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ABSTRACT

Recombinant inbred lines (RIL) derived from multiple inbred strains can serve as a powerful resource
for the genetic dissection of complex traits. The use of such multiple-strain RIL requires a detailed
knowledge of the haplotype structure in such lines. Broman (2005) derived the two- and three-point
haplotype probabilities for 2n-way RIL; the former required hefty computation to infer the symbolic
results, and the latter were strictly numerical. We describe a simpler approach for the calculation of these
probabilities, which allowed us to derive the symbolic form of the three-point haplotype probabilities. We
also extend the two-point results for the case of additional generations of intermating, including the case
of 2n-way intermated recombinant inbred populations (IRIP).

RECOMBINANT inbred lines (RIL) can serve as
powerful tools for genetic mapping. An RIL is

formed by crossing two inbred strains followed by re-
peated matings among relatives (e.g., selfing or sibling
mating) to create a new inbred line whose genome is a
mosaic of the parental genomes. As each RIL is an in-
bred strain and so can be propagated eternally, a panel
of RIL has a number of advantages for genetic map-
ping: one need genotype each strain only once; one
can phenotype multiple individuals from each strain to
reduce individual, environmental, and measurement
variability; multiple invasive phenotypes can be ob-
tained on the same set of genomes, including measure-
ments on a single invasive phenotype over time or in
different environments; and, as the breakpoints in RIL
are more dense than those that occur in any one mei-
osis, greater mapping resolution can be achieved.

Members of the Complex Trait Consortium have
recently begun the development of a large panel of
eight-way RIL in the mouse (Threadgill et al. 2002;
Complex Trait Consortium 2004). An eight-way RIL
is formed by intermating eight parental inbred strains,
followed by repeated selfing or sibling mating to pro-
duce a new inbred line whose genome is a mosaic of the
eight parental strains. (Figure 1, A and B, illustrates the
production of eight-way RIL by selfing and sibling
mating, respectively.) This panel will serve as a valuable
community resource for mapping the loci that contrib-
ute to complex phenotypes in the mouse.

In general, one might consider the development of a
panel of 2n-way RIL, mixing the genomes of 2n different

inbred lines. One might also consider an additional
generation of interbreeding, preceding the process of
inbreeding, to increase the density of breakpoints on
the final RIL; we call this the RIL1 design. In 2n-way RIL,
inbreeding begins with individuals at generation n; in
2n-way RIL1, two Gn individuals from independent
‘‘funnels’’ (with initial crosses in the same order, but with
no shared recombination events) are crossed, and in-
breeding begins at generation n 1 1. The production of
eight-way RIL1 by selfing and sibling mating is shown in
Figure 1, C and D, respectively. Note that in eight-way
RIL1, one may mate cousins at generation G2, as these
individuals have no shared recombination events. For
higher-order RIL1, a more extensive set of matings will
be required to ensure that the individuals at generation
Gn�1 exhibit independent recombination events.

Further, it has been proposed to include some num-
ber of generations of random mating prior to in-
breeding, a design that has been called an intermated
recombinant inbred population (IRIP). Multiple de-
signs for the formation of 2n-way IRIP might be consid-
ered. First, one might create an unlimited population of
individuals at generation n, each from a funnel having
initial crosses in the same order, but with such crosses
completely independent between individuals. Second,
the individuals at generation n might each come from
an independent, random funnel, with the order of the
initial crosses completely randomized, though with all
2n parental strains represented. We focus on the latter
design, as it requires the formation of a single large
population from which a panel of IRIP may be devel-
oped. The former design would require separate pop-
ulations of intermating individuals for each line to be
formed. Note that the use of random funnels makes the
IRIP design distinct from the RIL1 design, which uses a
fixed funnel.

1Corresponding author: Department of Biostatistics, Johns Hopkins
University, 615 N. Wolfe St., Baltimore, MD 21205–2179.
E-mail: kbroman@jhsph.edu

Genetics 175: 1267–1274 (March 2007)

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/175/3/1267/6061700 by G

enetics Society of Am
erica M

em
ber Access user on 07 M

arch 2025



The use of multiple-strain RIL panels will require a
detailed understanding of the haplotype structure in
such lines. At any given genomic position, an RIL will
be homozygous for one of the 2n possible parental
alleles; a haplotype is the set of alleles at linked loci
along a chromosome. We seek to understand the pat-
tern of exchanges among the parental alleles along
an RIL chromosome. In particular, the decision of
whether to include additional generations of intermat-
ing should be based upon an understanding of the ad-
ditional mapping precision that such intermating will
provide.

The seminal article of Haldane and Waddington

(1931) provided the basic results for the standard two-
way RIL by selfing or by sibling mating: they derived
both two- and three-point haplotype probabilities (i.e.,
the probabilities for all possible two- and three-locus
haplotypes) for such two-way RIL. Winkler et al. (2003)

calculated the two-point haplotype probabilities for the
case of two-way IRIP. Broman (2005) derived the two-
and three-point haplotype probabilities for four- and
eight-way RIL, though with enormous computational
effort. Only numerical results were provided for the
three-point probabilities.

