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Estimation of Allele Frequencies With Data
on Sibships

Karl W. Broman*
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Allele frequencies are generally estimated with data on a set of unrelated indi-
viduals. In genetic studies of late-onset diseases, the founding individuals in pedi-
grees are often not available, and so one is confronted with the problem of
estimating allele frequencies with data on related individuals. We focus on sibpairs
and sibships, and compare the efficiency of four methods for estimating allele
frequencies in this situation: (1) use the data for one individual from each sib-
ship; (2) use the data for all individuals, ignoring their relationships; (3) use the
data for all individuals, taking proper account of their relationships, considering
a single marker at a time; and (4) use the data for all individuals, taking proper
account of their relationships, considering a set of linked markers simultaneously.
We derived the variance of estimator 2, and showed that the estimator is unbi-
ased and provides substantial improvement over method 1. We used computer
simulation to study the performance of methods 3 and 4, and showed that method
3 provides some improvement over method 2, while method 4 improves little on
method 3.  Genet. Epidemiol. 20:307–315, 2001.© 2001 Wiley-Liss, Inc.
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INTRODUCTION

Statistical methods to identify genes by linkage or linkage disequilibrium analysis
generally require estimates of allele frequencies at genetic markers. Misspecification
of marker allele frequencies can lead to increased false-positive rates in linkage analy-
sis [Ott, 1992]. For example, the assumption of equally frequent alleles is usually
wrong and can lead to erroneous inferences.
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Allele frequency estimates are generally derived from data on a set of unrelated
individuals. In studies of late-onset diseases, however, one is often confronted with data
on affected sibpairs or sibships for which parental genotypes are unavailable. Several
different approaches have been taken to estimate allele frequencies in such situations.
Some studies have used a single individual from each family [e.g., Witte et al., 2000].
Others have used all individuals, ignoring their relationships [e.g., Weeks et al., 2000].

Boehnke [1991] described the computation of maximum likelihood estimates
(MLEs) of allele frequencies, taking proper account of the relationships between
individuals (implemented in the USERM13 module of MENDEL [Lange et al., 1988]).
In an application of this method to data on a set of 233 individuals in 52 small
families, typed at a single polymorphic marker, Boehnke showed that an important
improvement in the allele frequency estimates may be obtained by the appropriate
use of data on all individuals. The appropriateness of ignoring the relationships be-
tween individuals, and the gain obtained by taking proper account of their relation-
ships, remained an open question.

We reconsider the problem of estimating allele frequencies with data on related
individuals; we focus on the case of sibpairs or sibships for which parental geno-
types are not available. We compare the efficiency of four methods for estimating
allele frequencies: (1) use the data for one individual from each sibship; (2) use the
data for all individuals, ignoring their relationships; (3) use the data for all individu-
als, taking proper account of their relationships, considering a single marker at a
time; and (4) use the data for all individuals, taking proper account of their relation-
ships, considering a set of linked markers simultaneously. While methods 1 and 2
may be studied analytically, estimators 3 and 4 cannot be written in closed form (we
use a version of the EM algorithm [Dempster et al., 1977]), and so their properties
must be studied via computer simulation.

We derived the variance of estimator 2 and showed that it is unbiased and pro-
vides a substantial improvement over method 1; in the case of sibships of varying
sizes, it is best to combine family-specific estimates, using weights inversely propor-
tional to the variances. The results of computer simulations showed that method 3
provides some improvement over method 2, though at the cost of an increase in
computational effort, while method 4 improves little on method 3 and requires a
great increase in computation.

METHODS AND RESULTS

We seek to estimate the population allele frequencies for an autosomal marker,
with genotype data on siblings, in the case that parental genotypes are not available.
Consider n sibships, and let ki denote the number of siblings in family i.

