepwise selection and backward deletion, and us-
ing Mallows’ C), and the adjusted-R? criteria, when using multiple regression to identify
QTLs. More recently, Doerge and Churchill (1996) described using forward selection, with
permutation tests to determine the appropriate size of the model. We will discuss these

approaches in detail in Chapter 3.

2.2.2 Interval mapping revisited

Lander and Botstein (1989) briefly mentioned a method for distinguishing linked
loci. If, when performing interval mapping, the LOD curve for a linkage group shows two
peaks, or a single very broad peak, Lander and Botstein recommended to fix the position of
one QTL at the location of the maximum LOD, and then search for a second QTL on that
linkage group. In the model selection literature, this method is generally called forward
selection (Miller 1990). Though some authors (Haley and Knott 1992; Satagopan et al.
1996) have interpreted this method as applying interval mapping to the residuals from the
best fit of one QTL, it is best to estimate the effects of both QTLs simultaneously, using
the original data (cf Dupuis et al. 1995).

We fix the location of the first QTL, and vary the location of the second QTL
along the linkage group. At each location for the second QTL, we calculate a LOD score,
comparing the maximum likelihood under the hypothesis of two QTLs at these locations,
to that with a single QTL, located where the first QTL was placed. Each individual’s
contribution to the likelihood has the form of a mixture of four normal distributions, the
four components corresponding to the four possible QTL genotypes. The EM algorithm
can again be used to obtain the maximum likelihood estimates and the corresponding LOD
score. (One could also apply the “regression mapping” method.)

Several authors have criticized this method (Haley and Knott 1992; Martinez and
Curnow 1992), pointing to the phenomenon of “ghost QTLs.” When two or more QTLs are
linked in coupling (meaning that their effects have the same sign), interval mapping often
gives a maximum LOD score at a location in between the two QTLs.

Consider, for example, a 60 cM segment of a chromosome, with four equally spaced
markers (20 cM spacing). Consider a backcross with QTLs located at 15 and 45 cM, acting
additively and having equal additive effect 0.50. Figure 2.4 gives the expected LOD (ELOD)

curve for this situation, when using 200 progeny. (Since there is no closed-form expression
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for the ELOD curve, it was estimated by performing 1000 simulations of the above situation
and averaging the LOD curves obtained. We also used the fact that the ELOD curve is
symmetric about the 30 ¢cM point, and so averaged the pairs of points on the curve which

are symmetric about 30 cM.)
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Figure 2.4: Expected L.LOD curve, with two QTLs located at 15 and 45 ¢M, and with
markers at 0, 20, 40 and 60 cM.

Note that the ELOD curve is maximized at 30 cM, even though the simulated
QTLs were at 15 and 45 cM. This gives rise to the term “ghost QTL.” Forward selection
here would give bad results. We would generally pinpoint the first QTL at around 30 cM,
and then search for a second QTL, and so would be completely mistaken.

But this “ghost QTL” problem turns out to be an artifact of interval mapping.
Figure 2.5 shows the ELOD curves for the above example, using marker spacings of 20, 10
and 5 cM.

When the markers are more tightly spaced, the ghost QTL disappears. The ELOD
curves are not maximized exactly at the true QTL locations, but things do get better as

marker density increases. Note that if one considered only the marker loci, one would not
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Figure 2.5: Expected LOD curves, with two QTLs located at 15 and 45 ¢cM. The solid
line, dashed line, and dotted line correspond to using equally-spaced markers at spacings of
20, 10 and 5 cM, respectively.

be so misled. The marker loci at which the LOD is maximized are those closest to the true
QTLs. We will investigate this problem further in Chapter 3.

As an alternative to forward selection, several authors have recommended per-
forming a full two-dimensional search for QTLs (Haley and Knott 1992; Hyne and Kearsey
1995; Wu and Li 1994, 1996). Instead of fixing the location of one QTL and then searching
for an additional one, the locations of both QTLs are allowed to vary simultaneously. A
great deal more computation must be performed. Extending this method to more than two
QTLs, as recommended by Wu and Li (1996), is possible in principle, but the computation
requirements would very quickly become prohibitive.

One problem that these authors have not discussed carefully is the question of
when to add an additional QTL: how much of an increase in LOD should we require before
allowing an additional QTL? Such guidelines are necessary, if one is to use these methods

in practice.
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2.2.3 Composite interval mapping and MQM mapping

Jansen and Zeng independently developed a method which attempts to reduce the
multi-dimensional search for identifying multiple QTLs to a one-dimensional search (Jansen
1993; Jansen and Stam 1994; Zeng 1993, 1994). This is done using a hybrid between interval
mapping and multiple regression on marker genotypes. By including other markers (on the
same chromosome and on different chromosomes) as regressors while doing interval mapping,
one hopes to control for the effects of QTLs in other intervals, so that there will be greater
power in detecting a QTL, and so that the effects of the QTLs will be estimated more
precisely. Jansen called the method MQM mapping (short for “marker-QTL-marker” or
“multiple QTL models”); Zeng called it composite interval mapping.

The method is performed as follows. We choose a set of markers, 5, to control for
background genetic variation. Then, we perform a genome scan, like in interval mapping.

At each locus in the genome, we hypothesize the presence of a QTL, and we write

y ~normal(u+ Bz + > Bjzj,0%),
jes*

where y is the phenotype, z = 1 or 0, according to the whether the genotype at the putative
QTL is HL or LL, z; = 1 or 0, according to whether the genotype at the jth marker is
HL or LL, and S* is a subset of our set of markers, 5, where we exclude any markers
that are within, say, 10 cM of the putative QTL. Under this model, the contribution of
each individual to the likelihood has the form of a mixture of two normal distributions
with means p + > ;cg« 3575 and p + B + 3 ;cg« 87, with mixing proportions equal to
the conditional probabilities of the individual having QTL genotype HL and LL, given its
marker genotypes. The EM algorithm, or a variant called the ECM algorithm (Meng and
Rubin 1993), can be used to maximize the likelihood function.

As in interval mapping, at each locus, a likelihood ratio or LOD score is calculated,
comparing the likelihood assuming that there is a QTL at that locus, to the likelihood
assuming that there is not a QTL there, in which case we imagine that all progeny have
phenotypes which are normally distributed with mean p+ ", + 87, and variance o?. The
LOD score is plotted as a function of genome position, and is compared to a genome-wide
threshold. As in interval mapping, areas of the genome for which the LOD curve exceeds
the threshold are said to contain a QTL.

The genome-wide threshold is obtained by considering the distribution of the max-
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imum LOD score under the hypothesis of no segregating QTLs anywhere in the genome.
This distribution should take into account the selection of the set of marker regressors, 5.
The distribution can be estimated by simulating a set of data under the hypothesis of no
segregating QTLs, performing the entire procedure, and calculating the maximum LOD
curve obtained, and then repeating the process a number of times. The 95th percentile of
these maximum LOD scores is used as the threshold.

The key problem in this method is the choice of which markers to use as regressors:
using too many markers will increase the variance of the LOD score, and thus will decrease
the power for detecting QTLs. Jansen (1993) and Jansen and Stam (1994) used backward
deletion, with Akaike’s Information Criterion (AIC) or a slight variant, to pick the subset of
markers. Zeng (1994) recommended using either all markers, dropping those within 10 cM
of the putative QTL, or using all markers that are not linked to the putative QTL. Basten
et al. (1996), in a manual for the program QTL Cartographer, recommend using forward
selection up to a fixed number of markers, say five, and then dropping any markers that
are within 10 cM of the putative QTL.

We have found that the methods that Zeng (1994) originally recommended, using
all markers or all markers not linked to the putative QTL, work very badly. Including so
many markers increases the corresponding LOD threshold to such a large value that power
is reduced to almost zero. Only QTLs with extremely large effect will be found by this
method.

The performance of the other methods for choosing the set of marker regressors
depends on how many markers are chosen. And once we have found a way to choose this
set, the task of identifying QTLs is essentially done: the best set of markers to use is exactly
the set of markers which are closest to the underlying QTLs. In Chapter 4, we present some

simulation studies which assess the performance of these methods.

2.2.4 Markov chain Monte Carlo

Satagopan et al. (1996) have applied the Markov chain Monte Carlo (MCMC)
method to the problem of identifying QTLs. MCMC is a very popular approach to solving
very complex statistical problems, especially those which include a large amount of missing
information. Gelman et al. (1995) gives a very good introduction to the subject.

Consider again a backcross. Satagopan et al. (1996) consider a single linkage group.
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(The method can be extended to several linkage groups in a straightforward way.) Consider
n progeny. Let y; be the phenotype for individual i. Suppose there are M markers, at
locations D = (Dy, Dg, ..., Da), in ¢M, from the left end of the linkage group. Let z;; = 1
or 0, according to whether individual ¢ has genotype HL or LL at the jth marker.

Let S be the number of segregating QTLs, and let A = (Aq,...,As) be their
locations, in cM, from the left end of the linkage group. Let z; = 1 or 0, according to
whether individual 7 has genotype HL or LL at the jth QTL. Let 3; be the effect of the jth
QTL, and assume that the environmental variation is normally distributed, with variance
o?. Let p be the mean of individuals for whom z;; = 0 for all j.

As shorthand, we’ll write y = (y1, ..., Yn), i = (Ti1,. .., Tivg), = (T1, ..., Ty),
and similarly for z;, z and 5. Also, let 8 = (u, 3, 0).

We have
S

yi|zi,0 ~ normal(p + Zﬁjzzj, a?).

i=1

This gives the likelihood

LA\ 0ly,z, D) =[] D f(wilzi = ¢,0)Pr(zi = q|\, 25, D)

=1 ¢
where the sum over ¢ is over the 2% possible QTL genotypes for individual i and where f
is the conditional (normal) density for y.

Satagopan et al. (1996) use a full Bayesian framework, meaning that they assign a
prior probability distribution to the unknown parameters (A, 8), say p(A,#), and then look
at their posterior distribution, given the data, p(A, 0|y, z, D).

The goal of the MCMC method is thus to estimate the posterior distribution of the
unknown parameters. This is done by creating a Markov chain whose stationary distribution
is the desired posterior distribution.

Simulating from this chain gives a sequence (Ag,#),(A1,61),...(AN,0n). Esti-
mates of the desired parameters, such as the QTL effects, 3;, are obtained by averaging
over these samples. Interval estimates for the QTL locations can be obtained by looking at
the smallest intervals which contain, say, 95% of the samples.

In order to determine the number of QTLs, 5, Satagopan et al. (1996) run separate
chains for different values of 5, and use Bayes factors. In brief, for each value of 5, they
use their samples to estimate the probability of the data given the model, p(y, z|S5). They

estimate the number of QTLs to be the value of S for which this estimated probability
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is large. If one were willing to give a prior on the number of QTLs, say Pr(S = s), the

posterior distribution for 5 could be calculated

Pr(S = s|y, ) = p(y,z|S = s)Pr(S = s)

> p(y;x]S = s)Pr(S = s)
The estimated number of QTLs would then simply be the value of S with the largest
posterior probability.

A later report (Satagopan and Yandell 1996), using an idea developed by Green
(1995), describes how to allow the unknown number of QTLs, S5, to be included as an
unknown parameter, so that a single Markov chain can be used to estimate S along with
the other parameters. Doing this requires placing a prior distribution on the number of
QTLs.

We have skipped all of the details of the MCMC method. The difficulties in
applying this approach are entirely in those details. First, you need to create a Markov
chain which has your posterior distribution as its stationary distribution. There are a
number of standard ways to do this, such as the Gibbs sampler (Geman and Geman 1984)
and the Metropolis-Hastings algorithm (Hastings 1970). The most important characteristic
in the chain is that it mixes well: that it moves around the parameter space rather easily,
and that it very quickly reaches its stationary distribution. Forming good Markov chains,
and monitoring their behavior, is a delicate and sophisticated art.

The other important problem is in the determination of the number of QTLs.
Whether we assign a prior to the unknown number of QTLs or use Bayes factors, we
must make choices which balance the problem of missing real QTLs with that of including

extraneous loci.

2.3 Discussion

Interval mapping and its approximations have been shown to provide little im-
provement in power over simple ANOVA at the marker loci. The advantage to interval
mapping is that it gives improved estimates for QTL locations and effects. But all of these
single QTL methods have difficulty in separating linked QTLs. Moreover, when searching
for multiple QTLs all at once, one can control for some of the genetic variance, which may
increase the power for detecting additional QTLs.

Interval mapping with forward selection has been harshly criticized, but large
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multi-way searches are infeasible. Composite interval mapping, and the very high-powered
Markov chain Monte Carlo, may provide ways around this, but there can be no universal
solution. The problems of searching through the space of possible models and of determining
the number of QTLs have not been solved. With composite interval mapping, one must
determine how many markers to use as regressors; but having done that, one has practically
determined the number of QTLs already. With Markov chain Monte Carlo, one must place
a prior on the number of QTLs, or at least form a rule for determining the number of QTLs,
given a set of Bayes factors.

Our feeling is that model selection methods using multiple regression methods
were discarded too early, and should be considered further. MCMC is quite a hefty bit
of machinery, and will no doubt perform quite well when in the hands of a highly skilled,
experienced user. But it may be like using a chain saw to cut a loaf of bread; tearing a
bit off with your hands does just as well, without the mess (or the gasoline). No one has
shown that MCMC will perform better than multiple regression. In fact, for the data in

Satagopan et al. (1996), interval mapping seems to give nearly identical results.
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Chapter 3

Model Selection

Identifying quantitative trait loci (QTLs) is a model selection problem. We imagine
that there are a finite number of QTLs segregating in the cross under study (and here we
assume that they act additively), and we wish to estimate their number, their locations,
and their effects. With this aim, we obtain data on the phenotypes of the progeny from an
experimental cross, as well as the genotypes of these progeny at a set of marker loci, for
which we have a genetic map.

In Chapter 2, we pointed out that, for typical QTL experiments, one is unable to
resolve the locations of QTLs to positions within an interval between markers. Thus, there
is very little lost in assuming that QTLs are located exactly at marker loci. This is the
approach that we recommend: we dispense of interval mapping (inferring between marker
loci), and attempt to choose a set of markers, which we identify as being at or near QTLs.

Consider again the example of a backcross. For each of n progeny, we obtain
phenotypes (y;) and genotypes (z;;) = 1 or 0 for a set of M markers, indexed by j. We

write

M
yi=p+ Y BT + ¢

i=1
where the ¢; are iid normal(0,0%). We seek the set of markers for which 3; # 0.

In identifying this set of markers, we can make two errors: we can miss some
markers that are important, and we can include some extraneous ones. How we choose to
balance these two errors should depend on the goal of the QTL experiment.

