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ABSTRACT

Selective genotyping and phenotyping strategies are used to lower the cost of quantitative trait locus
studies. Their efficiency has been studied primarily in simplified contexts—when a single locus contributes
to the phenotype, and when the residual error (phenotype conditional on the genotype) is normally
distributed. It is unclear how these strategies will perform in the context of complex traits where multiple
loci, possibly linked or epistatic, may contribute to the trait. We also do not know what genotyping strategies
should be used for nonnormally distributed phenotypes. For time-to-event phenotypes there is the
additional question of choosing follow-up time duration. We use an information perspective to examine
these experimental design issues in the broader context of complex traits and make recommendations on

their use.

UANTITATIVE trait locus (QTL) experiments
provide valuable clues for identifying genetic
elements responsible for quantitative trait variation
(LANDER and BoTsTEIN 1989; LyNcH and WALSH
1998; Rapp 2000). For best results, QTL experiments
require that large numbers of individuals be genotyped
and phenotyped for the quantitative trait of interest.
Since this can be a costly endeavor, investigators employ
cost-saving strategies such as selective genotyping, in which
a selected portion of the phenotyped individuals are
genotyped (LEBOWITZ et al. 1987; LANDER and BOTSTEIN
1989; DARvVAST and SOLLER 1992), and selective phenotyp-
ing, in which a selected portion of the genotyped
individuals are phenotyped (JIN et al. 2004) . The efficacy
of these strategies has been evaluated in simplified
settings where a single locus contributes to the
phenotype and when the phenotype (conditional on
genotype) is normally distributed. Itis therefore unclear
how effective these strategies would be in the broader
context of complex trait genetic analyses. In such
settings, we suspect that multiple loci, possibly linked
and epistatic, contribute to the trait, and the trait
distribution may be nonnormal.

The value of selective genotyping has also been
recognized in human association studies and is cur-
rently being actively researched (CHEN et al 2005;
WALLACE et al. 2006; HUuANG and LiN 2007). Interest
in this application is primarily motivated by the fact that
these studies require dense high-throughput genotyp-
ing, which can be expensive. However, similar to QTL
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studies in experimental crosses, the theoretical results
have focused primarily on normally distributed pheno-
types and single-locus models.

SEN et al. (2005) examined the effectiveness of
selective genotyping when two unlinked additive QTL
contribute to a normally distributed trait. Because
epistasis appears to be a common and important feature
of many complex traits (FRANKEL and SCHORK 1996), it
is important to investigate whether epistasis can also be
detected in selectively genotyped samples. Experimen-
tal studies appear to be divided over this issue. Some
studies have reported epistasis in selectively genotyped
samples (OHNO et al. 2000; ABAsHT and LamonT 2007)
while others failed to detect it (CARR et al. 2006), citing
concerns about loss of power. Thus, the generality of
these experimental observations requires further theo-
retical exploration.

In the context of association studies, GALLAIS ef al.
(2007) compared one-tail and two-tail selective genotyp-
ing and showed that the latter is superior. However,
many interesting traits are nonnormally distributed.
Time-to-event phenotypes, such as survival times or
tumor onset, are important cases when the trait is
expected to be nonnormally distributed, usually with a
long right tail. In these situations, individuals in the right
tail are likely to be genetically more informative, and it
is unclear which type of selection strategy (one-tail, two-
tail, or a different strategy) should be applied. Moreover,
from a cost-saving perspective the additional problem
arises that the most informative individuals (those in the
right tail) will also be the most expensive to phenotype
because of the cost of following the individuals until the
event of interest has been observed. The investigator
must therefore decide to either stop following up, which
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results in reduced cost and a loss of information due to
censoring, or follow up the entire sample until all events
have been observed, which implies greater cost but a
minimal loss of information. As far as we are aware, these
trade-offs have not been studied.