We assume Hardy-Weinberg equilibrium and random mating, that the 2n par-
ents are unrelated, and that genotyping errors are absent. In the consideration of
multiple markers (method 4 below), we assume that the markers are in linkage equi-
librium, that the recombination process exhibits no interference and no sex differ-
ence, and that the genetic map is known exactly. Without loss of generality, we will
focus on estimating the frequency of allele 1 at a single marker. Let p denote its true
underlying frequency, and let Xij be the number of 1 alleles carried by sibling j in
family i (= 0, 1, or 2).
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Note that EXij = 2p, varXij = 2p(1 – p), and cov(Xij, Xij ¢) = 4fijj ¢p(1 – p), where
fijj ¢ is the kinship coefficient for individuals j and j′ in family i. (For a given relative
pair, f = p1/4 + p2/2, where pk is the probability that the pair share k alleles identical
by descent (IBD) at an autosomal locus.) The calculation of cov(Xij, Xij ¢) follows
relatively simply, after conditioning on the IBD status of the pair (see the Appendix).

Method 1: One Sibling Per Family

Consider the estimate (1)
1 1

ˆ /(2 ),n
i ip X n== Σ  based on data from the first (or a ran-

domly chosen) sibling from each family. This is an estimate based on n unrelated
individuals, and so is unbiased and has variance p(1 – p)/(2n). Below, we evaluate
the relative efficiency of estimators that make use of additional data, compared to
this first method.

Method 2: All Individuals, Ignoring Relationships

Consider the estimated allele frequency based on data for the ith family, ignor-
ing their relationships: (2)

1
ˆ /(2 )ik

i j ij ip X k== Σ . It is easy to show that this estimate is
unbiased and has variance (1 )i p pφ −  (see the Appendix), where 

iφ  is the average
kinship coefficient for family i, where the average is over all ki

2 pairs of individuals
(including each individual with himself): 2

, /i j j ijj ikφ φ′ ′= Σ .
For a sibship, since ijjφ ′  = 1/2 for an individual and ijjφ ′  = 1/4 for a sibpair, 

iφ  =
(ki + 1)/(4ki). Thus, the variance of(2)ˆ

ip  is p(1 – p)(ki + 1)/(4ki), and the relative
efficiency of this estimate (compared to method 1, using a single individual) is 2ki/
(ki + 1). For a sibpair (ki = 2), the relative efficiency is 4/3. As ki → ∞, the relative
efficiency approaches 2 (since with a very large sibship, one will be able to infer the
4 parental alleles).

In combining data across n families, one may simply group all individuals to-
gether, to obtain

= = =
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This is equivalent to combining the p̂i
(2) with weights ki.

An improved estimator is obtained by combining the family-specific estimates
p̂i

(2) with weights inversely proportional to the variances, i.e., ki/(ki + 1). This is equiva-
lent to combining the Xij with weights 1/(ki + 1), and gives
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The relative efficiency of p̂(2), vs. p̂(1), is 2(Σiki)
2/[nΣiki(ki + 1)], while that for

p̂(2′), is 2[Σiki/(ki + 1)]/n. The latter is always at least as big as the former; the two are
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the same when the ki are constant (i.e., all sibships are the same size), in which case the
relative efficiency is 2k/(k + 1). Note that both of these estimators are unbiased for p.

For example, consider 25 sibpairs and 25 sibtrios. In forming p̂(2), the Xij for
each of the 125 individuals are given equal weight, and the resulting estimator has a
relative efficiency (vs. (1)p̂ ) of ∼1.39. In forming p̂(2′), the Xij for the individuals from
sibpairs are given weight 1/3, while the Xij for the individuals from sibtrios are given
somewhat lesser weight, 1/4. The resulting estimator has a relative efficiency (vs.

(1)p̂ ) of ∼1.42.

Method 3: Accounting for Relationships

Boehnke [1991] described a general approach to computing MLEs of allele fre-
quencies, accounting for the relationships between individuals. We describe two al-
ternative approaches, specific for the cases of sibpairs and sibships, which are less
general but provide some improvement in computation time. We make use of the
EM algorithm [Dempster et al., 1977].

For data on sibpairs, we count the observed allele frequencies in the two sib-
lings, but weight each allele in the second sibling by the estimated probability that it
is not IBD with one of the first sibling’s alleles. An allele in the second sibling that is
distinct from either of the first sibling’s alleles is given weight 1, since it cannot be
IBD with one of the first sibling’s alleles. If the allele (say it is allele l) is identical
by (or in) state (IBS) with one of the first sibling’s alleles, the probability that it is
not IBD with one of the first sibling’s alleles is pl/(1 + pl) (where pl is the frequency
of allele l), except in the case that the second sibling is homozygous while the first
sibling is heterozygous, in which case the probability is (1 + pl)/(2 + pl).