Here, we improve on the work of Haldane and
Waddington (1931) and Broman (2005). We describe
a simpler approach for the calculation of two- and three-
point probabilities in 2n-way RIL, which allowed us to
determine exact formulas for the three-point probabil-
ities. We also extend the results on two-point haplotype
probabilities for the case of 2n-way RIL1 and 2n-way IRIP.
Our results on the map expansion obtained in each
design will provide a useful guide to investigators con-
sidering the development of 2n-way RIL and considering
whether additional generations of intermating should
be performed.

Figure 1.—The production of
eight-way RIL by selfing (A) and
by sibling mating (B) and of
eight-way RIL1 by selfing (C)
and by sibling mating (D).
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TWO POINTS

Here we derive the two-point haplotype probabilities
on the fixed chromosome in 2n-way RIL, RIL1, and
IRIP. We consider both selfing and sibling mating, and
we focus on the autosome. (Results for the X chromo-
some may be derived in a similar manner, but since the
X chromosome recombines in females but not in males
and so different alleles have different numbers of op-
portunities for recombination before they arrive at the
four-chromosome bottleneck, even single-point results
are difficult to write down for the general 2n-way case.)
We also derive the quantity analogous to the recombi-
nation fraction, but for the fixed RIL chromosome.
Note that in the case of sibling mating, we generally
assume n $ 2 (that is, 2n $ 4).

Selfing: Two-way RIL: Haldane and Waddington

(1931) derived the two-locus haplotype probabilites for
two-way RIL by selfing. Here, we describe a simpler
solution to the problem.

Let W1W2 jX1X2 denote the haplotypes for a Gk

individual (for k . 0), with subscripts denoting the
alleles at the two loci. Let p1 denote the probability that
the W1W2 haplotype goes on to be fixed, and let p2

denote the probability that the W1X2 haplotype goes on
to be fixed. By symmetry, Pr(X1X2 fixed) ¼ Pr(W1W2

fixed) and Pr(X1W2 fixed) ¼ Pr(W1X2 fixed), and so
2p1 1 2p2 ¼ 1.

Further, if we condition on the first step, we have
p1 ¼ ð1� r Þ=2 � p1 � 2 1 1

2 � 1
2 � p2 � 2. That is, the probabil-

ity that the W1W2 haplotype is fixed is the probability
that it is transmitted intact to the next generation (and
this can occur in two ways) and then becomes fixed plus
the probability that W1 is transmitted to one gamete and
W2 is transmitted to the other gamete and then these
are brought together at fixation (and this can occur in
two ways). Substituting p2¼ (1� 2p1)/2, we find p1¼ 1/
[2(1 1 2r)] and p2 ¼ r/(1 1 2r).

Finally, note that in the G1 generation, Wi [ A and Xi

[ B. Thus, in a two-way RIL by selfing Pr(AA fixed) ¼
p1 ¼ 1/[2(1 1 2r)] and Pr(AB fixed) ¼ p2 ¼ r/(1 1 2r).
These are the haplotypeprobabilitiesderivedbyHaldane

and Waddington (1931).
2n-way RIL: The results for higher-order RIL by selfing

may be immediately derived from the results for two-way
RIL, due to the two-chromosome bottleneck at the start
of inbreeding. We consider the generation of 2n-way RIL
via a funnel, in which the genomes are brought together
as rapidly as possible, followed immediately by inbreed-
ing (see Figure 1A). In the following, we assume n $ 2.
Let L1; L2; . . . ; L2n

denote the parental lines, and
consider the cross [(L1 3 L2) 3 (L3 3 L4)] 3 .. . . We
also use Li to denote the allele from that line.

Let W1W2 jX1X2 denote the alleles on the two chro-
mosomes in generation n, at which inbreeding be-
gins. We must have Wi 2 fL1; L2; . . . ; L2n�1g and Xi 2
fL112n�1

; . . . ; L2ng.

To derive the haplotype probabilities for the fixed 2n-
way RIL chromosome, we first determine the haplotype
probabilities at the start of inbreeding and then com-
bine them with the results for two-way RIL. We begin
with the calculation of the haplotype probabilities at the
start of inbreeding. We consider the case that the L1

allele will be fixed at the first locus; other probabilities
follow by symmetry.

To obtain Pr(W1 ¼ W2 ¼ L1), note that there must be
no recombination at any of the initial mixing gener-
ations, and that the L1L1 haplotype must be transmitted
at each generation. Thus we see that Pr(W1¼W2¼L1)¼
[(1 � r)/2]n�1. Similarly, Pr(W1 ¼ L1, W2 ¼ L2) ¼ (r/2)
[(1� r)/2]n�2, as the two loci must recombine at the first
generation but not at subsequent generations, and the
L1 allele at the first locus must always be transmitted.
Finally, for i ¼ 0, 1, . . ., n � 2 and j ¼ 1, . . ., 2i, we have
PrðW1 ¼ L1; W2 ¼ Lj12i Þ ¼ ð1=2Þ2iðr=2Þ½ð1� r Þ=2�n�i�2.