Our hope, in viewing the problem in this way, was that we could be guided by

previous work on selecting subsets of regressor variables, a problem which has been studied
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extensively over many years. Unfortunately, most research in this area has focused on
choosing models for prediction. In that scenario, most of the coefficients are believed to
be non-zero, but, because of the large number of regressors, they are estimated with large
variance. By dropping some of the regressors, a small bias is introduced, but the variances
of the estimated coefficients may be reduced radically, and so the overall prediction error
may be made smaller. (For a review of this subject, see Miller (1990).) Still, this work on
prediction has much to say on our problem of finding the underlying model.

The problem of identifying the underlying model has two components. First, one
must form a criterion for comparing models. Models with the same number of regressors
are generally compared by the residual sum of squares (RSS) obtained after estimating the
coefficients by least squares. The model with the smaller RSS is preferred. When comparing
models with different numbers of regressors, one cannot simply choose the model with the
smallest RSS, since when adding an additional regressor to a model, the RSS never increases.
Thus, one must make a decision about what decrease in RSS is required before accepting
an additional regressor.

The second part of the problem is that of searching through the space of models.
With M markers, there are 2™ possible models that must be considered. When M = 40,
so that 2™ ~ 10'2, it may be feasible to fit each possible model. But when M = 200,
2M ~ 1099, and it will be impossible to fit each of the models. Thus, one must find a way
to search through this large space, fitting a subset of the models which hopefully contains
the ones that would be chosen if one were able to fit all models.

In the next section, we discuss various criteria for choosing between models. In
Section 3.2, we discuss approaches to searching through model space. At the end of the

chapter, we summarize our recommended approach for identifying QTLs.

3.1 Comparing models

Imagine that we were able to fit all possible models. Let I' denote the set of models,
with v € ' written as an M-vector whose ith element v; = 1 or 0 according to whether or
not the 7th marker is included in that model. Let ¢, denote the number of markers in the
model v, and let RSS(y) denote the residual sum of squares after fitting v by least squares.

As mentioned above, in most approaches to selecting a subset of regressors, when

choosing among models with the same number of regressors, the chosen model is that with
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the smallest RSS. We’ll write v to be the model with the smallest RSS, among models
with k regressors, so that

v, = arg max RSS(7y)

Vigy=k
Thus, yps is the full model, with all markers included, and 7 is the model including no
markers.
Two of the most well known methods for choosing subsets of regressor variables are
Mallows’ C), and adjusted-R? (Miller 1990). Both are included in most standard statistical

packages. Mallows’ C’, has the form

R55(7)
G = ) (g,
where 6% is some estimate of o2, for example RSS(yar)/(n — M). The chosen model is that

which minimizes this criterion.

Adjusted-R? has the form

s RSS() (n—1)
B =1 R8500) (=)

It is easy to see that maximizing this criterion is equivalent to minimizing

%(v) = RSS(7)/(n — ¢,)

Both Mallows’ C, and adjusted- R? tend to include a large number of extraneous
variables, and so are unsatisfactory for our purposes.

Two more modern approaches for choosing subsets of regressor variables are cross-
validation and the bootstrap. In both of these approaches, an estimate of the mean squared
error of prediction (MSEP) is obtained. The chosen model has the smallest estimated
MSEP.

In the simplest form of cross-validation, one of the observations is dropped, an
estimated regression equation is formed using least squares with the other (n — 1) observa-
tions, and the value for the dropped observation is predicted using this regression equation,
giving, say, g)(i)('y). The process is repeated, dropping each of the n observations one at a

time, and the MSEP is estimated using

>t~ (1)
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This is often called the PRESS statistic (Miller 1990). This can be written in the form
D 1y = G()/(1 = hi)?
=1

where 7;(7) is the predicted value for the ith observation, using the regression equation
estimated with all n observations, and where h; is the ¢th diagonal element of the so-called
“hat” matrix, X,Y(XQXW)_lXQ. As a result, one need not actually perform n different
regressions, with the observations dropped one at a time; the statistic can be calculated
with information obtained from the single regression using the model ~.

More generally, one may consider dropping several observations at once. Dropping
k observations at a time leads to a k-fold cross-validation estimate of the MSEP. The trick
used above will not work for k-fold cross-validation, and so a great deal of computation will
have to be expended in estimating the MSEP in this way. The bootstrap, described in Shao
(1996), gives similar estimates of the MSEP, and will not be discussed further here.

Another approach is to minimize a criterion of the form
U(7) =logRSS(7) + ¢, D(n)/n

where D(n) is some function of n. Taking D(n) = 2 gives Akaike’s information criterion
(Akaike 1969). Taking D(n) = log n, one obtains Schwartz’s BIC (Schwartz 1978), and with
D(n) = loglog n, one obtains the criterion of Hannan and Quinn (1979).

Consider our sequence of models 79,71, ... ,7Mm, and suppose that v, minimizes

the above criterion ¥(7). Then

Y(7e41) 2 ¥(72)
— 1ogRSS(7ip1) + (k + 1)D(n)/n > log RSS(v4) + kD(n)/n
= log[RSS(7k41)/RSS(7)] = —D(n)/n
= RSS(7k41)/RSS(7x) > exp[—D(n)/n]

Similarly,

RSS(7)/RSS (7-1) < exp[—D(n)/n]

The ratio RSS(7x+1)/RSS(7%) approaches 1 as k becomes large, and is often strictly
increasing in k. In that case, minimizing the above criterion () is equivalent to choosing
the model v; where RSS(v41)/RSS(7%) is above and RSS(7yx)/RSS(7k-1) is below the value

exp[—D(n)/n] (a function of the sample size n and the choice of the function D). Figure 3.1
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contains a plot of RSS(vx)/RSS(7k—1) versus k, for a set of simulated data, with n = 200.
The dashed line corresponds to using D(n) = 2logn. In this case, we would choose a model

with three regressors.
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Figure 3.1: A plot of RSS(7x)/RSS(7vx—1) against k£ for some simulated data, where 74
minimizes RSS(7) among models of size k.

Thus, with criteria of this form, the statistic RSS(yx)/RSS(yx—1) is of chief interest.
When considering whether to add an additional regressor, it is the increase in RSS when
adding the regressor, as a proportion of the RSS of the best model with one fewer regressors,
that is deemed important. The amount of increase required, once the form of the function
D(n) has been chosen, depends only on the sample size, n.

After viewing it in this way, this type of criterion seems a quite reasonable one.
Further support for these criteria lies in the consistency of the resulting procedures. With a
fixed number of possible regressors, and provided that D(n)/n — 0 and D(n)/loglogn —
o0, the criterion W(7) gives a consistent estimate of the underlying model, meaning that,
as the sample size increases, the probability that the correct model is chosen converges to

1 (Rao and Wu 1989).
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We have concentrated on D(n) = élogn, so that we have the criterion
BIC(7)-6 = log RSS(7y) + ¢y0logn/n

Letting ¢ = 1, this gives Schwartz’s BIC criterion. We’ve found that using § = 1 works
rather poorly, including far too many extraneous regressor variables. Using instead § = 2
or 3 gives much better results. A smaller ¢ will include more regressors, thus giving a better
chance to find the correct ones, but also including extraneous ones with greater frequency.

A further approach to this model selection problem is to place prior probabilities
on each of the possible models, as well as on the parameters (the coefficients § and the
residual variance o%), and to use Bayes’ theorem to calculate the posterior distribution of
the models given the data. If the goal were to pick out just one model, one could choose
that which gives the largest posterior probability.

As an example, consider one of the priors discussed in Smith (1996). We let

ylv, By, 0% = X, 3, + €, where € ~ normal(0, 0?), and use the prior
B, ~ normal(0, CUZ(X,;XFY)_I)

p(0?]7) o 1/0?
p(7) o (c/d)"?

Let ¢ — oo, resulting in a diffuse improper prior. Then, integrating out 3., and o2,
p(rly) = d" 0PRSS (7) 72

and so
2
——logp(7]y) = log RSS(7) + ¢, log d/n

Thus, taking log d = D(n), we see that, with this prior, maximizing the posterior probability
for 7 is equivalent to minimizing the criterion discussed above. One might consider this as
further support for the use of the criterion ¥(-y). The only real justification for a procedure,
however, is in its performance. We will study the performance of this criterion in the next
chapter.

There are a few additional methods which require a nested sequence of models, as
obtained from methods such as forward selection and backward deletion (which are discussed
in the next section). With such a sequence, one may work from the null model v to the

full model a7, performing a hypothesis test at each step, testing whether the coefficient for
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the added regressor is 0. The first time that the null hypothesis is not rejected, one stops,
and picks the model with all regressors whose coefficients had been found to be non-zero.
The test performed may be a simple t-test, or may be a permutation test, as discussed in
Doerge and Churchill (1996).

To summarize, there are a large number of procedures for choosing between sub-
sets of regressor variables. Many of them, such as Mallows’ (), cross-validation and the
bootstrap, are aimed at finding a model with minimum mean squared prediction error.
Criteria such as those we denote BIC-6 have a reasonable interpretation, have been shown
to give a consistent procedure in the case of a fixed number of possible regressors, and can

be interpreted as the negative log posterior probability under a certain type of prior.

3.2 Searching model space

The number of possible models is very large. If there are more than around 40
markers, it will be impossible to fit each of them. For example, with 200 markers, there
are 2200 ~ 100 different models. Thus, one must find a way to search through this large
space of models, hopefully in a way which allows one to pick out the good ones—those that
would have been chosen if one could fit all possible models.

In the case that the number of markers is only marginally large, one may use a
branch-and-bound procedure to pick out the best subsets of each size, without actually
fitting all of the possible subsets (Miller 1990). Suppose, for example, that one has fit a
subset with four markers, including the marker z;, and has found that the RSS for this
model is smaller than that for the model containing all markers ezcept z1. Then one can
conclude that the best model with four markers must include z;. This technique finds
the best subsets of each size, with considerable computational savings over an exhaustive
search.

With many markers, a branch-and-bound type of search cannot be used any more
than an exhaustive one can. And so one is led to techniques such as forward selection and
backward deletion. In forward selection, one first looks at all models with one regressor, and
chooses the one which gives the smallest RSS, say z;,. Next, one considers models which
include z; and one other regressor, and adds the marker which gives the greatest decrease

in RSS, say z;,. Then, one looks at models with z;,, z;, and one other regressor. This

2

process is continued until all regressors have been added. The result is a sequence of M
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nested models, where M is the number of possible regressors. In obtaining this sequence,
M+(M-1)+(M—-2)4+...41=M(M +1)/2 models were fitted. Of course, one need
not fit this entire sequence of models. After fitting 10 or so regressors, it may become clear
that no further regressors will improve the model, and so the process can be stopped early.
If M = 200, there are 2290 ~ 10°0 possible models. Performing forward selection all the
way to the full model, 200 x 201/2 = 20,100 models would be fit. If one stopped at 10
regressors, only 1,955 models would be fit.

In backward deletion, one first fits models with all but one of the possible regres-
sors. The model with the largest RSS is chosen, so that the regressor resulting in the smallest
increase in RSS (apparently the least important regressor) is dropped. One then considers
this model with one regressor dropped, and again drops the regressor which results in the
smallest increase in RSS. The process is repeated until all regressors have been discarded.
Again, the result is a sequence of nested models. The sequence may be quite different from
that obtained using forward selection. Backward deletion cannot be performed if one has
more regressors than observations (i.e., more markers than progeny), but hopefully that
does not often occur, since, as will be seen in Chapter 4, large numbers of progeny may be
more important than large numbers of markers, provided that one has enough markers to
at least cover the genome.

Forward selection and backward deletion are quite easy to implement using the
Sweep algorithm (see Thisted (1988)). There is a great savings in computation when using
these methods, since a small fraction of the possible models are fit. This savings is also
a cost, however: we see only a fraction of the possible models, and we might not see the
good ones. With forward selection, once a regressor is included, it will be retained in all
further models. With backward deletion, once a regressor is dropped, it will be excluded in
all further models.

Forward selection has a particularly bad reputation. One can find quite simple
situations in which forward selection will miss the correct model, even when the sample size
is very large. Consider, for example, three regressors, z1, 3 and z3, which are multivariate

normal, each with mean 0 and variance 1, and with the following correlation matrix

1.0 0.0 0.7
0.0 1.0 0.7
0.7 0.7 1.0
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Thus, 21 and z5 are independent, but they are each highly correlated with 5. Now suppose
that y = 21 + z2 + ¢, where € ~ normal(0, 0%). The partial regression coefficients of y on
each of 21, x5 and z3 are 1.0, 1.0, and 1.4, respectively. Thus, with a large amount of data,
forward selection would first choose z3, even though it does not belong in the model.

Backward elimination does not suffer from this problem, at least with a large
sample. An and Gu (1985) showed that, when using BIC, and in the case of a fixed number
of regressors, the backward elimination procedure is consistent, meaning that, as the sample
size increases, the probability of choosing the correct model converges to 1. The proof is
easily seen to apply to our more general criteria, denoted BIC-é.

The problem with forward selection, as seen above, arises when one of the extra-
neous regressors (3 in our example) mimics a set of regressors which belong in the model
(z1 and z3 in our example). But in the situation discussed in this thesis, the regressors
are genetic markers which, under the assumption of no interference, follow a Markov chain.
Thus, given any one marker, the markers to its left are conditionally independent of the
markers to its right. This raises the possibility that the forward selection procedure, using
a BIC-type criterion, is consistent, and indeed we’ve shown this to be true. The proof is
given in the Appendix, beginning on page 93.

One may also combine the forward selection and backward deletion methods with
a branch-and-bound approach: one may perform forward selection or backward deletion to
obtain a model with, say, 30 regressors, and then use branch-and-bound to pick out the best
subsets which contain only regressors from that set of 30. This method is computationally
feasible, and improves on forward selection and backward deletion, in that it sees a great
deal more models.