One begins with initial estimates of the allele frequencies (obtained, for example,
by method 2, above). New estimates are derived, giving full weight to the alleles in
the first sibling from each pair and weighting the alleles in the second sibling from
each pair by the probabilities described above, with the allele frequencies pl replaced
by their current estimates. This process is iterated until the estimates converge.

In the case of data on larger sibships, we use a somewhat more complex form
of the EM algorithm. We include the parental genotypes in the augmented data. As a
result, the sufficient statistics are the counts of parental alleles, and we base the
allele frequencies on the expected numbers of alleles in the parents given the ob-
served data on the children. For each sibship, we sum over all possible parental
genotypes g1, g2, and calculate the allele frequencies in the parents, weighting the
alleles by Pr(g1,g2|c), which is proportional to Pr(g1)Pr(g2) Pj Pr(cj|g1,g2), where cj

denotes the genotype of child j. We again start with some initial estimates, replace
(in the weights) the allele frequencies with their current estimates, and iterate until
convergence. For markers with many alleles, this procedure is quite time consuming,
due to the large number of possible parental genotypes.

Because these estimators cannot be written in closed form, analytic derivation
of their variances is not feasible. We studied their performance by computer simula-
tion (described below).

Method 4: Multipoint Estimate

The use of data on a set of linked markers provides improved estimates of the
number of alleles shared IBD between two individuals, and so such information may
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be used to obtain improved estimates of allele frequencies. We applied this multipoint
approach to the special case of sibpairs.

We followed the approach, for sibpairs, of method 3 (described above), in
which each allele in the second sibling is weighted according to the estimated prob-
ability that it is not IBD with either of the first sibling’s alleles. Here, the prob-
abilities (weights) were calculated conditional on the genotype data for all markers
(assuming no crossover interference). We used the hidden Markov model (HMM)
technology developed by Baum et al. [1970], as described in Boehnke and Cox
[1997]. The computational effort required to obtain allele frequency estimates in-
creases tremendously, because within each iteration to update the allele frequency
estimates, the forward/backward equations for the HMM must be used to re-esti-
mate the weights.

Computer Simulations

While we could derive, analytically, the variances of estimators 1 (one sibling
per family) and 2 (ignoring relationships), the performance of methods 3 (account-
ing for relationships) and 4 (multipoint estimate) needed to be studied by computer
simulations. We considered two cases.

First, we simulated the genotype data for 100 sibpairs at a set of 10 linked
markers, with equal inter-marker distances of d cM, where d was taken to be 1,
5, 10, or 15. Each marker had at least five alleles. The frequencies of the first
four alleles were 0.05, 0.10, 0.15, and 0.20. The number and frequencies of other
alleles were chosen to give a marker heterozygosity (het) of 0.70, 0.75, 0.80,
0.85, or 0.90. For each of the 20 cases (4 values for d × 5 values for het), 10,000
replicates were performed, and each of methods 1–4 were applied to estimate the
frequencies of the first four alleles. All methods were found to be approximately
unbiased. The estimated variances of estimators 1 and 2 corresponded closely to
the values calculated analytically. Recall that var((1)p̂ ) = p(1 – p)/(2n) and that
the relative efficiency (in the case of sibpairs) of p̂(2) vs. p̂(1) (i.e., varp̂(1)/varp̂(2))
is 4/3.