In studies where phenotyping is more expensive than
genotyping, JIN et al. (2004) proposed selective pheno-
typing. Here individuals selected for phenotyping have
maximal genetic diversity in a genomic region of
interest. Their simulations showed that for a fixed
number of phenotyped individuals, this approach
increases power relative to a random sample. Although
this gain in power diminishes when multiple genomic
regions are considered, it outperforms phenotyping a
random sample. Selective phenotyping is particularly
attractive for genetical genomics studies (JANSEN and
Nap 2001) where the traits of interest consist of
thousands of genomewide molecular measurements
(e.g., transcriptome, metabolome, proteome) obtained
using high-throughput technologies such as microar-
rays and mass spectrometry. For studies using two-color
microarrays, Fu and JANSEN (2006) proposed a related
selective phenotyping strategy that increases power by
cohybridizing mRNA from genetically distant pairs of
individuals onto the same array.

The above-mentioned experimental design problems
have one common feature—they involve experimental
strategies (selective genotyping, selective phenotyping,
choice of follow-up period) that trade off information
and experimental cost. SEN et al. (2005) showed that by
adopting an information perspective, one can formally
study these trade-offs in QTL studies. In this article we
use the information perspective to explore the follow-
ing issues: (a) How does selective genotyping perform
when multiple loci contribute to the phenotype?, (b)
How does selective phenotyping perform when multi-
ple loci are used for selection?, (c) How should selective
genotyping proceed if the trait is not normally distrib-
uted?, (d) What selective genotyping approach is
appropriate for lifetimes?, (e) How should we choose
the duration of follow-up?, and (f) How should we
combine selective genotyping with choice of follow-up
duration?

Our article is organized as follows. In the next section
we review the theory underlying our information per-
spective. In the following section we present the results
obtained by applying that theory to answer each of the
six questions posed in the previous paragraph. We
conclude with a discussion of our results.

THEORY

Information perspective on QTL study design:
Traditionally, the efficacy of QTL study designs has
been investigated using power calculations. In the
experimental design literature, notably industrial ex-
perimental design, study designs are evaluated using

their information matrix. The information matrix is a
fundamental statistical quantity; the power of a study de-
sign, the expected LOD score (which is a log-likelihood
ratio), and variance of estimated QTL effects all depend
on the information matrix. The expected Fisher in-
formation is defined as the expected value of the second
derivative of the log-likelihood function,

52 0%
78) = E[—a—B#(B | yobo} _ E[—a—BQIogmm 8,

where £(B | yobs) denotes the log-likelihood function for
the parameter of interest 3, when the observed data are
Yobs- For large sample sizes, the variance of the maxi-
mum-likelihood estimate, B is

V() ~J(B)"

The log-likelihood ratio statistic for testing B = By is

2(¢(B) — £(Bo))

which, for large samples, has an approximate non-
central x*distribution with s (dimension of ) degrees
of freedom and noncentrality parameter (3 — B¢)'/(B)
(B — Bo). The log-likelihood ratio expressed in base
10 logarithms is the LOD score. Thus, the power of
the likelihood-ratio test, which depends on the non-
centrality parameter, depends on the unknown state of
nature (3 — B¢) and the information matrix, /(). The
experimenter has no control over the state of nature,
but has limited control over experimental design
choices that determine the information content. Thus
the information content of a study design provides us
with a parsimonious description of the statistical char-
acteristics of the study.

Criteria for evaluating designs: We calculate the
expected Fisher information (for the QTL effect pa-
rameters conditional on QTL location) for each geno-
typing strategy in each context. This is used to evaluate
the usefulness of selective genotyping in each genetic
model context. When multiple loci are involved, the
information is a matrix, and we have to resort to one-
dimensional summaries of the information matrix.

In the experimental design literature, a few different
summary measures (optimality criteria) have been pro-
posed for comparing alternative designs (Cox and Re1p
2000). We compare the designs here using two criteria
based on the information matrix J, or equivalently V= J":

1. D-optimality criterion: This criterion maximizes the
determinant of the information matrix, det( /), or
equivalently (det(/))'”*, where k is the number of
parameters. It minimizes the volume of the joint
confidence ellipsoid of all the parameters. It is the
most popular design criterion because it makes full
use of the information matrix and is not affected by
orthogonal reparameterizations of the parameter.
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2. coptimality criterion: This criterion maximizes the
inverse of the variance of a contrast ¢ between model
parameters, (¢’ Ve)~'.