A different approach to searching the space of models is to use a randomized
algorithm, such as Markov chain Monte Carlo (MCMC). For this method, one places a
prior probability on each model and on the other unknown parameters, and then forms the
posterior distribution of the models given the data. One then forms a Markov chain whose
stationary distribution is this posterior distribution. Simulating the Markov chain gives
a sequence of models, a sort of walk through the space of models, which will, eventually,
spend more time at models which have a high posterior. Whereas this method is usually
used to obtain an approximation of the posterior distribution, and especially to find the
region with highest posterior, here we consider it simply as a method of searching the space

of models.
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There are a number of standard ways to form a Markov chain with the desired
stationary distribution. Using the prior discussed in the previous section, Smith (1996) used
a Gibbs sampler to obtain a Markov chain whose stationary distribution is the posterior

distribution for the models given the data,
p(ly) = A= IPRSS (7)™

The method is as follows. First, pick an initial model, 7(%), for example, the null model, o,

or the model obtained after performing a method such as forward selection. Then, at step

(t)

t, we cycle through the M different markers. For each j =1,2,..., M, we draw 7, from

the distribution

)

t—1
p(rilY, )
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where 7y is composed of all of the elements of v, except for v;, at their current values.
So for ¢ < j, it contains the «; for the current step, ¢, and for ¢ > j, it contains ; for the

previous step, t — 1. Thus we have

(t-1)
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It is easy to see that, for the posterior written above,

_ RSS(’)’l,...,’y]’_l,l,’yj,...,’yM)_n/2
RSS(....1,...)~"/2 4+ /d-RSS(...,0,...)~"/?

Pr(vy; = 1v-;,9)

The most important characteristic for the Markov chian is that it mixes well—that
it travels through the space of models with relative ease, not getting stuck in certain places.
We have implemented the above Markov chain, and have found that it works very well. In
1000 steps of the chain, it will visit around 300-500 different models, and it will almost
always visit the “best” of those models (i.e., the one with the largest posterior probability)
within the first 100 steps.

In this chapter, we’ve discussed several different methods for searching through the
space of models: branch-and-bound (which is appropriate only when the number of mark-
ers is small), forward selection, backward deletion, forward selection or backward deletion
followed by branch-and-bound, and MCMC. These methods differ greatly in the amount of
computation (and programming effort) required. The obvious question is: does this addi-
tional computation buy anything? To answer this question, we have simulated data from a

backcross, applied each of the methods, and compared the results.
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We simulated a backcross of 250 progeny, obtained from inbred lines, with nine
chromosomes, each of length 100 ¢cM and having 11 equally spaced markers per chromosome
(thus at a 10 cM spacing). The recombination process was assumed to exhibit no interfer-
ence. The environmental variation followed a normal distribution with standard deviation
o=1.

We modelled five QTLs, with equal additive effect 0.5. One QTL was located at
the center of chromosome 1, two QTLs were located on chromosome 2 at 30 and 70 cM, and
two QTLs were located on chromosome 3 at 30 and 70 cM. The linked QTLs were either
in coupling (effects of equal sign) or repulsion (effects of opposite sign). The QTLs were
assumed to act additively. The heritability was 0.30 and 0.17 when the linked QTLs were
in coupling and repulsion, respectively. Note that all QTLs were located exactly at marker
loci.

For each QTL model and for each sample size, we performed 1000 simulations, and
applied five methods: forward selection, backward deletion, forward selection to 30 markers,
followed by branch-and-bound, backward deletion to 30 markers, followed by branch-and-
bound, and the MCMC method described above (started at the null model, 7o, and taking
200 steps). The BIC-2.5 criterion was used, so that the chosen model, by each method, was
that which minimizied log RSS(v) + 2.5¢, log n/n, among the models seen.

The result of the application of each method was a set of marker loci indicated to
be at or near QTLs. In assessing the results, we defined a chosen marker to be correctly
identifying a QTL if it was within 20 cM of a QTL; otherwise it was deemed incorrect. If
more than one chosen marker were within 20 ¢cM of the same QTL, one was called correct
and the others were called incorrect.

Table 3.1 displays the distribution of the number of correctly chosen markers and
the number of simulations with at least one incorrectly chosen marker, in 1000 simulations
of the model in which the linked QTLs were in coupling. Note that, for each of the methods,
no more than 3 in 1000 simulations resulted in more than one incorrectly identified marker;
thus we summarize these data only with the number of simulations giving at least one
incorrect marker.

The most striking feature of this table is that the different methods perform sub-
stantially the same. The additional effort expended in the branch-and-bound approach and
in MCMC buys nothing; forward selection performs as well as the other methods. The

methods generally find around three QTLs, and seldom find all five or only one.
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Table 3.1: Distribution of the number of correctly chosen markers, and number of simula-
tions with at least one incorrectly chosen marker, in 1000 simulations of a model containing
five QTLs with two pairs linked in coupling, and using 250 progeny.

branch-and-bound

correct forw back forw back MCMC
5 13 9 13 13 12
4 120 129 105 126 125
3 502 478 488 469 499
2 356 369 386 371 355
1 9 14 8 20 9
0 0 1 0 1 0
# incor. 59 56 52 66 59

Table 3.2: Distribution of the number of correctly chosen markers, and number of simula-
tions with at least one incorrectly chosen marker, in 1000 simulations of a model containing
five QTLs with two pairs linked in repulsion.

branch-and-bound

correct forw back forw back MCMC
5 10 8 11 8 11
4 17 9 15 10 17
3 91 92 84 86 93
2 164 142 141 135 163
1 402 392 414 376 401
0 316 357 335 385 315
# incor. 43 45 48 48 42

Table 3.2 displays the distribution of the number of correctly chosen markers and
the number of simulations with at least one incorrectly chosen marker, in 1000 simulations
of the model in which the linked QTLs were in repulsion.

Again, all five methods perform substantially the same, though here, they do a
much worse job of identifying the QTLs. More than 30% of the time, they do not find even
one QTL. And they find more than one QTL less than 30% of the time.

In summary, we’ve shown that, when using a BIC-type criterion, forward selec-
tion, a method which generally has a very bad reputation, is consistent. More importantly,
though, our simulation studies suggest that it performs as well as more complicated ap-
proaches for searching the space of models. We do not want to discourage the use of

methods such as MCMC, but it should be stressed that the very simple forward selection
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approach, which is very much faster, and which is implemented in most standard statistical
packages, may perform just as well. The difficulty here may not be the search through
model space so much as the choice of criterion for comparing models, as well as the very

weak information contained in the data.

3.3 Recommended approach

A brief summary of our recommended approach for identifying QTLs, assumed
to act additively, is in order. First, we dispense of interval mapping, and consider only
the marker loci, since, with the typical experiments performed, one is generally unable to
localize a QTL to a particular interval, and so little is lost by doing this.

Next, we compare models using a BIC-type criterion, of the form
BIC-6 = log RSS(v) + 6¢, logn/n

This type of criterion is reasonable, in that it focuses on the change in RSS when
a marker is added, as a proportion of the RSS of the best model with one fewer markers.
Moreover, BIC-type criteria have been shown to give a consistent estimate of the model.
The value é should be chosen to give an appropriate balance between the error of missing
important QTLs and the error of including extraneous loci. Values between 2 and 3 seem
reasonable; smaller values of § give a greater chance of detecting QTLs, but also include
extraneous loci with greater frequency. The appropriate § to use will be seen to depend
on the number of markers used and the number and effects of the QTLs segregating in the
CTOSS.

The search through the space of models can be done with simple forward selection.
A more extensive search, using, for example, Markov chain Monte Carlo, appears to provide
little improvement over forward selection.

The great benefit of this approach, using forward selection at marker loci with a
BIC-type criterion, is that it can be performed quite easily with the standard statistical
software. The more flashy methods described in the previous chapter require specially
designed computer programs, and may give no gains in performance.

The uncertainty in the estimated location of a QTL is a very important issue, and
the above approach does not immediately address it. In interval mapping, this problem is

dealt with by comparing the maximum LOD score to LOD scores at loci near the maximum.
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(Recall that the LOD score is a log, likelihood ratio.) A one- or two-LOD support interval,
the interval in which the LLOD score is within one or two of its maximum, is used to indicate
the most likely location for the QTL. A similar approach can be used with our method.
One can compare the chosen model with models in which a putative QTL is relaced by its
neighbors. Let v denote the chosen model, and let 4" denote the model with a putative
QTL replaced by a neighboring marker. Under the normal model, the change in LOD score
is simply

n [RSS(’y’ )]

2 RSS(7)

Finding the neighboring markers for which this value is less than one or two, one can obtain

a rough idea of the uncertainty in the estimated location of the QTL.
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Chapter 4

Simulations

In this chapter, we present the results of a number of simulation studies whose
aim was to compare the performance of the more prominent methods for identifying QTLs
and to explore our ability to identify QT Ls using different numbers of progeny and different
marker densities, as a function of the number of segregating QTLs and the sizes of the
effects of the QTLs. Simulations are necessary, because the methods for identifying QTLs
are too complex to be assessed by analytical means, at least in the situations in which they
would be used in practice.

Most authors have used simulations to demonstrate their methods for finding
QTLs. Many have presented the results of applying their method to a single data set
(Jansen 1993; Knapp 1991; Lander and Botstein 1989; Zeng 1994), a practice which pre-
cludes a true assessment of the method’s performance. Others consider only very simple
situations, such as simulating only one or two chromosomes with one or two segregating
QTLs (Haley and Knott 1992; Kearsey and Hyne 1994). In practice, most QTL studies
involve a search over ten or more chromosomes, and very often there is evidence for at least
a moderate number of segregating QTLs (from three or four to as many as a dozen). A
method’s ability to detect QTLs in simulation studies which use very limited searches and
in which only a small number of QTLs are allowed will say little about its performance in
the more complex situations where the method is anticipated to be used.

Also missing from the literature is a careful comparison of the performance of the
many methods available for identifying QTLs. It is surprising that such comparisons are
not a routine part of the presentation of a new method. Before dropping a simple approach

in favor of a more complex one, we should have evidence that the complexities of the new
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approach will be accompanied by a real improvement in performance.

To design QTL mapping experiments, scientists require information about the
power for detection that different methods provide. This will allow them to determine the
number of progeny required to have a reasonable chance of achieving their goals. Lander and
Botstein (1989) provided calculations of the approximate power for interval mapping in the
case of a single segregating QTL, for backcrosses and intercrosses with different numbers of
progeny and with different sizes of effect for the QTL. Others have followed this up, mainly
with simulation studies, and generally considering a single QTL and a single chromosome
(Carbonell et al. 1993; Darvasi et al. 1993; Knott and Haley 1992, Rebai et al. 1995; van
Ooijen 1992). The performance of interval mapping and other methods in the presence of
multiple QTLs when searching over multiple chromosomes has not been well studied.

Our focus in this chapter will be on our ability to identify the QTLs segregating in
a cross. We view the problems of estimating effects as well as the precise location of QTLs
as secondary issues. In Section 4.1, we present the results of a study to compare the most
promising methods. Section 4.2 contains a reproduction of the simulations found in Doerge
and Churchill (1994). In the final section, we present a study of the ability of multiple
regression, using forward selection, to identify QTLs using different sizes of experiments,

varying the number of QTLs and their effects.

4.1 A comparison of methods

In this section, we discuss the results of a study aimed at comparing several differ-
ent methods. Qur focus is on identifying QTLs, and so we look only at whether the methods
detect the simulated QTLs, and not at the estimated effects and the precision with which
the location is estimated. We simulated a backcross with a moderate number of QTLs of

small effect.

4.1.1 Methods

We compared four different methods for identifying QTLs: analysis of variance
(ANOVA) at the marker loci, the method of Zeng (1994), forward selection using a BIC-
type criterion, and forward selection using a permutation test at each stage (Doerge and

Churchill 1994). These methods are described in Chapters 2 and 3.



45

Interval mapping (IM) was ignored, because it provides no improvement over sim-
ple ANOVA when using a relatively dense marker map (10 ¢cM spacing or less) and a small
or moderate number of progeny (500 or less), at least when it comes to identifying QTLs.
This can easily be seen when inspecting the one- or two-LOD support intervals which ac-
company any application of IM: they invariably span several markers. The benefit of IM is
in providing more precise estimates of QTL location and effects.

For Zeng’s method, we used forward selection up to either 3, 5, 7 or 9 markers to
obtain the set of regressors, and limited the search for QTLs to marker loci. With ANOVA
and Zeng’s method, we obtained genome-wide thresholds by performing 1000 simulations
under the hypothesis of no segregating QTLs: the estimated threshold was the 95th per-
centile of the maximum LOD score across all markers. In addition, for these two methods,
we required that the LOD dropped by at least 2.2 in base 10 (corresponding to 5 in base €)
between “peaks” before we declared that two QTLs were identified. This value was obtained
empirically (in other words, by trial and error).

The BIC-type criterion used is log RSS + 6¢qlogn/n, where RSS is the residual
sum of squares, n is the number of progeny, ¢ is the number of markers in the model, and
6 is either 2, 2.5 or 3. We use BIC-2, BIC-2.5 and BIC-3 to identify these criteria. For
the permutation method, at each stage we used the 95th percentile of 500 permutations to
determine whether to add another marker.

In the study described in this section, we simulated a backcross obtained from
inbred lines, with nine chromosomes, each of length 100 ¢cM and having 11 equally spaced
markers per chromosome (thus at a 10 cM spacing). The recombination process was assumed
to exhibit no interference. The environmental variation followed a normal distribution with
standard deviation o = 1. We simulated experiments with 100, 250 and 1000 progeny.

We modelled either three or five QTLs, with equal additive effect 0.5. One QTL
was located at the center of chromosome 1, and two QTLs were located on chromosome 2
at 30 and 70 cM. In the case with five QTLs, an additional two QTLs were located on
chromosome 3 at 30 and 70 cM. The linked QTLs were either in coupling (effects of equal
sign) or repulsion (effects of opposite sign). The QTLs were assumed to act additively.
In the models containing three QTLs, the heritability (defined as the ratio of the genetic
variance to the total phenotypic variance) was 0.20 and 0.12 when the linked QTLs were in
coupling and repulsion, respectively. In the models containing five QTLs, the heritability

was 0.30 and 0.17 when the linked QTLs were in coupling and repulsion, respectively. Note
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Table 4.1: Estimated genome-wide LOD thresholds for a backcross with nine 100 cM
chromosomes each containing 11 equally-spaced markers.

sample Zeng
size ANOVA 3 5 7 9
100 2.5 35 41 47 5.1
250 2.5 3.3 3.6 38 4.0
1000 2.5 32 33 34 34

that all QTLs were located exactly at marker loci.

For each QTL model and for each sample size, we performed 1000 simulations.
The result of the application of each method was a set of marker loci indicated to be at or
near QTLs. In assessing the results, we defined a chosen marker to be correctly identifying
a QTL if it was within 20 ¢cM of a QTL; otherwise it was deemed incorrect. If more than
one chosen marker were within 20 ¢cM of the same QTL, one was called correct and the

others were called incorrect.

4.1.2 Results

The estimated genome-wide LOD (base 10) thresholds for ANOVA and Zeng’s
method (using forward selection up to 3, 5, 7 and 9 markers) are displayed in Table 4.1.
The estimated standard errors for the thresholds, obtained using a bootstrap (Venables and
Ripley 1994), are approximately 0.1.