The estimated relative efficiency of p̂(3) (accounting for relationships) vs. p̂(1) is
shown in Table I. (Note that, because this approach is based on data for one marker
at a time, these estimates are obtained after combining results across marker loca-
tions and values of the intermarker distance d. Thus, each entry in the table is de-
rived from 10 × 4 × 10,000 = 400,000 replicates.) The standard errors for the values
in Table I are all < 0.01. While for p̂(2) the relative efficiency is constant in the allele

TABLE I. Estimated Relative Efficiency of p̂ (3) (Accounting for Relationships, One Marker at a
Time) vs. p̂(1) (One Sibling Per Family) for Data on 100 Sibpairs, as a Function of the Allele
Frequency (p) and Marker Heterozygosity (het)

p

het 0.05 0.10 0.15 0.20

0.70 1.45 1.44 1.43 1.42
0.75 1.45 1.44 1.44 1.42
0.80 1.45 1.45 1.44 1.43
0.85 1.47 1.46 1.46 1.44
0.90 1.48 1.47 1.46 1.46
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frequency p, for p̂(3) the relative efficiency is slightly larger for smaller values of p.
The relative efficiency also shows a modest increase as the marker heterozygosity
increases. In all cases p̂(3) (accounting for relationships) shows some improvement
over p̂(2).

The estimated relative efficiency of p̂(4) (multipoint estimate) vs. p̂(1) is shown
in Table II. (Similar results were obtained for each of the 10 marker positions, and so
the entries in Table II are obtained after combining results across markers. Each
entry is derived from 100,000 replicates.) Here, marker heterozygosity shows only a
small effect, and only when the inter-marker distance (d) is small and the allele fre-
quency (p) is large. Inter-marker distance also has a slight effect, but only when the
allele frequency is large. In comparing the results to those of Table I, one sees that
p̂(4) provides little improvement over p̂(3).

In order to study the efficiency of p̂(3) in the case of larger sibships, we per-
formed a second set of computer simulations, with data on 100 families of 2–6 sib-
lings, with average size 3.5. (The numbers of families with 2, 3, 4, 5, and 6 siblings
were 24, 31, 26, 14, and 5, respectively.) We performed 100,000 replicates of a single
marker, with marker allele frequencies as in the previous simulations. We did not
apply the multipoint approach for these simulations.

The relative efficiency p̂(2), p̂(2′), and p̂(3) vs. p̂(1) are displayed in Table III. Marker
heterozygosity (het) was found to have little effect on the relative efficiency of p̂(3) in this
situation, and so the results in the last row of Table III are averaged across the values of
het considered. Note that the values for p̂(2) and p̂(2′) are based on analytical calculations
and do not depend on the allele frequency, p. An appropriate weighting of different sizes
(p̂(2′)) provides some improvement over ignoring the family structures completely (p̂(2)).
As before, considerable improvement is gained when accounting for the relationships
between individuals, especially for rare alleles.

TABLE II. Estimated Relative Efficiency of p̂(4) (Multipoint Estimate) vs. p̂(1) (One Sibling Per
Family) for Data on 100 Sibpairs, as a Function of the Allele Frequency (p), Inter-Marker
Distance (d, in cM), and Marker Heterozygosity (het)

p

het d 0.05 0.10 0.15 0.20

0.7 1 1.48 1.47 1.46 1.45

5 1.50 1.45 1.44 1.42

10 1.47 1.45 1.42 1.41

15 1.47 1.44 1.42 1.40

0.8 1 1.49 1.48 1.46 1.44

5 1.48 1.45 1.44 1.43

10 1.47 1.44 1.43 1.41

15 1.48 1.44 1.43 1.41

0.9 1 1.50 1.49 1.47 1.48

5 1.48 1.46 1.46 1.45

10 1.48 1.44 1.44 1.41

15 1.48 1.46 1.43 1.42
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DISCUSSION

In estimating allele frequencies with data on related individuals, one will not go
far wrong in simply using the data for all individuals, ignoring their relationships. The
resulting estimator is unbiased, improves on the use of one individual from each fam-
ily, and, importantly, has a variance that is easily calculated. Of course, if data on the
founding individuals in pedigrees are available, one should make use of them. (For
example, one may compare the variance of the estimator based on only the founders to
that based on all family members, ignoring their relationships. In the case of a sibship
with one available parent, the latter estimator has smaller variance, whereas if both
parents are available, the former has smaller variance.) In addition, it is best to at least
partly consider family structure, obtaining separate allele frequency  estimates for each
family and then combining these, using weights inversely proportional to the vari-
ances. Estimates based on a single individual from each family have an additional
disadvantage: alleles present in the data may have frequency estimates of 0, if the
relevant individuals were not among those included in forming the estimates.