We now proceed to calculate the haplotype probabil-
ities for the fixed RIL chromosome. The probability
that the fixed haplotype is L1Lj, for j ¼ 1, . . ., 2n�1 is
simply the probability Pr(W1 ¼ L1, W2 ¼ Lj) multiplied
by the probability that the W1W2 haplotype gets fixed.
For k ¼ 2n�1 1 1, . . ., 2n, the probability that the fixed
haplotype is L1Lk is Pr(W1 ¼ L1, X2 ¼ Lk) ¼ (1/2)2n�2,
multiplied by the probability that the W1X2 haplotype
gets fixed. Thus the two-locus haplotype probabilities
in a 2n-way RIL by selfing are as follows:

PrðL1L1Þ ¼ ð1� rÞn�1

2nð112rÞ

PrðL1Lj12i Þ ¼ rð1� rÞn�i�2

2n1ið112r Þ for i ¼ 0; . . . ; n� 2; j ¼ 1; . . . ; 2i

PrðL1LkÞ ¼ r

22n�2ð112r Þ fork ¼ 2n�1 11; . . . ; 2n : ð1Þ

The probability that the RIL chromosome is fixed at
different alleles at the two loci (the quantity analogous
to the recombination fraction) is then R ¼ 1 �
2nPr(L1L1) ¼ 1 � (1 � r)n�1/(1 1 2r). The map expan-
sion in a 2n-way RIL by selfing is then dR/dr jr¼0¼ n 1 1.
(For a short proof of the fact that dR/dr j rr¼0 corre-
sponds to the map expansion, see the appendix.)

2n-way RIL1: In 2n-way RIL1 by selfing, one crosses
two Gn individuals, generated from independent fun-
nels, and then performs repeated selfing starting at
generation n 1 1 (see Figure 1C). To calculate the two-
locus haplotype probabilities for this case, we need to
revise the haplotype probabilities for the generation in
which inbreeding begins. We now have Wi ; Xi 2 fL1;
L2; . . . ; L2ng. These haplotype probabilities use those
from the formation of 2n-way RIL, but with an additional
generation of recombination.

We have Pr(W1 ¼ W2 ¼ L1) ¼ [(1 � r)/2]n. For i ¼
0, . . ., n � 1 and j ¼ 1, . . ., 2i, PrðW1 ¼ L1; W2 ¼
L j12i Þ ¼ ð1=2Þ2iðr=2Þ½ð1� rÞ=2�n�i�1.
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Calculation of the haplotype probabilities on the
fixed RIL1 chromosome proceeds as before, but a par-
ticular allele may come from either chromosome. Thus,
for example, the probability that the RIL1 is fixed at
L1L1 is Pr(W1¼W2¼ L1) times the chance that the W1W2

haplotype gets fixed, plus Pr(X1 ¼ X2 ¼ L1) times the
chance that the X1X2 haplotype gets fixed, plus Pr(W1¼
X2 ¼ L1) times the chance that the W1X2 haplotype
gets fixed, plus Pr(X1 ¼ W2 ¼ L1) times the chance that
the X1W2 haplotype gets fixed. This gives Pr(L1L1) ¼
2[(1 � r)/2]n/[2(1 1 2r)] 1 2(1/2)2n[r/(1 1 2r)].
The other cases are similar, and so the two-locus hap-
lotype probabilities in a 2n-way RIL1 by selfing are as
follows:

PrðL1L1Þ ¼ ð1� rÞn 1 r21�n

2nð1 1 2r Þ

PrðL1Lj12i Þ ¼ r ð1� r Þn�i�1 1 r2i11�n

2n1ið1 1 2rÞ
for i ¼ 0; . . . ; n � 2; j ¼ 1; . . . ; 2i

PrðL1LkÞ ¼ r

22n�2ð1 1 2r Þ for k ¼ 2n�1 1 1; . . . ; 2n:

ð2Þ

The probability that the RIL1 chromosome is fixed
for different alleles is then R ¼ 1 � 2nPr(L1L1) ¼ 1 �
[(1 � r)n 1 r 21�n]/(1 1 2r). The map expansion for
the 2n-way RIL1 design by selfing is then n 1 2 � 21�n.

2n-way IRIP(s): In the formation of 2n-way IRIP(s) by
selfing, one generates an unlimited population of Gn

individuals from random funnels, intermates them for s
generations, and then inbreeds, by selfing, a random
individual from the n 1 s generation.

At generation Gn, in the case of the funnel [(L1 3 L2)
3 (L3 3 L4)] 3 . . ., the haplotype probabilities for the
first chromosome are Pr(W1¼W2¼ L1)¼ [(1� r)/2]n�1

and PrðW1 ¼ L1; W2 ¼ L j12i Þ ¼ ð1=2Þ2iðr=2Þ½ð1� rÞ
=2�n�i�2 for i ¼ 0, . . ., n � 2, j ¼ 1, . . ., 2i. The other
chromosome has a similar structure, but for the other
alleles.

In the IRIP, we consider individuals from random
funnels. That is, each individual comes from a cross
of the form ½ðLk1 3 Lk2Þ3 ðLk3 3 Lk4Þ�3 . . . , where
ðk1; k2; . . . ; k2n Þ is a random permutation of (1, 2, . . .,
2n). The haplotype probabilities for a random individual
at generation Gn then become Pr(W1 ¼W2 ¼ L1) ¼ (1/
2)[(1� r)/2]n�1¼ (1� r)n�1/2n, and, for j 6¼ 1, Pr(W1¼
L1, W2 ¼ L j) ¼ [1 � (1 � r)n�1]/[2n(2n � 1)]. We thus
have complete symmetry among the 2n alleles.