For ANOVA, the threshold was constant across sample sizes and corresponded
closely to the threshold in Figure 4 of Lander and Botstein (1989). For Zeng’s method,
the threshold increased with the number of regressors used and decreased with sample size.
With 1000 progeny, the threshold for Zeng’s method was nearly constant for the different
numbers of regressors used.

In Table 4.2, we display the joint distribution, across the 1000 simulations, of
the numbers of correctly and incorrectly chosen markers for the case of three QTLs with
two QTLs linked in coupling, and using 250 progeny. The four columns labelled “Zeng”
correspond to Zeng’s method using forward selection up to either 3, 5, 7 or 9 markers. The
three columns labelled “BIC” correspond to forward selection using the BIC-2, BIC-2.5 and
BIC-3 criteria. The column “permu” gives the results for using forward selection with a

permutation test at each stage. The second-to-last row in the table includes all simulations
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Table 4.2: Distribution of the numbers of correctly and incorrectly chosen markers in 1000
simulations of a model containing three QTLs with two QTLs linked in coupling, and using
250 progeny.

# # Zeng BIC
corr incorr ANOVA 3 5 7 9 2 25 3 permu
3 0 69 31 25 19 13 180 65 19 133
2 0 526 412 315 240 199 509 496 395 539
1 0 332 429 443 430 421 199 395 554 246
0 0 1 97 184 281 334 0 2 9 0
3 1 4 0 0 0 0 7 0 0 6
2 1 26 6 7 5 6 59 13 5 37
1 1 40 18 12 18 13 35 28 17 34
0 1 0 6 11 5 12 0 0 0 0
other 2 1 3 2 2 11 1 1 5
> 1 wrong 72 31 33 30 33 112 42 23 82

with two or more incorrectly chosen markers. The last row in the table gives the number
of simulations in which at least one incorrect marker was chosen.

ANOVA nearly always found at least one QTL, and often found two, but it had
difficulty in separating the two linked QTLs. ANOVA added incorrect markers about 7%
of the time. Zeng’s method did worse than ANOVA in this situation. It suffered from low
power for detection, and the power decreased sharply as the number of markers used as
regressors increased; using three markers as regressors worked best in this case. Forward
selection using BIC-2 did a better job of detecting the QTLs, but included incorrect markers
11% of the time—much more often than the other methods. The use of a larger multiplier
helped to avoid this problem, but at the expense of a lower power for detection. Forward
selection using a permutation test did well: it detected more QTLs than ANOVA and Zeng’s
method, while including incorrect markers only 8% of the time.

Table 4.3 shows which of the QTLs were correctly identified by the different meth-
ods. The first three columns, labelled “model,” correspond to the three QTLs: first the
QTL on chromosome 1, and then the two linked QTLs on chromosome 2. A one in these
columns indicates that the QTL was correctly identified; a zero indicates that it was not
found. Note that in this table, we ignore the markers which were incorrectly identified. For
example, in the column labelled “ANOVA.” the model “1 1 1”7 was identified 73 times out

of 1000 simulations; this includes 69 times in which no extraneous markers were included,
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Table 4.3: Models identified in 1000 simulations of the model containing three QTLs with
two QTLs (represented in the second and third columns) linked in coupling, and using 250
progeny.

Zeng BIC
model ANOVA 3 5 7 9 2 25 3 permu
111 73 31 25 19 13 187 65 19 139
110 254 189 140 102 83 258 239 189 260
101 257 191 144 112 92 264 241 192 274
011 41 39 40 33 31 52 30 20 45
100 3 115 173 182 180 1 3 8 1
010 200 161 136 131 120 131 218 293 152
001 171 171 147 135 135 107 202 270 129
000 1 103 195 286 346 0 2 9 0

Table 4.4: Average numbers of correctly and incorrectly chosen markers in 1000 simulations
of a model containing three QTLs with two QTLs linked in coupling.

sample Zeng BIC
size ANOVA 3 ) 7 9 2 2-5 3 permu
Corr. 100 0.91 0.55 040 0.29 0.26 1.18 0.94 0.74 0.90
250 1.70 1.38 1.18 1.00 0.89 1.95 1.64 1.43 1.86
1000 2.68 3.00 287 278 270 3.00 299 297 3.00
Incorr. 100 0.08 0.02 0.04 0.03 0.05 0.28 0.12 0.0 0.10
250 0.07 0.03 0.04 0.03 0.04 0.12 0.04 0.02 0.09
1000 0.07 0.03 0.02 0.04 0.06 0.06 0.02 0.01 0.10

and 4 times in which one extraneous marker was included (see Table 4.2).

When forward selection and ANOVA identified just one QTL, it was almost always
one of the two linked QTLs, but Zeng’s method often picked only the QTL on chromosome 1.
When two QTLs were identified, all of the methods tended to pick the QTL on chromosome 1
and one of the two linked QTLs. Note that the two linked QTLs on chromosome 2 were
chosen at approximately equal frequencies, by all of the methods: the models “1 1 0” and
“1 0 1”7 were chosen nearly the same number of times, as were the models “0 1 0” and
“001.

The average numbers of correctly and incorrectly chosen markers provides nearly
as much information as the full distribution shown in Table 4.2. Table 4.4 displays these
averages for all three sample sizes, for the simulations of the three-QTL model with two

QTLs linked in coupling. The estimated standard errors for these averages vary from around

0.01 to 0.03.
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Table 4.5: Average numbers of correctly and incorrectly chosen markers in 1000 simulations
of a model containing three QTLs with two QTLs linked in repulsion.

sample Zeng BIC
size ANOVA 3 ) 7 9 2 2-5 3 permu
Corr. 100 0.23 0.22 0.19 0.15 0.15 0.53 0.28 0.15 0.23
250 0.87 1.18 1.15 1.02 0.90 1.37 0.90 0.58 1.03
1000 2.54 299 286 2.78 2.69 3.00 296 2.92 2.98
Incorr. 100 0.08 0.0 0.04 0.04 0.04 0.27 0.10 0.04 0.08
250 0.07 0.04 0.04 0.04 0.03 0.12 0.04 0.02 0.08
1000 0.06 0.02 0.02 0.03 0.04 0.03 0.01 0.00 0.08

The behavior observed in Table 4.2, with 250 progeny, held true for the other
two sample sizes as well, except that at n = 1000, ANOVA no longer performed well at
all, while Zeng’s method performed much better, at least when using only three markers
as regressors. The frequency with which incorrect markers were added was stable across
sample sizes for ANOVA, Zeng’s method, and forward selection using a permutation test.
Forward selection using the BIC-type criteria included many more incorrect markers when
using 100 progeny than when using 1000 progeny. ANOVA included an average of about 0.07
incorrect markers, Zeng’s method included an average of about 0.04, and the permutation
test method included an average of about 0.1. For BIC-2, the average number of incorrect
markers dropped from 0.3 to 0.06 as the sample size went from 100 to 1000.

Table 4.5 gives the average numbers of correctly and incorrectly identified markers
for the three-QTL model where the linked QTLs are in repulsion. At the smaller sample
sizes, the methods did not perform as well when the linked QTLs were in repulsion; ANOVA
and forward selection suffered much more than Zeng’s method. The number of incorrectly
chosen markers showed little change from the case of coupling, for all of the methods. But
the number of correctly identified QTLs, in comparison to coupling, was halved for ANOVA
and forward selection, when using 250 progeny. Zeng’s method, on the other hand, showed
very little change in its ability to identify QT Ls, with the result that here his method worked
better than ANOVA. With 1000 progeny, the methods all performed much the same as in
the coupling case.

Table 4.6 gives the average numbers of correctly and incorrectly identified markers
for the five-QTL model with two pairs of QTLs linked in coupling. In terms of identifying
QTLs, the behavior of the different methods was similar to that of the three-QTL case with
linkage in coupling: Zeng’s method didn’t find as many QTLs as ANOVA when the sample
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Table 4.6: Average numbers of correctly and incorrectly chosen markers in 1000 simulations
of a model containing five QTLs with two pairs of QTLs linked in coupling.

sample Zeng BIC
size ANOVA 3 ) 7 9 2 2-5 3 permu
Corr. 100 1.43 1.03 0.77 055 0.46 2.0 162 1.26 1.54
250 2.67 250 195 1.70 1.49 3.13 270 240 3.04
1000 4.22 498 499 4.74 4.60 5.00 4.98 4.94 5.00
Incorr. 100 0.08 0.03 0.03 0.03 0.03 0.29 0.12 0.0 0.09
250 0.06 0.03 0.02 0.01 0.02 0.12 0.04 0.02 0.08
1000 0.08 0.30 0.04 0.02 0.04 0.12 0.06 0.03 0.20

Table 4.7: Average numbers of correctly and incorrectly chosen markers in 1000 simulations
of a model containing five QTLs with two pairs of QTLs linked in repulsion.

sample Zeng BIC
size ANOVA 3 ) 7 9 2 2-5 3 permu
Corr. 100 0.27 0.24 026 0.23 0.21 0.67 0.33 0.17 0.27
250 1.00 1.42 1.61 1.53 1.40 1.89 1.11 0.63 1.25
1000 3.93 4.27 499 4.72 4.58 4.99 4.95 4.83 4.96
Incorr. 100 0.07 0.04 0.04 0.04 0.04 0.24 0.08 0.02 0.07
250 0.08 0.0 0.04 0.03 0.03 0.14 0.05 0.02 0.08
1000 0.07 0.02 0.02 0.02 0.03 0.06 0.02 0.01 0.12

size was 100 or 250, while forward selection found more. With 1000 progeny, ANOVA did
worse than Zeng’s method. Regarding the inclusion of incorrect markers, ANOVA continued
to add an average of around 0.08 incorrect markers. Zeng’s method continued to control the
inclusion of incorrect markers, except in the case of 1000 progeny, when using three markers
as regressors; there, the average number of incorrectly identified markers was 0.30. Forward
selection using BIC-2 continued to add a high number of incorrect markers, and the marked
decrease at 1000 progeny seen previously, no longer seemed to hold. Forward selection using
a permutation test gave a great deal more incorrect markers with 1000 progeny than with
100 or 250 progeny.

Table 4.7 gives the average numbers of correctly and incorrectly identified markers
for the five-QTL model with two pairs of QTLs linked in repulsion. As with the three-
QTL model, Zeng’s method performed substantially better than ANOVA with the QTLs in
repulsion, and here Zeng’s method performed better when using five markers as regressors,
rather than three. The decrease in power for Zeng’s method accompanied by using more
regressors was still observed. The behavior of forward selection was similar to the three-QTL

case.
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4.1.3 Discussion

In this simulation study, we compared the performance of ANOVA, Zeng’s method
(using varying numbers of regressors) and forward selection (using BIC-type criteria and
permutation tests to infer the number of QTLs). Forward selection and Zeng’s method
showed good benefits over ANOVA, at least when the sample size was large.

With smaller samples, the performance of the methods depended on whether linked
QTLs were in coupling or repulsion. In the case of coupling, Zeng’s method performed
quite poorly, even in comparison to ANOVA. But in the case of repulsion, Zeng’s method
performed as well as or better than the others. The reason that Zeng’s method is more
successful in teasing out a pair of QTLs linked in repulsion, may be that such QTLs look
more important when both are included in the model. Zeng’s method forces the fit of
the larger model, whereas forward selection considers the markers one at a time. This
difference is best illustrated in Table 4.3. When identifying just one QTL, ANOVA and
forward selection generally pick one of the two linked QTLs, whereas Zeng’s method picks
from the three QTLs at nearly equally proportions.

But the great difficulty with Zeng’s method is in choosing how many markers to
use as regressors. When too many markers are used, the method suffers from a great loss of
power to detect QTLs. The principal reason for this drop in power is the great increase in
threshold which comes with the larger number of regressors: using more regressors adds a
great deal of noise. When too few markers are used, the method seems to give lower power
when linked QTLs are in repulsion, and a high rate of incorrect markers when linked QTLs
are in coupling. The correct number of regressors to use seems to be related not to the
number of QTLs segregating in the cross, but to the number of QTLs the given experiment
is able to identify. That number is, of course, not known.

The method of forward selection improves on ANOVA, but doesn’t perform quite
as well as Zeng’s method when linked QTLs are in repulsion and the sample size is moderate.
Using a permutation test to infer the size of the model (i.e., the number of QTLs to add)
gave a relatively consistent rate of inclusion of incorrect markers, but one that was much
higher than 5%. When using the BIC-type criteria to infer the size of the model, the rate
at which incorrect markers were added decreased greatly with sample size, suggesting that
the log(n)/n penalty was not quite right for these sample sizes.

It is important to point out that forward selection with BIC-2 consistently identi-
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fied the most QTLs—in all scenarios at all sample sizes. At the same time, however, it also
included the most extraneous QTLs. One may feel that a 10-15% rate of extraneous QTLs
is perfectly acceptable for many purposes, and so this method may seem best in such situa-
tions. But note that, if the threshold used in the other methods (ANOVA, Zeng’s method,
permutation test) were lowered, one may be able to match the level of performance achieved
by BIC-2. So, when comparing forward selection with BIC-type penalties with, e.g., Zeng’s
approach, it is best to use a criterion and threshold which lead to similar rates of extraneous
QTLs. Ideally, we would choose the multiplier ¢ in the BIC-6 and the threshold for Zeng’s
method (with a given number of markers used as regressors) to give a prescribed rate of
inclusion of extraneous QTLs, and would then compare the power of the methods, using
these values. Unfortunately, however, the appropriate ¢ and threshold depend on both the
sample size and the underlying QTL model. As a result, it is not feasible to carry out this
approach in practice. One must be satisfied with the approach used above, and use one’s
judgement about which of the methods performs best.

The results of these simulations recommend the use of forward selection for iden-
tifying QTLs. Using permutation tests to determine how many markers to include worked
well, but one must keep in mind that the use of 5% level tests does not imply that incorrect
markers are included only 5% of the time.

The use of the BIC-type criteria to infer model size has the great benefit of ease of
computation, but the lack of control over the rate of including incorrect markers may be a
concern. Still, BIC-3 is consistently conservative, at least with the genome size considered
here, and so a reasonable approach would be to place more confidence in the markers which
enter the model when using BIC-3, and to consider markers which enter with BIC-2 but

not BIC-3 as possibly but not definitely in the model.

4.2 The study of Doerge and Churchill (1994)

Doerge and Churchill (1994) described a simulation of a backcross with four chro-
mosomes and one or two QTLs. We have attempted to reproduce their results, and have

used their models to further compare the major methods for identifying QTLs.
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4.2.1 Methods

Doerge and Churchill (1994) simulated a backcross with four chromosomes, each
100 cM in length. The first and third chromosomes contained 50 randomly placed markers,
and the second and fourth chromosomes contained 10 randomly placed markers. Since we
didn’t know the exact placement of their markers, we created our own map by throwing
down markers at random onto the chromosomes according to their specifications. The
environmental variation followed a normal distribution with standard deviation ¢ = 1.
They simulated 100 and 200 progeny.