While properly accounting for the relationships between individuals can lead to
considerably improved estimates of allele frequencies, this improvement may be of
little consequence in situations in which the allele frequencies are not of central
interest but rather are nuisance parameters (as is generally the case in linkage analy-
sis). For example, consider an allele with frequency 0.10. The standard error (SE) of
the frequency estimate, based on 100 unrelated individuals, is ∼0.021. The estimate
based on 100 sibpairs, ignoring their relationships, has SE ≈ 0.018 (equivalent to
adding data on an additional 33 unrelated individuals). The estimate based on 100
sibpairs, properly accounting for their relationships, also has SE ≈ 0.018. In this
situation, accounting for the relationships between sibpairs is essentially equivalent
to adding data on an additional 11–13 unrelated individuals; such a slight improve-
ment may not be worth the additional computational effort.

The multipoint approach to estimating allele frequencies is likely to be solely of
academic interest. Some readers may be entertained by the notion of using linkage to
estimate allele frequencies, but the great increase in computation is not worth the
only marginal improvement in the estimates. Because a sibpair shows, on average,
three distinct alleles at an autosomal marker, the ideal estimated allele frequency
would have relative efficiency (with respect to the estimate based one sibling from
each pair) of 1.5. The values in Table I are quite close to this upper limit.

It is important to point out that the above results rely on the assumption that the
subjects were randomly ascertained, which is seldom true in a genetic study. Con-

TABLE III. Estimated Relative Efficiency of p̂(2) (Ignoring Relationships), p̂ (2¢) (Ignoring
Relationships; Weighting Families Appropriately) and  p̂(3) (Accounting for Relationships, One
Marker at a Time) vs.  p̂(1), for Data on 100 Sibships of Varying Size (Average No. Siblings = 3.5),
as a Function of the Allele Frequency (p)

p

Method 0.05 0.10 0.15 0.20

2 1.43
2′ 1.52
3 1.71 1.69 1.68 1.67
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sider the more common case of affected sibpairs. For a marker that is in linkage
disequilibrium with a disease susceptibility gene, the estimated allele frequencies
may be biased, even if one uses a set of unrelated affected individuals. If the marker
is in equilibrium with any disease genes, the estimated allele frequencies will be
unbiased, whether based on one or several siblings from each family.

If the marker is linked to a disease susceptibility locus, then the IBD probabili-
ties for an affected sibpair, at the marker, will deviate from the null probabilities, and
as a result, the estimated allele frequencies will have larger variances. In the extreme
case of complete sharing at the marker, the inclusion of data on the second sibling
will provide no improvement in the allele frequency estimates, but the estimates
cannot deteriorate in quality.
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APPENDIX

Consider a noninbred relative pair. Let pk denote the probability that the pair
share k alleles identical by descent (IBD). Let f = p1/4 + p2/2 denote the kinship
coefficient for the pair. We focus on allele 1 at a single autosomal marker. Let p
denote its population frequency, and let X1, X2 denote the number of 1 alleles carried
by the two individuals. We week to calculate cov(X1, X2), under the assumption of
Hardy-Weinberg equilibrium and random mating. Note that cov(X1, X2) = E(X1, X2) –
E(X1)E(X2) = E(X1 X2) – 4p2.

We need to find the joint distribution of X1 and X2. We condition on the IBD
status of the relative pair, to obtain Pr(X1 = i, X2 = j | IBD = k), displayed in Table IV.
From Table IV, we may calculate, with a simple though somewhat tedious bit of
algebra,
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TABLE IV. Joint Distribution of the Numbers of 1 Alleles Carried by Two Individuals, Given the
Number of Alleles They Share IBD

IBD X1,X2 Pr(X1,X2 | IBD)

0 0,0 (1 – p)4

0,1 2p(1 – p)3

1,0 2p(1 – p)3

1,1 4p2(1 – p)2

0,2 p2(1 – p)2

2,0 p2(1 – p)2

1,2 2p3(1 – p)
2,1 2p3(1 – p)
2,2 p4

1 0,0 (1 – p)3

0,1 p(1 – p)2

1,0 p(1 – p)2

1,1 p(1 – p)
1,2 p2(1 – p)
2,1 p2(1 – p)
2,2 p3

2 0,0 (1 – p)2

1,1 2p(1 – p)
2,2 p2

= = =

= = = =

= + − +

∑∑∑
2 2 2

1 2 1 2
0 0 0

2
1 2

( ) Pr( , | )