A random Gn11 individual is formed from a cross
between two random Gn individuals. Using the results
above, we then have the haplotype probabilities Pr(W1¼
W2 ¼ L1) ¼ [(1 � r)/2]n. We can use the symmetry of
alleles to conclude that, for j 6¼ 1, Pr(W1¼ L1, W2¼ Lj)¼
[1� 2nPr(W1¼W2¼L1)]/[2n(2n� 1)]¼ [1� (1� r)n]/
[2n(2n � 1)].

The disequilibrium parameter at Gn11 is D¼ Pr(W1¼
W2 ¼ L1) � [Pr(W1 ¼ L1)]2 ¼ [(1 � r)/2]n � 1/22n. The
disequilibrium parameter at Gn1s (for s $ 1), after s � 1
additional generations of random mating, is D(1� r)s�1,
and so at this generation Pr(W1¼W2¼ L1)¼ D(1� r)s�1

1 1/22n ¼ (1 � r)n1s�1/2n 1 [1 � (1 � r)s�1]/22n.
For j 6¼ 1, we again have, by symmetry, Pr(W1 ¼ L1,

W2 ¼ Lj) ¼ [1 � 2nPr(W1 ¼ W2 ¼ L1)]/[2n(2n � 1)],
which we neglect to write out.

Finally, we arrive at the haplotype probabilities on the
fixed 2n-way IRIP(s) chromosome, which are derived as
before:

PrðL1L1Þ ¼ 1

1 1 2r

ð1� r Þn1s�1

2n 1
2r 1 1� ð1� rÞs�1

22n

� �

PrðL1LjÞ ¼ ½1� 2nPrðL1L1Þ�=½2nð2n � 1Þ�; for j 6¼ 1:

ð3Þ

It follows that the probability that the 2n-way IRIP(s) is
fixed at different alleles at the two loci is R ¼ 1� 1=
ð1 1 2rÞ ð1� rÞn1s�1

1 2r 1 1� ð1� rÞs�1� �
=2n

� �
, and

so the map expansion is n 1 (s 1 1)(1 � 2�n).
Sibling mating: Two-way RIL: Haldane and

Waddington (1931) derived the two-locus haplotype
probabilities for two-way RIL by sibling mating. Their
derivation involved the solution of a system of 22 linear
equations. Here we describe a simpler solution to the
problem.

Let W1W2 jX1X2 3 Y1Y2 jZ1Z2 denote the haplotypes
for the pair of individuals at generation Gk (for k $ 0).
Let q1, q2, and q3 denote the probabilities that the W1W2,
W1X2, and W1Y2 haplotypes, respectively, go on to be
fixed. Others follow by symmetry, and so we have 4q1 1

4q2 1 8q3 ¼ 1.
At G0, Wi [ Xi [ A and Yi [ Zi [ B, and so Pr(AA fixed)

¼ 2(q1 1 q2) and Pr(AB fixed) ¼ 4q3. At G1, Wi [ Yi [ A
and Xi [ Zi [ B, and so Pr(AA fixed) ¼ 2(q1 1 q3).
Equating this to the previous equation, we see immedi-
ately that q2 ¼ q3.

Looking forward one generation (with the same tech-
nique used for the case of two-way RIL by selfing), we
find PrðAA fixedÞ ¼ ð1� rÞ=2 � q1 � 4 1 1

2 � 1
2 � q2 � 12. Thus

2(q1 1 q2)¼ 2(1� r)q1 1 3q2, and so q2¼ 2rq1. Using the
fact that 4q1 1 4q2 1 8q3¼ 4q1 1 12q2¼ 1, we obtain q1¼
1/[4(1 1 6r)] and q2 ¼ r/[2(1 1 6r)].

Finally, we obtain, for two-way RIL by sibling mating,
Pr(AA fixed) ¼ 2(q1 1 q2) ¼ (1 1 2r)/[2(1 1 6r)]
and Pr(AB fixed) ¼ 4q3 ¼ 2r/(1 1 6r). These are
the haplotype probabilities derived by Haldane and
Waddington (1931).

Four-way RIL: Our method for calculating the two-
locus haplotype probabilities for two-way RIL by sibling
mating (above) included the results for four-way RIL.
The qi defined above are exactly the two-locus haplo-
type probabilities for four-way RIL by sibling mating.
If we let L1, . . ., L4 denote the four alleles, we have
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Pr(LiLi fixed)¼ q1¼ 1/[4(1 1 6r)] and Pr(LiLj fixed)¼
q2 ¼ r/[2(1 1 6r)] for i 6¼ j. These results are the same
as those obtained by Broman (2005).