They considered cases with 0, 1 and 2 QTLs. In the case with one QTL, a QTL
with additive effect 1.0 was placed on chromosome 2 at 61.6 cM, giving a heritability of
0.2. In the case with two QTLs, a second QTL, with additive effect 0.75, was placed on
chromosome 1 at 44.4 ¢cM. The heritability in this case was 0.28.

Doerge and Churchill (1994) applied forward selection using a permutation test at
each stage, but allowed the inclusion of no more than one marker per chromosome. The
95th percentile of 1000 permutations was used to determine whether or not to add a marker.

We also applied the four methods used in the previous section: ANOVA, Zeng’s
method (using forward selection up to 3, 5, 7 or 9 markers to choose regressors), forward
selection using a BIC-type penalty (with a multiplier of 2, 2.5 or 3), and forward selection
using a permutation test, but allowing the inclusion of more than one marker per chromo-
some. As in Section 4.1, we’ll say that a chosen marker is correct if it is within 20 ¢cM of a
QTL. We performed 1000 simulations, but in comparing our results to Doerge and Churchill

(1994), we considered only the first 500, since they performed just 500 simulations.

4.2.2 Results

Table 4.8 contains our reproduction of the results of Doerge and Churchill (1994),
as well as those found in Table 3 of their paper. The first four columns of the table, labelled
“model,” correspond to the four chromosomes: a one in this column indicates that at least
one of the markers on that chromosome was chosen, and a zero indicates that none of the
markers on that chromosome were chosen. The numbers in the table give the numbers of
simulations for which the different models were identified. Periods in the table represent
zeros. The columns labelled “new” give the results for our simulation; the columns labelled

“D&C” give the results found in Table 3 of Doerge and Churchill (1994).
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Table 4.9: Estimated genome-wide LOD thresholds for the simulated backcross described
in Doerge and Churchill (1994).

sample Zeng
size ANOVA 3 5 7 9
100 2.2 35 4.0 43 4.6
200 2.2 35 39 39 4.1

Table 4.10: Average number incorrectly chosen markers in 1000 simulations of a model
with no QTLs

sample Zeng BIC
size ANOVA 3 5 7 9 2 25 3 permu
100 0.06 0.06 0.06 0.06 0.06 0.10 0.01 0.00 0.05
200 0.04 0.04 0.03 0.04 0.05 0.05 0.00 0.00 0.05

Our simulations gave results quite different than the published ones. In the case of
100 progeny and no QTLs, our simulations gave 24 cases in which at least one marker was
identified (incorrectly) as a QTL. In the published results, all 500 simulations identified no
QTLs. For the models with one QTL, at both sample sizes, our simulations included fewer
cases in which the correct model was identified. For the models with two QTLs, at both
sample sizes, our simulations included more cases in which the correct model was identified.

The estimated genome-wide LOD (base 10) thresholds for ANOVA and Zeng’s
method (using forward selection up to 3, 5, 7 and 9 markers) are displayed in Table 4.9.
The estimated standard errors for the thresholds, obtained using a bootstrap (Venables and
Ripley 1994), are approximately 0.1. The thresholds exhibit similar behavior as those found
in Section 4.1.

Table 4.10 gives the average number of incorrectly chosen markers for the models
with no QTLs. The estimated standard errors are around 0.1. ANOVA, Zeng’s method,
and forward selection using permutation tests all displayed the appropriate 5% rate of
incorrectly included markers. BIC-2 gave a rate of 10% and 5% when the sample size was
100 and 200, respectively. BIC-2.5 and BIC-3 identified QTLs very seldom in this case.

Table 4.11 gives the average numbers of correctly and incorrectly identified markers
for the model with one QTL. ANOVA performed best here, though the performance of
forward selection was not very different. Zeng’s method performed quite badly, and, as

was seen previously, its power decreased sharply with the number of regressors used. The
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Table 4.11: Average numbers of correctly and incorrectly chosen markers in 1000 simula-
tions of a model containing one QTL

sample Zeng BIC
size ANOVA 3 b) 7 9 2 2-5 3 permu
Corr. 100 0.87 0.53 039 032 0.25 0.90 0.75 0.51 0.87
200 0.94 0.58 0.41 0.36 0.30 0.95 0.87 0.72 0.94
Incorr. 100 0.09 0.03 0.03 0.04 0.04 0.15 0.05 0.02 0.10
200 0.08 0.02 0.02 0.03 0.04 0.10 0.03 0.01 0.08

Table 4.12: Average numbers of correctly and incorrectly chosen markers in 1000 simula-
tions of a model containing two QTLs

sample Zeng BIC
size ANOVA 3 5 7 9 2 2-5 3 permu
Corr. 100 1.42 0.99 0.73 056 043 1.60 1.18 0.70 1.48
200 1.67 1.26 0.90 0.70 0.56 1.77 150 1.14 1.72
Incorr. 100 0.14 0.05 0.03 0.03 0.04 0.22 0.08 0.03 0.15
200 0.12 0.04 0.02 0.03 0.03 0.17 0.06 0.02 0.13

numbers of incorrect markers added for the different methods were similar to what was seen
in Section 4.1.

Table 4.12 gives the average numbers of correctly and incorrectly identified markers
for the model with two QTLs. Zeng’s method again performs quite badly, and forward

selection shows little improvement over ANOVA.

4.2.3 Discussion

The large differences between the results in Doerge and Churchill (1994) and our
reproduction of those results are disconcerting; one might be led to the conclusion that
we've done something wrong. But the results of Doerge and Churchill (1994) displayed
a number of anomalies. With data in which no QTLs are segregating, we expect the
permutation test method to still identify QTLs about 5% of the time. But in the case of
no QTLs and 100 progeny, all 500 simulations in Doerge and Churchill (1994) identified
the null model. Moreover, when incorrect markers are identified, we expect them to be
distributed approximately equally across the chromosomes, though maybe a few more will
be found on chromosomes with more densely spaced markers. But consider the case of two
QTLs and 200 progeny; the results in Doerge and Churchill (1994) deviate quite markedly

from what we would expect: of the 38 times in which a marker on chromosome 3 or 4 was



57

(incorrectly) identified, 37 times that marker was on chromosome 4, whereas only once was
it on chromosome 3. We would have expected the incorrect marker to be on chromosomes 3
and 4 with approximately equal frequency, or maybe more often on chromosome 3, since it
had 50 markers, as compared to only 10 on chromosome 4. Thus, we place more confidence
in our own results than in those of Doerge and Churchill (1994).

The most striking result in Tables 4.11 and 4.12 is the superiority of ANOVA
in these situations. But this should be no surprise, since the basic assumption underlying
ANOVA is that there is just one QTL. The advantage of the other methods comes only when
there are several QT Ls segregating. Still, the models simulated here are really much simpler
than is generally seen in experimental crosses. For example, a study of grain yield in maize
(Stuber et al. 1992) revealed as many as eight QTLs segregating in a single experiment.

There are two important points to be emphasized in light of this study. First, when
presenting a new method, one should not study it in isolation, but rather should compare
its performance to that of other methods. Second, the models that one uses to assess the
performance of a method should be reasonable representations of the sorts of situations in

which it will be used in practice.

4.3 Power to detect QTLs

Before beginning a QTL experiment, it is important to think carefully about the
number of progeny required to have a reasonable chance of success. Many authors have
studied the power of ANOVA and interval mapping to identify QTLs, with different sizes
of experiments and with QTLs of varying effects (Soller et al. 1976; Lander and Botstein
1989; Knott and Haley 1992; van QOoijen 1992; Carbonell et al. 1993; Darvasi et al. 1993;
Jansen 1994; Rebal et al. 1995). Unfortunately, these studies have considered very simple
cases, generally simulating just one or two chromosomes and only a single QTL.

In this section, we consider the problem further. Our goals are, first, to study the
power for detecting QTLs in somewhat more complex situations (where there are several
segregating QTLs, and a number of chromosomes), and, second, to obtain results which may
guide researchers who are planning to carry out QTL experiments. Typically, a researcher
knows, or has some idea of, the heritability of the trait of interest for their particular cross
(that is, the proportion of the total phenotypic variance due to the QTLs segregating in

the cross). The question then is, how many progeny should be generated in order to have
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a particular chance of identifying QTLs of large effect? One might also ask, what is the
expected proportion of QTLs that will be identified, and what is the chance of identifying
at least one QTL? Also, will we be able to distinguish linked QTLs? Finally, a researcher
will ask, how dense of a genetic map should be used?

We attempt to answer these questions in the context of an Iy intercross, since it
is most commonly used in practice. We will apply solely the method of forward selection

using the BIC-2 criterion.

4.3.1 Proportion of QTLs identified

First, we look at the proportion of segregating QT Ls that are identified in a cross.
We consider an Fy intercross, with 100, 200, 400, 600, 800 or 1000 progeny, and with 9
chromosomes of length 100 ¢cM each, and having 11 equally spaced markers on each chro-
mosome (at a 10 cM spacing). We model either 2, 4, 6 or 8 QTLs, acting additively, having
equal effects, and all located on separate chromosomes. The locations of the QTLs were
chosen randomly, and were fixed for all simulations. The eight QTLs were on chromosomes
1-8 at positions 7.0, 57.8, 60.2, 89.0, 52.3, 37.5, 81.4, and 21.0 cM, respectively. (When
fewer than eight QTLs were used, the last few QTLs were dropped. For instance, in the
model with two QTLs, we used QTLs on chromosomes 1 and 2 at positions 7.0 and 57.8 cM,
respectively.)

The environmental variation was normally distributed, with standard deviation
o = 1. The QTLs had dominance deviation, d = 0, and additive effect, a, chosen to give
heritability A% = 0.2, 0.4, 0.6 or 0.8. In other words, the three QTL genotypes, LL, HL and
HH, had effects —a, 0 and +a, where a was chosen to give the prescribed heritability. Let

S denote the number of QTLs. Then

9 a’S)2

CatS/2 4+ 17

and so
2 m
S 1—h2

The values of @ that we used are shown in Table 4.13.

a =

Figure 4.1 (on page 63) displays the average, across 200 simulations, of the propor-
tion of QTLs which were correctly identified, where we say that a chosen marker is correctly

identifying a QTL if it is within 20 ¢cM of a QTL. The proportion of QTLs detected increases
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Table 4.13: Additive effect (a) of each QTL in an intercross with environmental variance

0% = 1, for a given number (S) of unlinked QTLs of equal effect, to give a prescribed

heritability (A?).

hZ
02 04 06 038
0.50 0.82 1.22 2.00
0.35 058 087 1.41
0.29 047 071 1.15
0.25 041 061 1.00

o o i M| 0

with sample size and with heritability, and decreases with the number of segregating QTLs
responsible for the given heritability. With a sample size of only 100 or 200, only a very
small proportion of the QTLs will be detected, unless there are a small number of QTLs of
large effect.

This figure gives a rather pessimistic view of the problem of identifying QTLs.
However, one does not usually expect that a single experiment will result in the detection
of a majority of the QTLs which are segregating in a cross; the goal of most experiments is
rather to identify a least a few QTLs of large effect. Still, it is important to keep in mind
that, as this figure shows, the QTLs detected in an analysis will generally be only a subset
of the segregating QTLs.

4.3.2 Chance of finding at least one QTL

In this section, we estimate the chance of finding at least one of the segregating
QTLs in a cross. Using exactly the same simulations as the previous subsection, Figure 4.2
(on page 64) displays the proportion of the 200 simulations in which at least one QTL was
correctly identified, meaning that there was a chosen marker within 20 ¢cM of a QTL.

This figure is rather depressing. We see that, when the sample size is 100 or 200,
the chance of detecting even one QTL is quite small, unless the heritability is high, and
the number of QTLs contributing to that heritability is rather small. However, when the

sample size is large, one will be assured of detecting at least one QTL.

4.3.3 Chance of finding a particular QTL

In this section, we consider the chance of identifying a particular QTL of large

effect. We again use an Fy intercross, with 100, 200, 400, 600, 800 or 1000 progeny, and
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Table 4.14: Additive effect (a) of a QTL responsible for a proportion p of the genetic vari-
ance, in an intercross with environmental variance o2 = 1, to give a prescribed heritability

(h?).

h2
p 02 04 06
0.15 0.27 045 0.67
0.30 0.39 0.63 0.95
0.45 0.47 0.77 1.16

with 9 chromosomes of length 100 cM each, and having 11 equally spaced markers on
each chromosome (at a 10 cM spacing), and we model either 2, 4, 6 or 8 QTLs, acting
additively, all located on separate chromosomes. (The QTL locations are the same as for
the simulations in the previous two subsections.) Here, we let the first QTL (on chromosome
1) be responsible for either 15, 30 or 45% of the genetic variance. The other QTLs have
equal effects. Note that the first QTL does not always have the largest effect.

The environmental variation was again normally distributed, with standard devia-
tion ¢ = 1, and the QTLs again had dominance deviation d = 0, and additive effects chosen
to give heritability h? = 0.2, 0.4 or 0.6. Let a be the additive effect of the first QTL, and
let @’ be the additive effect of the remaining S — 1 QTLs. Letting p denote the proportion

of the genotypic variance ascribed to the first QTL, we have

p= 3
s Sy
so that
a = (Zl %(S — 1)
Also
B2 29+ g (d)?
T ST
and so
2 h2
/ — —_— — —_—
! %5‘—1( P
and
a = p1 —

Note that this effect, a, is independent of the number of other QTLs segregating in the

cross. Table 4.14 gives the values of ¢ that we used.
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Figure 4.3 (on page 65) displays the fraction, of 200 simulations, in which this first
QTL was chosen. The four lines in each plot correspond to having a total of 2, 4, 6 or 8
segregating QTLs. We are better able to detect the first QTL when there are fewer QTLs
segregating in the cross. After detecting some of the other QTLs, one has a greater chance
of detecting this particular one, since the residual variance has been reduced. This effect is
strongest when the heritability is large, and the proportion of the genetic variance due to
the first QTL is small.

Note, again, that if the sample size is only 100 or 200, one has a very small
chance of detecting this QTL, unless its effect becomes rather large. Even when the QTL
is responsible for 30% of the genetic variance, and the heritability is 0.4 (so that the QTL
has effect a/o = 0.63 ), with only 100 progeny, the chance of detecting the QTL is less than
30%.