The appropriate criterion depends on one’s objective. In
this article, we use the coptimality and D-optimality
criteria.

Calculation of the information content: We use
missing data methods to calculate the expected in-
formation content under selective genotyping. When
we use selective genotyping, we deliberately choose not
to collect genotyped data on certain individuals on the
basis of their phenotype. These data are missing data. We
use the missing data principle to calculate the expected
information content of any genotyping strategy. The miss-
ing information principle (ORCHARD and WOODBURY
1972; McLacHLAN and KriSHNAN 1996) states that the
observed information, 1,, may be calculated as

]o = Ic - ]n17
where the observed information is

82
L(B) = —aT%glogP(yobs | B),
the missing information is
82
Im(B) =E |:_ aiBglogp(ymis

Yobs B) ‘ Yobs B:|7

and the complete information is

2

0
]C(B) =E [—8—8210&0(%1157 yobsa B) ‘ y0b57 B:| .

In the selective genotyping context, y,s consists of the
phenotypes and the genotypes of genotyped individu-
als. The missing data, y,;s consist of the genotypes at all
ungenotyped locations. Since the expected information
satisfies J(B) = E(/,(B)), we can use the missing in-
formation principle to calculate the expected informa-
tion content of genotyping designs.

Backcross population, single-locus model: Assume
we have a population of n individuals. Let y denote the
phenotype of an individual and let g denote the
genotype at a particular locus. Let B denote the genetic
model parameters. In general, § is a vector. The
phenotype is assumed to be normally distributed given
the QTL genotypes with mean depending on B and
variance 1.

Assume that a single locus contributes to the trait
variation, and consider a single individual with pheno-
type y and with ¢ denoting the conditional probability
that the individual is homozygous at a locus, given the
available marker data. SEN et al. (2005) showed that, in
this case, the contribution of the individual to the
observed information is

1— 4y ¢*(1 — ¢%),

where ¢*/(1 — ¢*) = ¢**¢q/(1 — ¢). At a locus with no
nearby markers genotyped, ¢ = %, so that the observed
information is

1-4 Qﬂ 1 =1 — y’sech?(By)
Y1+ 142 ) )

. o (29°
:lfyz-l-yé‘Bzf—(;)B‘*-l—...

If the individual is genotyped, then the observed
information is simply 1. When selectively genotyping
with selection fraction o, we genotype an a-fraction of
the most extreme phenotypic individuals. Thus, if z(a,
B) is the upper a-point of the phenotype distribution
when the QTL effect is (B, then the expected
information using the two-tail selective genotyping
strategy is

+ 2428
Jla By =at | 0= psecht@r)a
Zo/2,8
= &+ 2z,/0p0(z/2p) + O(B?).
For small {3,
J(a, B) = J(a) = a + 2z,d(z),

where z, is the upper a-point of the standard normal
distribution.

The observed information corresponding to an in-
dividual phenotype y gives an indication of the value of
genotyping that individual. Integrating over the ob-
served information corresponding to a genotyping
strategy, we can get the expected information resulting
from that genotyping strategy. Thus, we can devise and
evaluate strategies by examining the observed informa-
tion and the expected information.

Backcross population, two unlinked loci: Let g; and
& denote the QTL genotypes at two unlinked loci.
Assuming that the two loci are additive, we can write the
genetic model for the phenotype as

y=Bo+B1(2e — 1)+ Ba(22 — 1) + ¢, (1)

where 3 is the overall mean, B; and By are the effects
of the first and second QTL, respectively, and ¢ is the
random error that is normally distributed. For simplic-
ity, we assume 3¢ = 0 for the rest of this article. SEN et al.
(2005) used the above-mentioned approach to calculate
the expected information for § = (4, B2), when 3, =0,
and B9 = B. This gives us the missing information when
the first QTL has small effect as a function of the effect
of the second QTL. In this setting the missing in-
formation matrix for an ungenotyped individual with
phenotype y was shown to be
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;o (OF+B)+2Byanh(By) O .
m 0 y*sech?(By)

Note that when the second QTL has a small effect, the
expected information under selective genotyping be-
haves similarly as with a single QTL. As the strength of
the second QTL the information content for the first
QTL progressively decreases. The worst scenario is when
the second QTL has a really dramatic effect. In this
setting, when half the extreme individuals are geno-
typed, only half the information is obtained—this is the
same as genotyping randomly selected individuals
(random genotyping). When more than half of the
extreme individuals are genotyped, selective genotyp-
ing performs worse than random genotyping.