2n-way RIL: Derivation of the two-point haplotype
probabilities on the fixed chromosome in a 2n-way RIL
by sibling mating is similar to the case of selfing,
although we must consider the four chromosomes at
the start of inbreeding. Let W1W2 jX1X2 3 Y1Y2 jZ1Z2

denote the two-locus haplotypes in the two individuals at
generation Gn�1, prior to inbreeding (see Figure 1B),
and note that Wi 2 fL1; . . . ; L2n�2g, Xi 2 fL112n�2

; . . . ;
L2n�1g,Yi 2 fL112n�1

; . . . ; L2n�2 1 2n�1g, and Zi 2
fL112n�2 1 2n�1

; . . . ; L2ng. To determine the haplotype
probabilities on the fixed chromosome, we first de-
termine the probabilities that particular alleles survive
to the Gn�1 generation and then multiply those by the
probabilities that such alleles go on to be fixed.

For the first part, note that Pr(W1¼W2¼ L1)¼ [(1�
r)/2]n�2. For i ¼ 0, . . ., n � 3 and j ¼ 1, . . ., 2i, we have
PrðW1 ¼ L1; W2 ¼ Lj12i Þ ¼ ð1=2Þ2iðr=2Þ½ð1� rÞ=2�n�i�3.
Further note that, for k ¼ 1 1 2n�1, . . ., 2n�2 1 2n�1, we
have Pr(W1 ¼ L1, Y2 ¼ Lk) ¼ Pr(W1 ¼ L1)Pr(Y2 ¼ Lk) ¼
(1/2)2(n�2).

Combining these results with the fact that Pr(W1W2

fixed) ¼ 1/[4(1 1 6r)] and Pr(W1X2 fixed) ¼ Pr(W1Y2

fixed) ¼ r/[2(1 1 6r)], we obtain the following two-
point haplotype probabilities for the fixed 2n-way RIL:

PrðL1L1Þ ¼ ð1� rÞn�2

2nð116r Þ

PrðL1Lj12i Þ ¼ r ð1� rÞn�i�3

2n1ið116rÞ for i ¼ 0; . . . ; n� 3; j ¼ 1; . . . ; 2i

PrðL1LkÞ ¼ r

22n�3ð116rÞ for k ¼ 2n�2 11; . . . ; 2n: ð4Þ

It follows that the probability that the 2n-way RIL
is fixed at different alleles at the two loci is 1 �
2nPr(L1L1) ¼ 1 � (1 � r)n�2/(1 1 6r), and so the map
expansion is (n 1 4).

2n-way RIL1: In 2n-way RIL1 by sibling mating, Gn

individuals from independent funnels are crossed to
form the Gn11 generation, at which point inbreeding by
sibling mating begins (see Figure 1D). At generation n,
we have that Wi ; Yi 2 fL1; . . . ; L2n�1g and Xi ; Zi 2
fL112n�1

; . . . ; L2ng. Derivation of the two-point hap-
lotype probabilities proceeds with two changes: there is
an additional generation of recombination prior to the
start of inbreeding, and the L1L1 haplotype may now be
fixed in four possible ways: W1 ¼W2 ¼ L1 and the W1W2

haplotype is fixed, Y1¼ Y2¼L1 and the Y1Y2 haplotype is
fixed, W1 ¼ L1 and Y2 ¼ L1 and the W1Y2 haplotype is
fixed, and finally W2 ¼ L1 and Y1 ¼ L1 and the Y1W2

haplotype is fixed.
We first look at the haplotype probabilities at gener-

ation n. We have Pr(W1¼W2¼ L1)¼ [(1� r)/2]n�1. For
i ¼ 0, . . ., n � 2, j ¼ 1, . . ., 2i, PrðW1 ¼ L1; W2 ¼
Lj12i Þ ¼ ð1=2Þ2iðr=2Þ½ð1� r Þ=2�n�i�2.

To obtain the two-point haplotype probabilities on
the fixed 2n-way RIL1 chromosome, we note that, for
example, the probability that the L1L1 haplotype is fixed
is 2[(1� r)/2]n�1Pr(W1W2 fixed) 1 2(1/2)2(n�1)Pr(W1Y2

fixed). The probability that the L1Lk haplotype is fixed,
for k . 2n�1, is 4(1/2)2(n�1)Pr(W1X2 fixed), with the 4
coming from the fixation of W1X2, W1Z2, Y1X2, or Y1Z2.
Thus, the final results are as follows:

PrðL1L1Þ ¼ ð1� rÞn�1 1 r22�n

2nð1 1 6rÞ

PrðL1L j12i Þ ¼ r ½ð1� r Þn�i�2 1 ð1=2Þn�i�2�
2n1ið1 1 6r Þ

for i ¼ 0; . . . ; n � 2; j ¼ 1; . . . ; 2i

PrðL1LkÞ ¼ r

22n�3ð1 1 6r Þ for k ¼ 2n�111; . . . ; 2n :

ð5Þ

It follows that the probability that the 2n-way RIL1 is
fixed at different alleles at the two loci is R ¼ 1 � [(1 �
r)n�1 1 r 22�n]/(1 1 6r), and so the map expansion is n 1

5 � 22�n.
2n-way IRIP(s): In the formation of 2n-way IRIP(s) by

sibling mating, one generates an unlimited population
of Gn individuals from random funnels, intermates
them for s generations, and then inbreeds. The haplo-
type probabilities at generation n 1 s, at which in-
breeding begins, are the same for the case of 2n-way
IRIP(s) by selfing, and so we have, at generation n 1 s,
Pr(W1 ¼ W2 ¼ L1) ¼ (1 � r)n1s�1/2n 1 [1 � (1 � r)s�1]/
22n. The probabilities Pr(W1¼ L1, W2¼ L j) for j 6¼ 1 may
be derived by symmetry.