( 2 ) (1 ) 4 .

k
i j k

E X X ij X i X j IBD k

p p p

π

π π

It follows that cov(X1, X2) = (p1 + 2p2)p(1 – p) = 4fp(1 – p).
We now derive the variance of the estimated allele frequency for data on a single

family, ignoring the relationships between individuals. Since (2)
1

ˆ /(2 ),ik
i j ij ip X k== Σ we have

′
≠ ′

′
≠ ′

 
=  

 

 
= + 

 
 −= +  

= −

∑

∑ ∑

∑

(2)

2

2

ˆvar[ ] var
2

1
var( ) cov( , )

4

(1 )
2 4

4

(1 ).

j ij

i
i

ij ij ij
j j ji

i ijj
j ji

i

X
p

k

X X X
k

p p
k

k

p p

φ

φ

Note that this formula applies to any set of individuals (not just siblings).
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Karl W. Bromann

Department of Biostatistics, Johns Hopkins University, Baltimore Maryland

In the April 2001 issue of Genetic Epidemiology, in the article ‘‘Estimation of
Allele Frequencies With Data on Sibships,’’ by Broman (20:307–15), there is an error
on page 310, in the second paragraph under ‘‘Method 3: Accounting for
Relationships.’’ The stated probabilities that an allele in the second sibling
is not identical by descent (IBD) with one of the first sibling’s alleles, written as
pl/(1+pl), are incorrect; we had missed two important cases. Let (g11, g12) denote
the two alleles of the genotype of the first sibling, (g21, g22) denote the two alleles of
the genotype of the second sibling, and g¼ (g11, g12, g21, g22). Further, let pg denote
the genotypes for the two parents, and A denote the event ‘‘g21 is not IBD with g11 or
g12.’’ We seek Pr(A|g), which we calculate by conditioning on the parents’ genotypes,
as follows:

PrðAjgÞ ¼

P

pg
PrðpgÞPrðgjpgÞPrðAjg; pgÞ

P

pg
PrðpgÞPrðgjpgÞ

The correct probabilities appear in Table I.
As a result of this error, the numbers in Table I of Broman (2001) were slightly

wrong. We have rerun our computer simulations, after modifying our algorithm
using the corrected probabilities, to obtain the true maximum likelihood estimates
(MLEs). The corrected version of the table appears in Table II.
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It is interesting to note that the numbers in the corrected table are somewhat
smaller than those in the original version. It appears that the true MLEs have
somewhat greater standard deviations (SDs) than our flawed algorithm, especially
for the larger values of the allele frequency, p. While our original estimates exhibit a
slight negative bias (�0.001 in the case of p¼ 0.2 with heterozygosity¼ 0.9), they
have smaller SDs and thus smaller mean square errors than the true MLEs. Note
that the true MLEs appear to be unbiased.

We thank Mary Sara McPeek for identifying this error.

TABLE I. Probability That an Allele in the Second Sibling Is Not IBD With Either Allele in the First Sibling

Sibs’ genotypes

g11 g12 g21 g22 Pr(g21 not IBD with g11 or g21|g) Pr(g22 not IBD with g11 or g21|g)

11 11 p1/(1+p1) p1/(1+p1)

11 22 1 1

11 12 p1/(1+p1) 1

11 23 1 1

12 12 (p1+2p1p2)/(1+p1+p2+2p1p2) (p2+2p1p2)/(1+p1+p2+2p1p2)

12 13 2p1/(1+2p1) 1

12 34 1 1

TABLE II. Corrected Version of Table I in Broman (2001)

p

Het 0.05 0.10 0.15 0.20

0.70 1.46 1.44 1.42 1.39

0.75 1.47 1.45 1.42 1.39

0.80 1.47 1.43 1.42 1.40

0.85 1.48 1.43 1.42 1.40

0.90 1.48 1.46 1.43 1.42
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