RESULTS

How does selective genotyping perform when
multiple loci contribute to the phenotype? In this
subsection we examine the efficacy of selective genotyping
when multiple loci contribute to phenotypic variation.
In the interests of simplicity, we consider backcross
populations and normally distributed residual variation.
We begin by examining the case of two linked loci acting
additively. Next, we consider two unlinked epistatic loci
contributing to the trait.

Two linked loci: Let g and g denote the QTL
genotypes at two loci separated by a recombination
fraction 6. Our objective is to evaluate the expected
information content of a selective genotyping design
where a-fraction of the extreme phenotypic individuals
are genotyped. Assume that the QTL act additively; i.e.,
the genetic model for the phenotypes is the same as (1).
First note that with complete genotyping, the expected
information matrix per observation is

1 1-9
f‘<1—29 1)'

Thus, det(/J) =46(1 — 0). The variance of the parameter
estimates is thus

1 1 20-1
— 71 _
v=J _46(1—6)(26—1 1 )

Using either a D-optimality criterion (the determi-
nant of the information matrix) or the inverse of the
variance of the first locus effect, Bl, we see that the
information for two linked loci is a function of 6 (1 — 0),
which is maximum when the two loci are unlinked and
gets progressively smaller as 6 approaches 0.

Our goal is to examine how selective genotyping affects
the information to detect two linked loci. To do this, we
calculate the information matrix using the missing in-
formation principle. The missing information matrix is

. y2sech?(By) + 46(1 — 0)(ytanh(By) — B)® (1 — 260)y2sech?(By)
"o (1 —20)y*sech?®(By) y?sech®(By) .

Note that when the QTL are unlinked, i.e., 8 = o the
missing information for 3; is

y*sech®(By) + (ytanh(By) — B)*
= y*(sech®(By) + tanh?(By)) + B* + 2By tanh(By)
= y? + B? + 2By tanh(By),

which coincides with the result for unlinked loci derived
earlier. Further,

A+40(1-0)B (1—20)A
Im:( (1-260)A A >

where A = y’sech?(8y), and B = (ytanh(By) — ). Thus,

1 1-—-26
]OZIC_IH’I:

1-20 1
A+40(1—0)B (1—20)A
_( (1—260)A A )

Therefore the expected information has the form

_ [(A*+406(1 —0)B* (1 —20)A*
J(o, B) = < (1 — 26)A* A )’
where A* = (1 — [A),and B* = — [B; the integral is with
respect to the marginal distribution of y (which depends
on 3) and over the range of yfor which genotyping is not
performed (determined by the selection fraction, a).
Note that A, A*, B, and B* are independent of 6. Since the
information is not scalar, we use two scalar summaries, the
determinant and the inverse of the variance of the 3,, to
evaluate the impact of selective genotyping and linkage
(measured by 0). First, note that the determinant of the
information matrix

det(J(o, B)) = 40(1 — 0)(1 — A*)(1 — A* — B¥)

is a product of terms that involve 8 and those that
depend on a and 3. This implies that by the D-optimality
criterion, the effect of selective genotyping and linkage
of the two loci are independent. Thus, beyond the loss
of information due to linked loci, the effect of selective
genotyping is exactly as for unlinked loci. Next, note
that the variance matrix is

T 40(1 — 0)(1 — A* — B¥)
1 20 — 1
X .
<2e —1 1-46(1—0)B*/(1— A*))

Here also, the variance of B, is the product of two
terms, one that depends on how linked the loci are and
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Information for main effect, B, (B, = Bs=0,)

Information for epistatic effect,B3(B. = B3=0)