4.3.4 Separating linked QTLs

In this section, we study our ability to separate linked QTLs. We consider a setup
similar to the previous sections, though here there are 5 chromosomes with 21 markers per
chromosome (at a 5 cM spacing). We simulate two QTLs on chromosome 1, separated by
15, 25, 35 or 45 cM, and centered around the 50 ¢cM position. The QTLs are either in
coupling or repulsion, and have dominance deviation d = 0 and an additive effect a, chosen
to give a heritability A2 = 0.2 or 0.4. The environmental variation was, again, normally
distributed with standard deviation o = 1.

In this case,

2a%(1-r) . I

h2 m n coupling
2a°r : Isi

2a%r+1 1n repulsion

where r = %(1 — e‘2d/100) is the recombination fraction between the two QTLs, separated

by d cM. And so,

h2 1 . .

. ToR 3y b coupling
h2 1 . .

T57 3 in repulsion

Table 4.15 displays the values of a used.
Figure 4.4 (on page 66) displays the fraction of 200 simulations in which both of

the two QTLs were detected. Here, we required that a chosen marker be within 5 ¢cM of



62

Table 4.15: Absolute additive effect (a) for each of two QTLs separated by d cM, linked in
either coupling or repulsion, giving a prescribed heritability (A%), when the environmental
variance is 1.

coupling repulsion
h? h?

d (cM) 0.2 04 02 04
15 0.38 0.62 0.98 1.60
25 0.39 0.64 0.80 1.30
35 0.41 0.67 0.70 1.15
45 0.42 0.69 0.65 1.06

a QTL before we would say it was correctly identifying that QTL. (We used this more
rigorous criterion, since in one case, our two QTLs were separated by only 15 cM.)

It is interesting to see that, when heritability is held constant, the separation
between two QTLs (of equal effect) linked in repulsion has only a small effect on the ability
to identify both of those QTLs. However, note that, as seen in Table 4.15, when the
QTLs are linked in repulsion, one must radically change the size of the QTLs’ effects if
the heritability is to be kept constant. One can infer from these results that, if the QTLs’
effects were kept constant, it would be much more difficult to separate QTLS that were
close together.

In the case of coupling, the effect of each QTL does not change much with separa-
tion, when holding heritability constant (see Table 4.15). As a result, with the heritability
held constant (and hence the QTL effect held approximately constant), the separation be-
tween the two QTLs has a large effect on the ability to distinguish them. With a sample

size of 100, we are not able to distinguish the QTLs, even when they are 45 cM apart.

4.3.5 Effect of marker density

In order to study the effect of marker density on the ability to detect a QTL, we
simulated an intercross with five chromosomes each of length 100 cM, and with 6, 11 or 21
equally spaced markers, at spacings 20, 10 or 5 cM, respectively. We simulated 4 QTLs,
at the same positions used in the simulations described in the previous subsections. The
QTL on chromosome one was responsible for 25% or 50% of the total genotypic variance;
the heritability was A% = 0.25 or 0.50. Figure 4.5 (on page 67) displays the proportion of
200 simulations in which the QTL on chromosome 1 was detected. Note that map density

shows only a small effect on our ability to detect the presence of a QTL.
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Table 4.16: Power to detect a QTL responsible for 5 or 10% of the phenotypic variance.

van Ooijen (1992) Lander and Botstein (1989) our simulations

n 5% 10% 5% 10% 5% 10%
100 6 31 23 66 5 13
200 29 79 67 90 21 47
400 76 100 90 97 63 93

4.3.6 Discussion

In this section, we have presented the results of a number of simulations aimed at
assessing the power for detecting QTLs in Iy intercross experiments. The models that we
used are more complex than those of past work on the problem, but are still much simpler
than what one would expect to see in a real experiment.

One can conclude from the results here that an experiment with only 100 or 200
progeny will only be able to detect QTLs of very large effect. For example, with eight QTLs
of equal, additive effects, and giving a heritability of 0.4, there is a greater than 30% chance
that none of the QTLs will be detected in an experiment of 200 progeny; an experiment of
100 progeny has a greater than 70% chance of finding no QTLs in this situation.

These results are somewhat more pessimistic than previous studies. Van Qoijen
(1992) simulated an Fy intercross with a single chromosome of length 120 ¢M, with equally
spaced markers, 5 ¢cM apart, and a single QTL responsible for 5 or 10% of the total phe-
notypic variance. Table 4.16 displays the apparent power in 1000 simulations, as shown
in that paper, as well as the power for this situation, as calculated using the approxima-
tion described in Lander and Botstein (1989). We also display the power we found in the
simulations of Section 4.3.3, in which there were nine chromosomes of length 100 cM, with
markers every 10 ¢cM, and with eight segregating QTLs giving a heritability of 0.2, and
where one QTL was responsible for either 30 or 45% of the genetic variance. (These two
cases correspond approximately to those of van Ooijen (1992).)

Our simulations gave a somewhat lower power for detection, which can be ascribed
to three things. First, we required that the QTL be detected to within 20 cM, whereas van
Ooijen (1992) simply looked for a significant LOD score anywhere on the same chromosome
as the QTL. Second, we performed a search over nine chromosomes, instead of just one.
Third, we used a different criterion for detection: van Ooijen (1992) and Lander and Botstein

(1989) use an approximate 5% significance threshold, whereas we used the BIC-2 criterion,
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which, in this case, is somewhat more conservative. In the simulations described above,
forward selection with BIC-2 included an extraneous marker around 3-5% of the time, for
all sample sizes. Note that this is a much smaller rate than was seen in the simulations of
backcross experiments of Section 4.1.

It is apparent that the appropriate multiplier 6 to use in the BIC-é criterion de-
pends not only on how one wishes to balance the errors of missing QTLs and of including
extraneous ones, but also on the type of experiment performed: the behavior of the criterion
is quite different for the two types of experiments considered here: the backcross and the Fy
intercross. The values that we used in this thesis should not be taken as given. The choice
of criterion should be made carefully, and if permitted, the problem should be revisited with
each new experiment.

We hope that the simulations described above may help to guide researchers in
future work to assess the performance of methods for detecting QTLs. The questions we
have considered (What proportion of QTLs are detected? What is the chance that at least
one QTL is detected? What is the chance that a particular QTL is detected? What is the
chance of identifying both of two linked QTLs?) are important to biologists doing QTL

experiments, and should be studied further.
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Chapter 5
Application

In this chapter, we apply the methods developed in this thesis to data on the
number of bristles on Drosophila melanogaster (the fruit fly). This trait has been studied
for over fifty years, because bristles are easy to count, and because the trait is highly
heritable, with mostly additive genetic variation (Falconer 1989). Our analysis is intended
to be an illustration of our approach, and should not be considered definitive.

Long et al. (1995) gathered a sample of fruit flies and performed 25 generations of
selection, to obtain two lines which differed greatly in the number abdominal bristles. They
then synthesized a set of recombinant inbred lines, with a recombinant third chromosome
in an isogenic low background. The lines were genotyped at a number of genetic markers,
and 40 individuals in each line (20 males and 20 females) were scored for the number of ab-
dominal bristles and the number of sternopleural bristles. The objective of this experiment
was to identify QTLs segregating in a natural population, and to map them with sufficient
precision that candidate genes might be identified.

Long et al. (1995) applied a method similar to that of Zeng (1994); a half dozen
possible QTLs, of quite strong effect, were identified. Looking at the pairwise interactions

between the identified loci revealed evidence of strong epistatic effects.
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5.1 Methods

5.1.1 Experimental methods

Long et al. (1995) took a sample of 62 flies from the Raleigh Farmer’s Market,
and performed 25 generations of selection for abdominal bristles to create high and low
isogenic lines. (At each generation, they chose 25 extreme individuals of each sex among
100 individuals scored for each sex.) The high third chromosome was placed in an isogenic
low background, and 66 recombinant inbred chromosome 3 lines were synthesized. (See, for
example, Frankel (1995).) The individuals in a line are genetically identical. All lines have
two copies of chromosomes 1 and 2 from the low parental line. One copy of chromosome 3
is from the low parental line; the other is a product of recombination between the third
chromosomes from the low and high parental lines.

The genetic markers used in this experiment involved the in situ hybridization
of roo transposable elements to the polytene chromosomes. Polytene chromosomes, found
in the cells of the salivary glands in Drosophila, consist of a large bundle of chromatids
(typically 1024), the result of repeated chromosome duplications without cell replication,
and thus are considerably thicker than chromosomes at meiosis. (See, for example, Russell
(1992).) When stained, they exhibit a distinct banding pattern which can be easily seen
under a microscope. Koo transposable elements appear a large number of times in the
Drosophila genome. Biotin-labelled roo elements are hybridized with the polytene chromo-
somes, so that the positions of the elements can be observed relative to the bands on the
chromosomes. When a roo element is found at a particular position in only one of the two
parental chromosomes, it can be used as a genetic marker.

Twenty-nine such markers were obtained. At each marker, we know whether a
line received the high (H) or low (L) allele. The locations of the markers are known from
their position relative to the cytological bands on the polytene chromosomes, for which map
distances have been precisely estimated from numerous prior experiments. Only nineteen of
the markers gave distinct H/L patterns for the 66 lines, and so we discarded those markers
which showed no recombination with their left adjacent marker. The markers span 108 cM,
with the largest distance between markers being 13.5 cM.

For each line, 10 males and 10 females, from two replicate vials, were scored for
abdominal and sternopleural bristles. We have data on the averages and the variances of

the scores for each sex, for each of the two traits. To simplify the analysis, which is intended
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to be illustrative rather than definitive, we ignored the variances.
Thus, the data consist of the genotypes for the 66 lines, at each of 19 markers,
the markers’ map locations, and the average phenotypic score for males and females in each

line, for each of two traits.

5.1.2 Statistical methods

We considered the two traits, abdominal bristles and sternopleural bristles, sepa-
rately. Let y;;,fori=1,...,66,5 = 1,2, denote the average phenotype for line 7, with 7 = 1
corresponding to males and j = 2 corresponding to females. Let s; = —1 and sy = +1,
corresponding to sex, and let z; = —1 or 1, according to whether line ¢ had genotype LL
or HL. at the kth marker, for £ = 1,...,109.

Initially, we considered models of the form
Yij = p+ ojs; + Zﬁwik + Z VeTikS; + €
k k

There were 39 regressors: sex, the 19 markers, and 19 sex X marker interactions.
Parameter estimates were obtained by least squares. Models were compared using

BIC-type penalties, of the form
BIC-é = log RSS + éqlogn/n

where 6 = 2, 2.5 or 3 and ¢ is the number of regressor variables used. The chosen models
minimize the above score.

We searched through the space of models using forward selection, backward elim-
ination and a global search over the set of 239 ~ 5 x 10'! possible models.

We also applied ANOVA and the method of Zeng (1994). In the ANOVA method,

we considered the markers one at a time, forming, for marker &k, the model
Yij = B+ ajsj + Bri + yTis; + €5

and calculating the LOD score (the log;, likelihood ratio) comparing the hypotheses H,:
B #0ory #0and Hp: 8 =~ = 0. The LOD scores were compared to an overall 5%
empirical threshold (Churchill and Doerge 1994): we permuted the (y;;) and calculated the
LOD score at each marker, using this new dataset. The process was repeated 1000 times,

and the 95th percentile of the maximum LOD score was used as the threshold.
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For Zeng’s method, we determined a set of markers, 5, either as all markers, or
by performing forward selection to 3, 5 or 7 markers (during forward selection, the marker
effect and the sex x marker interaction were required to enter together). Then, the markers

were considered one at a time. For the kth marker, we looked at the following model.

Yij = i+ ajs; + Brip + yries; + Z Bz + Z ViTi8; + €
lesx lesx

where S* is the set .5, with markers within 5 ¢cM of the kth marker (that under consideration)
removed. We then calculated the LOD score comparing H,: 8 # 0 or v # 0 and Hg:
3 = v = 0. The LOD scores were compared to a 5% empirical threshold, calculated
similarly to that for the ANOVA method: the (y;;) were permuted, and then the entire
procedure to obtain the LOD scores was performed. This was repeated 1000 times, and the
95th percentile of the maximum LOD score was used as the threshold.

For the data on abdominal bristles, we also considered the inclusion of pairwise
interactions, though we restricted attention to interactions between the loci which were
identified in our previous analyses. Let A be the chosen set of markers. We considered

models of the form

Yij = m+ajsi + > Brrik + Y kTiksi + Y Buriai+ Y YuTiTis; + €
keA keA k€A k€A

The entire space of models was searched. Parameters were estimated by least squares, and

models were compared using BIC-type criteria.

5.2 Results

Table 5.1 displays the means and SDs of the numbers of abdominal and sterno-
pleural bristles, by sex, in the low and high parental lines. Forty individuals, for each
sex and in each line, were scored. The lines show a greater difference in the number of
abdominal bristles, since they were obtained by selecting for differences in this trait. The
males and females in the low parental line show a striking difference in the average number
of abdominal bristles.

Table 5.2 gives the genetic map for the 29 cytogenetic markers. The ten markers
which are indicated by a star did not recombine with their left adjacent marker, and were

dropped from the analysis. In the results below, we’ll denote the markers by their locations
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Table 5.1: Means and SDs of the numbers of abdominal and sternopleural bristles, by sex,
for the two parental lines.

Abdominal bristles Sternopleural bristles
mean SD mean SD
Low male 10.0 2.5 15.8 14
female 5.5 2.8 16.9 1.8
High male 222 2.3 204 1.6
female 20.7 2.6 21.5 1.5

Table 5.2: Genetic map for the 29 cytogenetic markers. The markers indicated with a star
did not recombine with the left adjacent marker in the 66 recombinant inbred lines.

61A1 0.0 87A1 51.0 %
64C1 13.5 87B1 51.0
64D1 19.5 =% 88B1-4 dis  54.0
66A1 23.0 88E1 56.0
67C4 23.9 89D1 58.8 x
67F1 34.0 * 92E1 69.5
68A1 34.5 * 93F1 73.0
68C1 35.0 94B1 76.0 %
68E1 37.0 95A1 79.7
69A1 38.0 96B5 85.0
70A1 40.0 96I'5 90.0
75C1 46.0 99F1 102.0
8HE1 49.0 * 100C2 105.0

85F1 dis  49.0
85F4 49.0 *

100F1 108.0 *

%

as indicated on this map. For instance, the marker 64C1, at map position 13.5, will be
denoted M13.5.

Table 5.3 displays the quantiles for the average numbers of abdominal and sterno-
pleural bristles, by sex, for the 66 recombinant inbred lines. The maxima and minima
are not far from the averages of the high and low parental lines, respectively (shown in
Table 5.1).