Derivation of the haplotype probabilities on the fixed
2n-way IRIP(s) chromosome proceeds as before, and so
we obtain the following:

PrðL1L1Þ ¼ 1

1 1 6r

ð1� rÞn1s�1

2n 1
6r 1 1� ð1� r Þs�1

22n

� �

PrðL1LjÞ ¼ ½1� 2nPrðL1L1Þ�=½2nð2n � 1Þ�; for j 6¼ 1:

ð6Þ

It follows that the probability that the 2n-way IRIP(s)
is fixed at different alleles at the two loci is R ¼
1� 1=ð1 1 6r Þ ð1� rÞn1s�1

1 6r 1 1�ð
�

ð1� r Þs�1Þ=2n�,
and so the map expansion is n 1 (s 1 5)(1 � 2�n).

Summary: Here we have derived the two-point hap-
lotype probabilities for 2n-way RIL, RIL1, and IRIP.
Perhaps our most important results concern the map
expansion in the different designs, as these indicate the
increased mapping resolution that may be obtained.
The RIL1 and IRIP designs require additional gener-
ations of mating, and this additional effort must be
weighed against the improved precision provided.

The map expansions for 2n-way RIL, RIL1, and
IRIP(s) by selfing are assembled in Table 1. The map
expansion in the RIL1 design is somewhat ,1 unit
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greater than that for the RIL. In the IRIP, one obtains a
slightly ,1 unit increase in the map expansion for each
additional generation of intermating.

THREE POINTS

A technique similar to that used above for the case
of two points may be used to derive the three-point
haplotype probabilities in RIL. Broman (2005) derived
these quantities, but obtained only numerical solutions.
By our approach, we may obtain exact formulas for the
three-point haplotype probabilities.

We focus exclusively on the autosome in four- and
eight-way RIL by sibling mating. Exact formulas for four-
and eight-way RIL by selfing were presented in Broman

(2005). Results for higher-order RIL, RIL1, and IRIP
may be obtained from the results provided below, and a
similar technique may be used to derive results for the X
chromosome.

We consider three points and assume that the re-
combination fractions in the two intervals are the same,

r12¼ r23¼ r. Let c denote the three-point coincidence at
meiosis, c ¼ Pr(double recombinant)/r 2. Note that c is
generally a function of r, with, for most organisms, c¼ 0
for small r (indicating strong positive crossover inter-
ference) and c ¼ 1 for r ¼ 1

2 . We define r13 to be the
recombination fraction between the first and third loci,
so that c ¼ (2r � r13)/(2r 2) and so r13 ¼ 2r(1 � cr).

To simplify some of the notation in what follows,
define r00 ¼ 1 � 2r 1 cr 2, the chance that a non-
recombinant haplotype is transmitted; r01 ¼ r(1 � cr),
the chance that the second but not the first interval
recombines; and r11¼ cr 2, the chance that both intervals
recombine.

Four-way RIL: We consider the case of four-way RIL
by sibling mating. Let pijk denote the probability that the
ijk haplotype is fixed. (For ease of notation, here we
denote the four alleles as the integers 1, 2, 3, 4.) Taking
account of the various symmetries, there are seven dis-
tinct haplotype probabilities, shown in Table 2. Note
that we must have 4p111 1 8p112 1 4p121 1 16p113 1

8p131 1 16p123 1 8p132 ¼ 1.
To derive these seven probabilities, we condition

on the first step toward inbreeding. For example, we
can write p111 ¼ 2ðr00=2Þp111 1 4ðð1� r Þ=2Þð1=2Þp113 1

2ðð1� r13Þ=2Þð1=2Þp131. This is derived as follows: the
111 haplotype can be fixed if it is transmitted intact in
the first generation and then that haplotype goes on to
be fixed (and this can happen in two ways), or if the 1
alleles at two adjacent loci are transmitted from the first
parent in one generation and from the other parent
at the third locus and these are brought together at
fixation (and this can occur in four different ways), or

TABLE 1

Map expansion in 2n-way RIL, RIL1, and IRIP

Selfing Sibling mating

2n-way RIL n 1 1 n 1 4
2n-way RIL1 n 1 2 � 21�n n 1 5 � 22�n

2n-way IRIP(s) n 1 (s 1 1)(1 � 2�n) n 1 (s 1 5)(1 � 2�n)

n $ 1 for selfing and n $ 2 for sibling mating.