1617

Ficure 1.—Expected in-
formation in a two-QTL
model with epistasis, as a
function of the selection
fraction o for main effects
(B1, left) and epistatic ef-
fects (Bs, right). The infor-
mation is plotted as we vary
the size of the main effect
of the first QTL, while the
second QTL and epistatic
effect size is assumed to
be zero. The shaded region
is the space of variation as
B, varies from 0 to . The
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respond to the proportion of variance explained by the first QTL equal to 20, 50, 75, and 90%. If the proportion of variance
explained by the main-effect QTL is <20%, the expected information is approximately equal to that when the proportion variance
explained is 0%. Information for the main effect increases as the size of the effect increases. The information for the epistatic
effect decreases as the size of the main effect increases. For selection fractions >50% selective genotyping may be less efficient
than even random sampling (solid diagonal line), for which the expected information is equal to the selection fraction. This is
specially so when the variance explained by the main effect exceeds 50%.

another that depends on the selective genotyping
scheme. This implies that the effect of selective geno-
typing on the detection of alocus with small effectin the
presence of a linked locus is independent of the extent
of linkage.

Two epistatic loci: We analyze the case of two epistatic
loci with the same approach as for two linked loci.
Consider the following linear model for the phenotype,

3= Bo+Bi(2g — 1)+ By(2g — 1)+ By(20 — (2 — ) +& (2)

where Bs is the epistatic effect of the two QTL. We
consider two important special cases when the epistatic
effect is small: (a) when there is one major main effect
and the other locus has a small effect (B; =8, B2 =0,
Bs = 0) and (b) when both loci have equal but nonzero
main effects (B; = B, B2 = B, Bs = 0). The analytic
expressions for the observed information matrix are
included in the supplemental information. We graph
the functions in Figures 1 and 2.

We find that as long as the proportion of variance
explained by the main-effect QTL remains <20%, the
effectiveness of selective genotyping is approximately
the same as that for the case when a single locus with a
main effect is segregating in the cross. When the
proportion of variance explained by the main-effect
QTL is larger, the efficiency of selective genotyping for
detecting epistasis varies. In some cases, it can be less
efficient than random sampling (Figure 1); in other
cases it may have more information than that for the
main-effect loci (Figure 2).

How generalizable are these results to Fy intercross
and SNP association studies? In our results above, we
confined our explorations to the backcross, for simplicity.

In this section, we present simulation studies to explore
the generality of the conclusions to SNP association
studies and Fy intercross.

We generated data using the model

Yy =BT Bix1 + Boxo + Bsxs + Boxixe +e, (3)

where x;= g; — 1, and g;is an allele count at the ith locus
(0, 1, or 2). Then we analyzed an o-fraction of the
extreme phenotypic individuals in the manner of a case—
control study. We defined a new variable z as 0/1,
indicating the bottom /2 phenotypic individuals
(“control”) and the top o/2 fraction (“case”). Then
we analyzed the data using logistic regression of zon the
x’s, as in a case—control genetic study, using the three-
QTL model above. We calculated the Pwvalues of the
regression coefficients. We then compared the results of
that analysis to that when the data are generated from
the same model, but with only one nonzero term. This
allows us to compare the effect of other QTL on the
detection of the effect. We varied the effect sizes (the
B’s), the sample size, the selection fraction o, and
the allele frequencies. In Table 1 we present the results
from two batches of simulations where we varied the
main effect of a locus and the allele frequencies for a =
0.2. If the proportion of the variance explained by the
largest locus is =10%, then the power is approximately
the same. Power losses are appreciable once the pro-
portion variance explained by the locus with the largest
effectapproaches 20%. We conducted other simulations
(not shown) with other parameter configurations that
broadly give the same message; the reader is invited to
explore other parameter values using our software code
(presented in the supplemental information).
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Information for main effect,,,(B, = B3 =0) Information for epistatic ettect,3, (B, = B,f3=0) FIGURE 2.—Expected in-
8 - - R 8 formation in a two-QTL
& P - o | e B model with epistasis, as a
& 7 < 2 o & L -8 . .
P ot LT function of the selection
8 7 7 o 3 % [ T 8 fraction « main effects
g4 A5 e & g4 Le  (By, left) and epistatic ef-
5 & g s B & - fects (B3, right). The infor-
= 0 1 r @ g @ -8 . is bl d
£ 0 £ mation is plotted as we vary
g2 8+ 5 r3 2 89 @  the size of the main effects
8o / =7 Lte B e Lg of both QTL, assumed to
g ¢ i . B " 2 - be of equal effect, while
J A L 4/ + Lo oo
RN e the epistatic effect size is as-
L
8 L r& & r& sumed to be zero. The
o dli/ Lo o Lo shaded region is the space
i/ of variation as [3; varies
] T T T T T T T T T 5 < T T T T T T T T T = i 3 3
rom 0 to %. The solid line
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 ds t 0
corresponds to B, = By =
Selection fraction,o (%) Selection fraction,a (%) p B] BZ ’