Table 5.4 displays the estimated correlations between the two traits in males and
females, across the 66 recombinant inbred lines. The average number of abdominal bristles
for males and females in a line are highly correlated, as is the average number of sterno-
pleural bristles between sexes. The correlation between the average number of abdominal

bristles and the average number of sternopleural bristles, within males or within females,
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Table 5.3: Quantiles for the average numbers of abdominal and sternopleural bristles, by
sex, for the recombinant inbred chromosome 3 lines.

Abdominal bristles Sternopleural bristles
male female male female
min 7.9 2.8 14.6 15.3
25th %ile 10.9 5.7 16.1 17.4
median 134 10.5 16.7 17.7
75th %ile 17.7 16.6 18.7 20.1
max 20.2 22.7 20.6 22.2

Table 5.4: Estimated correlations between traits across the recombinant inbred chromo-
some 3 lines. (AB denotes abdominal bristles, and SB denotes sternopleural bristles.)

female AB male SB female SB

male AB 0.93 0.49 0.48
female AB 0.44 0.41
male SB 0.95

are much less strongly correlated.

5.2.1 Abdominal bristles

Forward selection using each of the three criteria, BIC-2, BIC-2.5 and BIC-3,
indicated a model for abdominal bristles which contained seven variables: sex, M13.5, M35,
M46, M69.5, M90 and sex x M35. Backward elimination gave similar results, though the
effect sex x M46 was given in place of sex x M35. A search over all 2°? models (by branch-
and-bound) showed that the model indicated by forward selection gave the global minimum
for each of the three BIC-type criteria.

Table 5.5 contains the estimated coefficients and their estimated standard errors
(SEs) for this model. (Note that the estimated regression coefficients are expected to exhibit
selection bias. See the discussion in Section 6.1, beginning on page 83.) All of the QTLs have
positive effects, indicating that the high allele gives an increase in the number of bristles
over the low allele. The QTLs identified had effects of 1.1-1.8 bristles, corresponding to
differences of 2.2-3.6 bristles between the high and low lines. The effect for sex was negative,
indicating that females had fewer abdominal bristles, on average, than males. The sex X
M35 interaction indicates that, for the lines with genotype HL at M35, the two sexes had

nearly the same average number of bristles. The estimated residual SD was 6 = 1.65.
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Table 5.5: Estimated coefficients and estimated standard errors (in parentheses) for the
chosen model for abdominal bristles.

intercept 12.9 (0.2)
sex -1.4 (0.1)
M13.5 1.2 (0.2)
M35 1.1 (0.3)
M46 1.8 (0.3)
M69.5 1.1 (0.2)
M90 1.7 (0.2)
sex x M35 0.9 (0.1)

Table 5.6: Estimated 5% LOD thresholds for ANOVA and Zeng’s method, obtained by
1000 permutations of the data on abdominal bristles.

Zeng, forward selection

ANOVA 3 5 7 Zeng, all
2.3 3.1 3.4 3.5 3.3

Replacing a marker by its neighbor resulted in a change in log,, likelihood of more
than 1. Thus the locations of the QTLs are quite well resolved.

One of the observations, for the females of line 55, deviated quite markedly from
the expected. The average number of abdominal bristles for these flies was y = 12.7, but
the fitted value for the above model was § = 4.7. The standardized, studentized residual
(see, for example, McCullogh and Nelder 1989) was 4.9. It is interesting to note that this
line had genotype LL at all markers. Thus, we would expect its average to be similar to that
of the low parental line. (Nine lines were LL at all markers; eight were HL at all markers.
All of these lines, except for the one noted above, correspond well to the average counts
of the corresponding parental line, shown in Table 5.1.) This line, indicated as an outlier,
may have been contaminated with another line after genotyping but prior to phenotyping
(T. Long, personal communication). In any case, removal of this point had little effect on
the estimated coefficients and SEs, and had no effect on the choice of models.

Table 5.6 contains the 5% LOD thresholds for ANOVA and for the method of
Zeng (1994), using all markers, and using forward selection up to 3, 5 and 7 markers. The
thresholds were estimated by repeated permutations of the phenotype data, as described
in Churchill and Doerge (1994). The estimated standard errors for these thresholds are all

around 0.1.
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Table 5.7: The main effects included in the chosen models for abdominal bristles, for each
of the methods used.

BIC Zeng
2 2.5 3 ANOVA 3 5 7 all
M13.5 M13.5 M13.5 M13.5 M13.5
M35 M35 M35 M35 M35
M46 M46 M46 M46 M46 M46 M46 (none)
M69.5 M69.5 M69.5 M69.5 M69.5 M69.5
M90 M90 M90 M90 M90 M90

Application of ANOVA gives a single broad peak: nearly all markers give signifi-
cant LOD scores, and so we cannot separate the individual QTLs at all.

Zeng’s approach, using all markers which are at least 5 cM away from the marker
being tested, gave no significant markers. Zeng’s approach using forward selection to 5
markers indicated the same model as BIC, except that when using this method, we always
included the sex x marker interaction, when a marker was identified. Using forward selec-
tion to 3 markers, M35 was not significant. Using forward selection to 7 markers, M13.5
was not significant.

For ease of comparison, Table 5.7 displays the markers whose main effects were
included in the chosen models for abdominal bristles obtained by each of the different
methods. For the models obtained using the BIC-type criteria, we display those indicated

by a complete search over the model space.

5.2.2 Sternopleural bristles

Forward selection using BIC-2, BIC-2.5 and BIC-3 indicated a model for sterno-
pleural bristles with just sex and M0. Backward elimination, and a complete search over
all 239 models (by branch-and-bound), using BIC-2.5 and -3, also indicated this model.
Backward elimination and a complete search, using BIC-2, indicated a model containing
sex, M0, M51, M54, M90 and M102.

Table 5.8 contains the estimated coefficients and estimated SEs for the larger
model. (These estimates are expected to exhibit selection bias.) The estimated residual
SD for this model was 6 = 0.74. The estimated residual SD for the model containing only
sex and M0 was 0.86. The putative QTLs which were not found by forward selection, and
which show up only with the BIC-2 criterion, appear as two pairs of QTLs tightly linked in
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Table 5.8: Estimated coefficients and estimated standard errors (in parentheses) for the
chosen model for sternopleural bristles.

intercept 18.2 (0.1)
sex 0.6 (0.1)
MO 15 (0.1)
M51 12 (0.3)
M54 1.3 (0.3)
M90 0.4 (0.1)
M102 0.4 (0.1)

repulsion.

Replacing the markers, one at a time, by their neighbors shows that marker M56
works as well as M54, and M105 works as well as M102.

A number of moderately outlying observations were seen, but dropping these had
little effect on the results.

The estimated LOD thresholds for ANOVA and Zeng’s methods, obtained by
permuting the sternopleural bristle phenotype data, were within one SE of those obtained
for the abdominal bristle data, shown in Table 5.6.

With ANOVA, marker M0 gave the largest LOD score, but markers M13.5-M35
also gave LOD scores above the 5% empirical threshold. The other markers had LOD scores
below the threshold. Zeng’s approach using forward selection to 3 markers indicated only
marker M0. Using forward selection to 5 markers indicated markers M0 and M102. Using
forward selection to 7 markers indicated markers M0, M51 and M105. Using all markers
indicated M0 and M56.

For ease of comparison, Table 5.9 displays the markers whose main effects were
included in the chosen models for sternopleural bristles obtained by each of the different
methods. For the models obtained using the BIC-type criteria, we display those indicated

by a complete search over the model space.

5.2.3 Epistasis

We considered including pairwise interactions, for the model for the average num-
ber of abdominal bristles. We restricted attention to the markers which were indicated in

the previous analyses: M13.5, M35, M46, M69.5 and M90. Thus, we had 31 regressors:

sex, b markers, 5 sex X marker interactions, 10 marker x marker interactions, and 10 sex
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Table 5.9: The main effects included in the chosen models for sternopleural bristles, for
each of the methods used.

BIC Zeng

2 25 3 ANOVA 3 5 7 all
MO MO MO MO MO MO MO MO
M51 M51
M54

M56
M90
M102 M102
M105

Table 5.10: Estimated coefficients and estimated standard errors for the chosen model for
abdominal bristles, when pairwise interactions were allowed.

intercept 12.5 (0.2)
sex -1.4 (0.1)
MI3.5 1.2 (02)
M35 0.8 (0.3)
M46 1.8 (0.3)
M69.5 1.5 (0.2)
M90 0.6 (0.2)
M35 x M69.5 0.7 (0.2)
sex X M35 0.9 (0.1)

x marker x marker interactions. A full search of the space of models gave, for BIC-2, the
model previously found, with the addition of a single marker x marker interaction: M35
x M69.5. With BIC-2.5 and BIC-3, the markers M46 and M90 were dropped. Table 5.10
contains the estimated coefficients and estimated SEs for the larger model. (Again, these
estimates are expected to exhibit selection bias.) Comparing these coefficients to those in
Table 5.5 (page 76), one observes that the main effects for the markers have not changed
dramatically. The coefficient for M35 went from 1.1 to 0.8, and the coefficient for M69.5

went from 1.1 to 1.5.

5.3 Discussion

Since the “truth” is not known for the data analyzed in this chapter, we cannot

know how well the methods have performed in uncovering it, but this application is still
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useful in comparing the different methods in the face of a real problem.

For the abdominal bristles trait, forward selection performed very well, giving the
model which minimized the BIC criteria globally. The poor performance of ANOVA-type
methods (including interval mapping), in the face of linked QTLs, is clearly seen. At least
five QTLs for abdominal bristles were segregating in this experiment, and ANOVA was
unable to distinguish them. With an appropriate choice of markers to use as regressors,
Zeng’s method gave the same model as chosen by BIC. However, different methods of
choosing the set of regressors gave quite different results; when all markers were used, no
markers had LOD scores above the 5% empirical threshold. This is the clear drawback to
Zeng’s approach: how to choose this set of regressors appropriately is not clear, and the
results depend greatly on this decision.

The sternopleural bristle data may indicate the presence of QTLs tightly linked in
repulsion. These appear only when using BIC-2, however, and so they may be extraneous.
Forward selection did not pick them out, whereas backward elimination did. (This behavior
corresponds to our experience with simulations, discussed in Chapter 4. When feasible, one
should apply not just forward selection, but also backward elimination, and maybe a branch-
and-bound approach, to insure that the best models are seen.) Zeng’s method indicated
only single QTLs in the regions of the pairs of QTLs identified with BIC-2. The very tight
linkage of these QTLs would make it difficult for Zeng’s method to uncover them, since
when the LOD scores are calculated, tightly linked loci are never considered together.

Our work to search for pairwise interactions should be considered only as pre-
liminary. The big problem in this situation is the search through possible models, since
the inclusion of interactions leads to enormous increases in the number of regressors. Our
approach, of considering interactions only between loci with clear main effects, was one of
convenience, and should not be recommended generally. Loci with negligible main effects
may be found to be important when epistasis is considered. One marker x marker inter-
action, comparable in size to the main effects of many loci, was clearly present. Thus, the
presence of epistasis in quantitative traits should not be disregarded.

It is prudent that we compare the results obtained here to the original analysis
presented in Long et al. (1995). They used a method similar to the approach of Zeng (1994),
using all markers, though they considered intervals rather than markers, calling an interval
“high” if both of the flanking markers were high, and low if both flanking markers were

low, and dropping data for lines in which an interval showed a recombination event. The
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intervals that they identified were adjacent to the markers we chose in our analysis, except
for two cases, where they were next-to-adjacent. The biggest difference seen was in the
results of the analysis of epistasis. Long et al. (1995) considered the pairwise interactions
one at a time, and found a large number of them giving significant effects, whereas our

analysis identified only one pairwise interaction.
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Chapter 6

Conclusions and discussion

In this thesis, we have considered the problem of identifying quantitative trait
loci (QTLs) in large experimental crosses. We have assumed that the QTLs act additively,
and that crossovers in meiosis occur with no interference. The standard approaches to this
problem involve multiple tests of hypotheses, with a genome-wide significance threshold
which controls for the multiple tests. QOur approach has been to view the problem as
one of model selection, and to use standard methods for selecting subsets of variables in
regression. This approach gives quite good results, and helps to focus on the important issue
in the problem: the balance between the problems of missing important loci and including
extraneous ones.

In light of the observation that the variation in most quantitative traits appears
to be the result of the action of multiple loci, methods which model a single QTL at a time,
such as analysis of variance and interval mapping, should be expected to perform poorly
in comparison to the methods which model multiple QTLs, such as multiple regression and
composite interval mapping. In addition, since, with most experiments, interval mapping is
unable to resolve the location of QTLs to within a single marker interval, it is clear that, in
the identification of QTLs, very little is lost by considering only the marker loci themselves.
We are thus lead to the approach studied in this thesis: choosing a subset of markers by
applying well-known methods for subset selection in regression.

There are a number of very important issues which have been neglected in this

thesis. We conclude our discussion with brief statements on several of these issues.
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6.1 Selection bias

The estimated effects of identified QTLs, and the estimated genetic variance as-
cribed to those QTLs, will be greatly biased. If a locus has a small estimated coefficient, it
will not in the identified as a QTL. Thus, the expected values of the estimated coefficients
for chosen loci, given that they have been chosen, will be too large. This is true for all of the
methods described in this thesis, including interval mapping, composite interval mapping,
and our own model selection approach.

Severe bias in the least squares estimates of the coefficients in a regression problem,
when the variables in the regression equation were obtained by subset selection, is a well
known problem (Miller 1990). This bias appears to not be so well known among scientists
studying QTLs. We have seen no mention of the issue accompanying the analyses of QTL
experiments.

To illustrate the possible size of the bias, we performed a small simulation. We used
a backcross of 250 progeny, with nine chromosomes, of length 100 ¢cM each, with 11 equally
spaced markers (10 cM spacing). We used four QTLs, at the center of chromosomes 1-4,
with effects 1.0, 0.75, 0.5 and 0.25. The environmental variation was normally distributed
with standard deviation ¢ = 1. We used forward selection with the BIC-2.5 criterion, and
performed 10,000 simulations.