TABLE 2

Three-point haplotype probabilities on an autosome in four-way RIL by sibling mating

Example No.
haplotype haplotypes Probability of each

WWW 4 p111 ¼
5 1 40r � 2ð44 1 17cÞr 2 1 8ð5 1 13cÞr 3 � 8cð9 1 2cÞr 4 1 32c2r 5

4ð1 1 6rÞð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ

WWX 8 p112 ¼
5r 1 ð36� 5cÞr 2 � 4ð7 1 13cÞr 3 1 4cð15 1 4cÞr 4 � 32c2r 5

2ð1 1 6rÞð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ

WXW 4 p121 ¼
ð18 1 5cÞr 2 � 4ð1 1 cÞr 3 � 4cð3 1 2cÞr 4 1 16c2r 5

2ð1 1 6rÞð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ

WWY 16 p113 ¼
5r 1 ð32� 5cÞr 2 � 20ð1 1 2cÞr 3 1 4cð9 1 2cÞr 4 � 16c2r 5

2ð1 1 6rÞð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ

WYW 8 p131 ¼
ð26 1 5cÞr 2 � 4ð5 1 7cÞr 3 1 4cð9 1 2cÞr 4 � 16c2r 5

2ð1 1 6rÞð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ

WXY 16 p123 ¼
4r 2 1 2ð18� cÞr 3 � 2ð12 1 26c 1 c2Þr 4 1 16cð3 1 cÞr 5 � 24c2r 6

ð1 1 6r Þð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ

WYX 8 p132 ¼
2r 2 1 4ð10 1 cÞr 3 � 2ð12 1 32c 1 3c2Þr 4 1 24cð2 1 cÞr 5 � 24c2r 6

ð1 1 6rÞð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ
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finally that the 1 alleles at the first and third loci are
transmitted from one parent and at the middle locus
from the other parent and these are brought together at
fixation (and this can happen in two ways).

Similar arguments lead to the following additional six
equations:

p112 ¼ r01p111 1
1

2

� 	
p113 1

r13

2

� 	
p131

p121 ¼ r11p111 1 rp113 1
1� r13

2

� 	
p131

p113 ¼
1� r

2

� 	
ðp112 1 p113Þ1 ðp123 1 p132Þ=4

p131 ¼
1� r13

2

� 	
ðp121 1 p131Þ1 p123=2

p123 ¼
r

2

� 	
ðp112 1 p113Þ1 ðp132 1 p123Þ=4

p132 ¼
r13

2

� 	
ðp121 1 p131Þ1 p123=2: ð7Þ

We have now defined a set of eight linear equations
in seven unknowns. The seven unknown probabilities
may be easily derived by the consideration of the first
equation plus six of the other seven equations. The so-
lutions, displayed in Table 2, were obtained via Mathe-
matica (Wolfram Research 2003). Note that one may
collapse the three-point probabilities to obtain the two-
point probabilities derived earlier.

A quantity analogous to the three-point coincidence,
but for the fixed RIL chromosome, may be calculated
from these results, as C ¼ (1 � 4p111 � 8p112 � 16p113)/
R 2, which gives the following:

C ¼ ð1 1 6r Þð110 1 404r � 288r 2 1 3cð5� 20r � 204r 2 1 192r 3Þ � 16c2ð2� 13r 1 18r 2Þr 2Þ
18ð1 1 12r � 12cr 2Þð5 1 10r � 4ð2 1 cÞr 2 1 8cr 3Þ :

ð8Þ

Eight-way RIL: The three-point haplotype probabili-
ties for the autosome in eight-way RIL by sibling mating
may be immediately derived from the results on four-
way RIL, using the equations in Table 7 of Broman

(2005). We neglect to write these out, but do derive the
quantity analogous to the three-point coincidence, for
the fixed eight-way RIL chromosome:

C ¼ð116rÞ½28011208r�848r 2 15cð7�28r�368r 2 1344r 3Þ�2c2ð49�324r 1452r 2Þr 2�16c3ð1�2rÞr 4 �
49ð1112r �12cr 2Þ½5110r �4ð21cÞr 2 18cr 3 � :

ð9Þ

In the work of Broman (2005), nearly 3 years of total
computer time were used to derive the above quantity,
although the results were strictly numerical and were for
the case of no interference (c ¼ 1) and for a model of
strong positive crossover interference. Here, we have
shown a simpler method to derive the result, which
allowed us to obtain explicit formulas for the three-
point probabilities. The formulas in this section match
the numerical results of Broman (2005) to within
round-off error.

DISCUSSION

We have improved on the work of Haldane and
Waddington (1931) and Broman (2005), describing a
simpler approach for the calculation of two- and three-
point haplotype probabilities in multiple-strain RIL.
Our simpler solution (which is an instance of the
standard trick for calculations with Markov chains:
condition on the first step) allowed us to derive exact
formulas for the three-point haplotype probabilities in
four- and eight-way RIL by sibling mating. Moreover,
we have extended the results on two-point haplotype
probabilities for the case of additional generations of
intermating in the 2n-way RIL1 and IRIP designs. It is
important to emphasize that the results on IRIP are
based on the assumption of an infinite population of
intermating individuals. With the finite populations
that would be used in practice, the progress to in-
breeding would be more rapid and the realized map
expansion would be somewhat less than our theoretical
calculations indicate.