and successive dashed lines
(as the size of the dash in-
creases) correspond to the proportion of variance explained by the main-effect QTL equal to 20, 50, 75, and 90%. The diagonal
solid line is the efficiency of genotyping a random subset. If the proportion of variance explained by the main-effect QTL is <20%,
the expected information is slightly less than that when the proportion of variance explained is 0%. Information for the main
effects decreases as the size of the effects increases, but the pattern is not monotonic with the effect size. The information for the
epistatic effect approaches 100% as the size of the main effects increases. This “hyperefficiency” relative to when the main effect
size is zero is most pronounced when the proportion of variance explained by the main effects exceeds 75%.

How does selective phenotyping perform when this approach decreases as the number of unlinked loci
multiple loci are used for selection? JIN et al. (2004) considered increases. To motivate the general result we
proposed selective phenotyping as a cost-saving mea- first consider a single locus, then two unlinked loci, and
sure when phenotyping is substantially more expensive then the general case. Throughout we consider selective
than genotyping. In this section we analyze the effect of phenotyping in an Fs population where genotypes at
selection based on multiple unlinked regions on the any given locus are coded 0, 1, and 2 corresponding to
information content of the experiment. the number of alleles from a particular inbred strain. We

The idea underlying selective phenotyping is to pick a focus on detecting the additive effect of a locus.
subset of individuals who are as genetically diverse as Single locus: The most efficient strategy is to first pick
possible at given candidate regions. The efficiency of equal numbers of the two homozygotes (corresponding

TABLE 1

Power to detect main-effect and interactive loci in a SNP association study using selective genotyping in the context of
a three-QTL model, using a selection fraction (& = 20%), and treating the selectively genotyped sample
as a case—control study (see text for details)

Power (%)
Three-QTL model Single-term model
Parameters B1 (% QTL variance) B1 Beo Bs Bi2 B1 Beo Bs Bio
r=0.5; n = 800 0.1 (0.5) 96 55 78 78 96 52 79 80
0.2 (2.0) 100 53 75 75 100 56 77 79
0.4 (8.0) 100 50 72 66 100 53 80 78
0.6 (18.0) 100 43 67 49 100 51 78 80
0.8 (32.0) 100 37 58 34 100 52 77 82
r=0.8; n = 2500 0.1 (0.3) 96 51 96 85 97 50 96 88
0.2 (1.3) 100 48 97 82 100 54 97 88
0.4 (5.1) 100 42 93 74 100 55 97 86
0.6 (11.5) 100 33 92 62 100 54 97 86
0.8 (20.5) 100 28 87 57 100 56 96 87

The power corresponds to tests with a significance level of 0.10. It was estimated using 10,000 simulations, and the estimates are
correct to =1%. In the simulations, By = 0, o = 0.05, B3 = 0.07, and B9 = 0.1; n is the sample size of the “case-control” sample;
the actual sample size is 5n. We denote by rthe common major allele frequency for the loci. The power to detect the main-effect 3,
increases with 3, as expected, but the power to detect other loci and the interaction term (B9, B3, and ,9) decreases with ;. The
decrease in power is most severe when the variance explained by the strongest locus exceeds 10%.
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the selection fraction. We see that as the number of loci increases, the efficiency of selective phenotyping approaches random
selection. However, the relative efficiency for small selection fractions can be quite high even when 10 loci are used for selection.

to genotypes 0 and 2) until they are exhausted. Then we
pick the heterozygotes (corresponding to the genotype
1). Note that for detecting additive effects, heterozy-
gotes are not informative, so on average, just studying
half the population is as effective as studying all of it.
This is reflected in Figure 3.