If the correct model is fit, the estimated coefficients are all unbiased, and have
standard error 0.13. In Table 6.1, we display the results of the simulations. The second
column gives the percent of the simulations in which each of the QTLs were chosen, using
forward selection with BIC-2.5. The third column gives the estimated selection bias in
the estimated coefficients, as a percent of the true effects, 5. For each QTL, we take the
average of the estimated coefficients, among the simulations in which that QTL was chosen.
The fourth column gives the root mean square (RMS) of the nominal standard errors for
the coefficient estimates. Again, for each QTL, we use only those simulations for which it
was detected. The nominal standard errors for the regression coefficients are the square
root of the diagonal elements of 6%(X’X)™!, where 62 is the estimated residual variance.
The selection bias in the estimated QTL effects is negligible for the QTLs which could be
detected with high power. For the QTL with effect 0.50, the bias is moderately large, and
for the QTL with very small effect, which was identified only 3% of the time, the bias was

very large. The estimated standard errors show no selection bias.
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Table 6.1: Results of simulations to study selection bias in QTL effects and estimated SEs.

true effect % chosen ave(3—3)/3 RMS(SE)

1.0 96 0% 0.13
0.75 88 2% 0.13
0.5 46 18% 0.13
0.25 3 110% 0.13

Miller (1990) discusses a number of methods to estimate and adjust for selec-
tion bias. We neglect this issue here, because we are chiefly interested in the problem of

identifying the QTLs, and are less interested in the estimated effects of those loci.

6.2 Missing data

It is not unusual in QTL experiments to find that the genotype data is incomplete:
not all progeny were typed for all genetic markers. The complex biochemical reactions
which are performed to obtain genotypes will occasionally fail, and the resulting holes in
the genotype data may be difficult to fill.

If only a very small proportion of genotypes are missing, it may be possible to sim-
ply drop any observations whose genotypes are missing at the markers under consideration.
For example, in performing ANOVA at a marker, one could use only those observations
which were typed at that marker. Thus, different sets of observations would be used at
different markers. There is some loss of efficiency in this approach, since the genotype at
markers near the one for which the data is missing provide some information about the
likely genotype at that position.

When there is a great deal of missing data, so that there could be a great loss
of efficiency when using the above approach, it will be important to use a method which
helps to fill in the missing data. The most likely candidate would be a method like interval
mapping, using the EM algorithm (Dempster et al. 1977).

A similar problem arises when some of the markers are less than fully informative.
In a backcross or intercross using highly inbred lines, all markers are fully informative
(meaning that we have complete knowledge about the grandparental origins of the alleles
received by an individual). However, more complex experiments are sometimes performed,

such as an intercross between outbred lines.
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For example, consider an experiment involving four outbred grandparents, two
parents, and a large number of progeny. Fach of the two parents receives one allele from
each of its parents; label these alleles A, B, C and D, so that one parent has genotype AB
and the other has genotype CD. Then the progeny will have four possible genotypes: AC,
AD, BC or BD.

At some markers, one of the two parents may be homozygous. For example, the
alleles C and D may really be the same. Thus, the progeny will have one of only two
genotypes at that marker: AC or BC. But in this sort of experiment, we will want to follow
the effects of the allele from each grandparent, and so we will need to use nearby markers
which are fully informative to try to fill in this missing information. Again, an approach
similar to interval mapping may be required.

To summarize, the model selection approach described in this thesis, which uses
multiple regression at marker loci, may suffer from a loss of efficiency when faced with a
substantial amount of missing data or when a good portion of the markers are not fully
informative. In such situations, it may be important to use a method like interval mapping

to fill in the missing information.

6.3 Epistasis

It cannot be denied that the situation discussed in this thesis, in which QTLs are
assumed to act additively, is a great simplification of reality. Experiments on bristles in
Drosophila (Shrimpton and Robertson 1988; Long et al. 1995) supply strong evidence for
epistatic interactions between QTLs, with some epistatic effects being as large as the main
effects of many loci.

All of the common statistical methods used to detect QTLs neglect epistasis. Yet
it may be that some loci show an effect only in the presence of a particular allele at another
locus. (For an example, see Shrimpton and Robertson (1988).) Indeed, the term epistasis
derives from the situation in which two genes are related in some biochemical pathway, so
that a mutation in the gene which is “downstream” in the pathway shows no effect when
there is a mutation in the gene which is “upstream.” Thus, if epistasis is ignored, one may
miss important loci, whose effects are apparent only when considering interactions.

The usual method used to detect epistatic effects is to consider pairwise interac-

tions between loci, generally by performing multiple tests of hypotheses, looking at the pair-
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wise interactions one at a time (Tanksley 1993). The biggest difficulty with this approach,
and with the epistasis problem generally, is the enormous number of possible interactions
to consider. With 100 markers, there are 100 x 99/2 = 4, 950 different pairwise interactions.
As a result, even if some of these show a large effect, one is left with very little power to
detect epistasis.

We see no easy solution to this problem. One is faced with “the curse of dimen-
sionality.” With 100 markers, there are 219 ~ 103 possible models which include only main

25050 ~ 10520 possible models which also include pairwise interactions.

effects, and there are

A quite different approach may help. One might consider going after the interac-
tions from the start, rather than tacking them on as pairwise interactions at the end. It
is natural, in this instance, to consider tree-based models, for which interactions are the
rule. (See Breiman et al. 1984). The search through the space of models is still, and it will

always be, a problem. But the results may be somewhat improved.

6.4 Multiple traits

Because so much effort is expended in generating and then genotyping the progeny
in a QTL experiment, scientists are rarely satisfied with measuring only a single quantitative
trait. Sometimes as many as 40 different traits are measured on each individual (Edwards et
al. 1987). It is hoped that large QTLs will be detected for at least some of these traits. More
importantly, there are a number of questions that can be answered only with an experiment
that looks at several traits simultaneously. Chief among these regards the phenomenon
of pleiotropy, in which action at a single locus leads to variation in a number of traits.
Pleiotropy is of special interest to scientists who are performing selection experiments, in
which one is trying to simultaneously improve several traits. For example, one might desire a
eucalyptus tree that not only grows more quickly, but also has more dense wood, traits that
tend to be negatively correlated. If this negative association is primarily due to pleiotropy,
it will be very difficult to improve both traits at once.

In the analysis of QTL data, multiple traits are often considered one at a time. It
should be emphasized, however, that there can be a great advantage to analyzing the traits
simultaneously. In particular, pleiotropy is best tackled by considering models for multiple
traits, and perhaps testing the hypothesis that two QTLs, each acting on a different trait,

correspond to the same locus. For a discussion of this topic, see Jiang and Zeng (1995).
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Appendix

This appendix contains a proof of the proposition in Chapter 3, that, in the case
of strictly additive QTLs which are located exactly at marker loci, and assuming no inter-
ference, forward selection using a BIC-type criterion is consistent.

An and Gu (1985) showed that, in the context of a linear model with a fixed
number of independent variables, minimizing the BIC criterion over all possible models
gives a consistent estimate of the model. (The argument holds for any criterion of the
form log RSS + én/logn, where é > 0.) Moreover, they showed that using backward
elimination with BIC still gives a consistent procedure. Forward selection, on the other
hand, is overconsistent, meaning that the estimated model will contain all of the correct
independent variables, but may contain some extraneous ones as well. In the situation
discussed in this thesis, the independent variables have a Markov structure. As a result,
forward selection using a BIC-type criterion is consistent.

Consider a backcross. Let y be the vector of trait values. Assume that there are

p QTLs, with 21, 29,..., 2, the vectors of genotypes, coded as ~1 and +1. Assume that

p
y:,u‘|‘2ﬁszs+€

s=1

Let X be the matrix of marker genotypes, the first column of X containing all 1’s (corre-
sponding to the intercept).

Consider two markers, with genotypes z; and z;, coded as —1 and +1. Note that

E(z;) = 0, E(z?) = 1, and E(z;z;) = (1 — 2r), where r is the recombination fraction

between the two markers. Assuming no interference, r = (1 — e=24/190)/2 swhere d is the
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distance (in ¢cM) between the two markers. Note also that
E(z:y) = pE(z;) + ) B:E(2:2) + E(z¢)
=2 Bs(1 = 2ms2.)

The sum above is over only those QTLs which are linked to the marker z;, since when a
QTL is not linked to a marker, the recombination fraction r;,,, = 1/2, and so 1—-2r,,. = 0.

In the following, terms like (1—27) show up regularly. Consider three markers z;, z;
and zj, with z; located between the other two. Let r;;, r;; and 7;;, denote the recombination
fractions between pairs of the markers. Under no interference, 7, = r;; + 71 — 2r;;7j5. Let
pi; = 1 — 2r;;, and define p;; and p;; similarly. Then p;p = p;;p;x. This property will be
used extensively.

Suppose there are ¢ chromosomes. By the Law of Large Numbers,

Aq
(X'X)/n 22 Ay

A,

[

where each matrix Ay is symmetric and is of the form A = ();;) with elements
1 ifi=7
/\ij =
pieepia i<
where p; = 1—2r; and r; is the recombination fraction between the ith and (¢4 1)st markers

on the chromosome. (Note that, to simplify the notation, we neglect the dependence on k.)

The inverse of such A has elements

142 ifi=j=1
l—pf
2
R e ifi=j=M
“Pp—1
ij 2 2 o - . .
A = 1+1p12+pM+1 ifi=jandi#1or M
-~ 1=pir_q

0 otherwise
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where M is the number of markers on the chromosome.

The matrix (X'y)/n converges almost surely to a matrix whose elements are of
the form E(zy) = 3, Bspuz,, where py,, = 1 — 27y, , and, as mentioned above, the sum is
over only those QTLs which are linked to the marker.

Because of the form of the X’X and X'y matrices, only a single chromosome need
be considered. Consider the change in residual sum of squares (RSS) associated with adding
a new marker; we wish to show that the marker giving the maximum change in the RSS is

always at a QTL. Note that

RSS = (y - XB) (v - X)
= [y X (X)X [y - X (X)X
=y'y—yX (X'X)7 X'y

Thus minimizing the RSS is equivalent to maximizing ¥’ X (X'X)~'X'y. Because of the
almost sure convergence described above, we deal only with the limiting value of the change
in RSS.

Suppose the chromosome has p QTLs, at locations z; < 23 < ... < z,. Consider
a location z, between QTLs z, and z,41. Suppose that the QTLs z; and z; are the closest
flanking QTLs which are currently in the model for the trait y, with z; < z;. We want to
show that there is a greater change in RSS when adding z, or z,41 rather than z.

Let ps = 1 — 2r,, where 7y is the recombination fraction between the QTL z; and
the location z. Let ps; = 1 — 21, where 74 is the recombination fraction between the QTL
zs and the QTL z.

The absolute decrease in RSS when adding the locus 2 is

D) = (X ups)’ (1+ oy 2 )

P; P
. 2 p? P 4 2 p? P
+ (X Beps) (15 A1)t (X Bpsi) (1= e N
- 25 fip? (32 Bapss) (3 Baps) = 25 £ jp? (32 Bapss) (32 Bors)

+ 215%22] (Z ﬁspsi) (Z ﬁspsj)
= ZﬁsﬁtAs,t
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where

Agt = pspy t1 — 5 (Psiptipi + Pspipi — PsiPt — PtiPs)

k3

P

+ 1——],02 (PsiPtiP; + PsPiPj = PsjPt = P1Ps)
J

Pij

1—p%

+

(psiPtj + Psjpti — PsiPtiPij — PsjPtiPis)

We now simplify the form of the above. First, consider the case where z; < z; <
r < z;. Using the fact that p; = pgpi and ps; = psip;;, it is not hard to show that A,; = 0.
By symmetry, then, A;; = 0 whenever either z; or 2 is outside of 2; and z;. Thus, the
change in RSS, associated with including the marker z, depends only on QTLs between z;
and z;.

Now, consider z; < z; < < z; < z;. After another bit of algebra, we obtain
(1—p%)(1—p})

1-p%

Ast = Pst

’

5o when z, and z; are on different sides of z, the value A;; doesn’t depend on the location
of z.

Finally, consider 2z; < z, < zx < < z;. A bit more algebra gives

1- 2, 1- 2 1jHstHs
As,t — pspt( psz)( ptz) —stptj _I_ p]p ,0 J

T - [1+ 02 (1= 02 = 03)]

Z]

And so we can write

D( ) =K+ Z ﬁsﬁt 1 - psz)(l — Py 2) pjp;2

1<s#t<u 1 7
PsPt
u+1<s#t<y p]

2 2
(E Bs(1—pZ)p ) ( > Bo(1—pZ)p )
Z s<u ’0] u+1<s

where the constant K depends only on the QTLs which are strictly between z; and z;, and
does not depend on the location of the locus =z.

Setting

2
1
( Z Bs(1 = p%; Psu) q

1<s<u

2
1
:( E ﬁs psg psu+1) T 2

ut+1<s<j 1 - pj,u—}—l
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we obtain

1—p? 1—p?
e 2 2,U 2 wut1l
The end is near. Without loss of generality, assume that D(z,) > D(zy41). Then
1- p2 u+1 1- p22u
R+Qpiu1(4 > Rpyur | T—— | +Q
yut 1 _ p‘iu yut 1 _ ,0227,“_}_1

which gives

Now suppose that D(z,) < D(z) This gives

1- P?,u+1] [piﬂ(l — p?)]
L=pu; L=7]

R<@

But this second inequality cannot be true, since

1—p? | [P0 (1 = pd) < 1-p}g
1=pi; 1—p} 1=p3,

And so, we find that if D(z,) > D(2zu41), then D(z,) > D(z).

Further, D(z)is convex in the region between z, and z,4+1. The calculations again
involve a messy bit of algebra. After writing D(z) as a function of the genetic distance
between z, and z, differentiate twice, and see that the second derivative is non-negative.

Note that if there are no QTLs located between 2,41 and z;, ¢ = 0, and so D(z) is
easily seen to be maximized at z,. If there are no QTLs at all between z; and z;, D(z) =0
for any location = between z; and z;.

Also note that, by setting p;, p;. and p; .41 = 0, the above covers the case in
which there is no z; to the right of  which has already been included in the model for y.
Setting p;, pi.w and p; 41 = 0 as well gives the case in which no markers on the chromosome
have yet been included in the model for y.

And so, to wrap up our argument, we see that if there are no QTLs on a chromo-
some, the change in RSS associated with adding in a marker converges to 0 almost surely.
If there are QTLs on the chromosome, then markers located at QTLs will, in the limit,
give a greater change in RSS than any other loci. Once all the QTLs on a chromosome
have entered the model, the change in RSS corresponding to adding any other marker has

a limiting value of 0.
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Let I,(s) denote the set of markers obtained by using forward selection up to s
variables, for a sample size of n. Consider a situation with a finite set of markers, and
with p QTLs all located exactly at marker loci. Then with probability 1, there exists an
N such that for all n > N, the set [,,(p) is exactly the set of p QTLs. Combined with the
result in An and Gu (1985), that minimizing a BIC-type criterion over all possible models
gives a consistent estimate of the true model, this shows that using forward selection with

a BIC-type criterion is also a consistent procedure.