While our results on the two-point haplotype proba-
bilities will play an important role in methods for recon-
structing the RIL haplotypes on the basis of incompletely
informative markers, such as single-nucleotide poly-
morphisms (SNPs), perhaps the greatest value of this
work concerns the map expansion provided by the dif-
ferent designs. The precision of localization of a quan-
titative trait locus (QTL) depends critically upon the
density of breakpoints in the mapping population,
but the increased density of breakpoints in RIL1 and
IRIP must be weighed against the additional genera-
tions of intermating (and of inbreeding) required. In
this regard, it should be emphasized that there is an
important trade-off between the power to identify novel
QTL and the precision of localization of QTL. The LOD
threshold for significance in a genomewide scan for
QTL increases as the density of breakpoints increases.
This is shown clearly in the results of Lander and
Botstein (1989) on the LOD threshold for the dense-
map case: the threshold increases with the effective
genetic length of the genome. Thus, while the intro-
duction of additional generations of interbreeding in
the formation of RIL will lead to greater mapping preci-
sion, a larger RIL panel will be required to identify QTL
with a given effect size.

Martin and Hospital (2006) recently pointed out
that the maximum-likelihood estimate of the recombi-
nation fraction between two markers, on the basis of
breakpoint frequencies in an RIL panel, is subject to
some bias. They presented a method, using a Taylor
expansion, for reducing the bias. They further de-
scribed a method for testing for crossover interference
with RIL data. Their methods could also be used with
the multiple-strain RIL considered herein. While these
results are quite interesting, we wish to point out that,
in the use of RIL for QTL mapping, interest is in the
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breakpoint frequencies themselves and not in the
underlying recombination fractions. Moreover, an un-
derstanding of recombination at meiosis, particularly
regarding crossover interference, might best be studied
in a large backcross or intercross, rather than with RIL,
as the process of inbreeding to develop RIL is subject to
considerable selection, and so our understanding of
recombination on the basis of breakpoint frequencies
in RIL would likely be distorted.

Martin and Hospital (2006) viewed the term ‘‘map
expansion’’ as misleading, as it really concerns an
increased frequency of breakpoints and no real change
in the genetic map. We, however, still prefer the phrase,
and no useful alternatives have been proposed; it pro-
vides a useful shorthand for a more complex phenom-
enon. They further take issue with the treatment, in
software, of RIL as a backcross through equations such
as R ¼ 4r/(1 1 6r) and with an assumption of no
crossover interference, as even if meiosis exhibits no
interference, occurrences of breakpoints in adjacent
intervals on an RIL chromosome are not independent.
(Note that this lack of independence was identified by
Haldane and Waddington in 1931.) To the contrary,
however, as was stated in Broman (2005), the break-
point process on an RIL chromosome, at least for the
mouse, will be more closely approximated by a Poisson
process than is the crossover process at meiosis, which in
the mouse exhibits extremely strong positive crossover
interference (see Broman et al. 2002). Thus the current
approach for multipoint QTL mapping in RIL, embod-
ied in software such as MapMaker/QTL (Lander et al.
1987), is entirely reasonable.

The authors thank Volker Guiard for helpful discussions, Gudrun
Brockmann for suggesting our collaboration, and two anonymous
reviewers for helpful comments. This work was supported in part by
National Institutes of Health grant GM074244 (to K.W.B.).
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APPENDIX

Let r denote the recombination fraction (at meiosis)
for an interval, and let R(r) denote the analogous
quantity for an RIL (or RIL1 or IRIP). Several authors
(e.g., Winkler et al. 2003; Broman 2005) have referred to
the fact that the map expansion in an RIL is dR/dr jr ¼0,
but this has been stated without proof. The map
expansion for a given RIL design is particularly im-
portant for our work, and so we wish, in this appendix,
to provide a proof of the result. This expands on a
comment in Teuscher et al. (2005).

Let d denote map distance (that is, the average
number of crossovers in an interval), and let D(d)
denote the corresponding average number of break-
points in that interval on an RIL (or RIL1 or IRIP)
chromosome. We wish to show that D(d) is linear in d
and in particular that D(d) ¼ ad for some a.

First, note that D(d1 1 d2) ¼ D(d1) 1 D(d2) for all d1,
d2. This comes from the fact that di is the average
number of crossovers in an interval, while D(di) is the
average number of breakpoints in the interval on the
RIL chromosome, and so both are additive.

It follows that D(nd) ¼ nD(d) for any nonnegative
integer n. Further, D(d) ¼ D(nd/n) ¼ nD(d/n), and
so D(d/n) ¼ D(d)/n for any positive integer n. Thus
D(qd) ¼ qD(d) for all nonnegative rationals q. Surely
D(d) is continuous, and so then D(xd)¼ xD(d) holds for
all nonnegative x.

Now pick any d0 . 0 and let a ¼ D(d0)/d0. Then for
any d, D(d)¼ D[(d/d0)d0]¼ (d/d0)D(d0)¼ ad. Thus we
have shown D(d) ¼ ad for some a.

Now let r denote the recombination fraction cor-
responding to the distance d and let R(r) denote the
analogous quantity for the RIL, and note that for
small r, r � d. It follows that a ¼ limd/0 DðdÞ=d ¼
limr/0 Rðr Þ=r ¼ dR=dr jr¼0.

Note that this result requires no assumption about
crossover interference, but does require the existence of
a map function: that there is a one-to-one relationship
between the recombination fraction for an interval and
the average number of crossovers in the interval.
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