Suppose we select an a-proportion of the sample for
phenotyping, and of those a proportion T are homo-
zygotes. Then it is easily seen that the information
content of the sample relative to studying the full
sample is 27a. We use this result for proving the general
result for an arbitrary number of loci.

Two loci: When selective phenotyping is performed
using two loci, the genotypes can be represented as in
Figure 4. There are three genotype classes depending on
the number of homozygous loci (zero, one, or two).
These correspond to the center point, the inner circle,
and the outer circle, respectively. The outer circle
genotypes are the most different and represent the
greatest genetic diversity, followed by the inner circle,
and finally the center point. Thus, the optimal strategy is
to first select equal numbers of individuals from the
outer circle (two homozygousloci), then the inner circle
(one homozygous locus), and finally the center point
(zero homozygous loci). The outer circle covers one-
quarter of the sample, the inner circle one-half, and the
center point one-quarter.

If the loci considered are unlinked, the effect esti-
mates corresponding to the loci are uncorrelated with
each other and, hence, orthogonal. Thus, using symme-
try, the information content of the whole sample can be
evaluated through the information of any single locus.

Let us consider the information content correspond-
ing to three key a-values: i, when the outer circle points
are included,; %, when the outer and inner circle points
are included; and 1, when all points are included. When
o =1, atany given locus all individuals are homozygous.
Thus, the information content is 2 X 1 le} = % When

%, all homozygous individuals are in the sample;

they compose two-thirds of the selected sample. Thus,
the information content is 2 X% Xz =1. Whena =1,
all individuals are in the sample, and thus the in-
formation content is 1. The information content of all
other a-values can be calculated by linear interpolation
as in Figure 3.

Arbitrary number of loci: We can now tackle the general
case with m unlinked loci, where the genotypes can be
represented as points on a lattice in an m-dimensional
space. There are m + 1 classes of points corresponding
to their distance from the center point, representing an
individual heterozygous at all loci. The classes are
defined by the number of homozygous loci, 0—m. The
proportion of the sample in each of these classes is given
by the probability mass function of a binomial distribu-
tion with parameters m and % The expected informa-
tion content of the class with k homozygous loci is

v (7))

Thus, the information content of a sample that has
chosen the classes m, m — 1, ..., kis

" i m 1\"
(7))
=k n t 2

The information content corresponding to interme-
diate selection fractions can be found by linear in-
terpolation. The function info.pheno in the R/
qtlDesign package (SEN et al. 2007) calculates the
information content of selective phenotyping.

We find that as the number of loci used for selective
phenotyping increases, the efficiency of selective phe-
notyping decreases. In the limit, it reduces to random
selection. However, it is notable that the gain in
efficiency relative to random selection is higher for

o =
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FIrcure 4.—Distances of genotypes from the average geno-
type for two-locus genotypes in an Fs intercross. We code gen-
otypes at each locus as 0, 1, or 2. The x-axis and the y-axis are
used to plot the genotypes at the first and second locus, re-
spectively. The average genotype is the (1, 1) genotype (dou-
ble heterozygote) at the center. Two concentric circles are
drawn to depict two sets of equidistant points from the center.
The outermost circle consists of the homozygous genotypes,
the points (0, 0), (0,2), (2,2),and (2, 0). These are the points
most distant from the center. The inner circle consists of gen-
otypes homozygous at one locus and heterozygous at the
other, the points (0, 1), (1, 2), (2, 1), and (1, 0). These are
the next most distant from the center. To pick the most geno-
typically diverse individuals, one would first pick individuals
with genotypes in the outermost circle, then the inner circle,
and finally the center.

small selection fractions (the fraction of individuals
selected for selective phenotyping). In other words, if
phenotyping is very expensive relative to genotyping
and rearing, then even if a large number of loci (or the
whole genome) are used for selective phenotyping, it
will be effective. These findings are consistent with the
simulation studies of JIN et al. (2004) and provide a
theoretical justification for their observations.

How should selective genotyping proceed if the trait
is not normally distributed? The logic of selective
genotyping is that extreme phenotypic individuals pro-
vide the most information. This may not hold for all
situations. For example, if the phenotype is heavy-tailed,
the most extreme individuals are less informative. In
other words, we expect individuals with moderately high,
but not the most extreme phenotypes, to be the most
informative. This argument implicitly assumed that both
extremes of the phenotype are equally important. For
lifetime distributions, it is reasonable to expect that the
right tail is more important than the left tail, but this
asymmetry is not reflected in two-tailed selective genotyp-

ing strategies. To help us choose a genotyping strategy on
the basis of the nature of the phenotype distribution, we
develop the idea of the information gain function below.

Information gain function: We develop our ideas in the
context of a backcross. Let y be the phenotype of an
individual, g = 0, 1 be the QTL genotype at a locus of
interest, and ¢= P(g= 1| m) be the probability of the 1
genotype given the marker genotype information, m.
Let the distribution of the phenotype given the QTL
genotype be p(y| ). The observed data consist of (y, m),
while the missing data are g. We want to know, on the
basis of an individual’s phenotype, how informative
that individual will be. Let p(y | g= 0) = f(, —3) and
p(y| g=1) = f(y, +3), where fis the phenotype density.
In our context, the missing data are the unobserved
QTL genotypes, and the observed data consist of the
marker genotypes and the phenotypes. The parameter
of interest is 8. Thus the distribution of the missing data
conditional on the observed datais ¢*¢(1 — ¢*)'~¢, where
¢ =P(g=1]9y m, d). Since ¢= P(g=1| m), by Bayes
theorem it is easy to see that

g = q/(y. +3) ‘
qf(y, —8) + (1 —q)f(y, +d)

Hence the missing data log likelihood is

0% = (glog(q*) + (1 — g)log(1 — ¢%)).

Differentiating twice, we get

o (0%¢*\[g _ (1-g)
282 \oe® )¢t (1—gq¥)

(%) [F o=l

0q* 2 1
» 8) 08) [q*(l—q*)}

h(y, 9, S)q*(l - q*)v

ars9- () o]

is a function depending on the phenotype density /. We
expect this function to change with the shape of the
phenotype distribution. By calculating this function,
which we call the information gain function, for different
functional forms of f, we can identify the individuals that
are best to genotype. We use Taylor expansions for small
9, the most interesting scenario. For the normal
distribution, %(y, ¢, 8) = y* and captures the fact that
most information is to be gained from the extremes of
the distribution. Information gain functions for se-
lected distributions are shown in Table 2.

Hence,
2 pk
(7
0%

where
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TABLE 2
The density function and the information gain function for select distributions

Distribution Density function Information gain Expected information Parameter
Normal ﬁexp(—%(y— 6)%) ¥ a+2xﬁexp(—%(x— 0)%) 0
Cauchy Lt 161 1 — 480 g e 0
Logistic 1 iﬂ&:—)é)) 4 ((:;5 8)) 7 11))2‘2 : (%:;p((jxi Y)’l‘ 6
Exponential (1/0) exp(—=y/a),y>0 4(y — 1)* a + alog(a)? 0 = log(o)
Gamma o) opo) -y 4(y — v)? o, m+ 1)+ (x = m)SEERE g = log(o)
Weibull (v/o) (y/o)" ' exp(—(y/0)"),y>0 42 (y — 1)* a + alog(a)® 0 = log(o)

The parameter of interest for the first three distributions is the location parameter. For the last three, the parameter of interest is
the scale parameter, the respective shape parameters being fixed. §i(-, -) is the incomplete Gamma function.

Location shift—symmetric distributions: We first examine
symmetric distributions with a location shift depending
on genotype. Our calculations show very different
information gain functions for the normal and Cauchy
distributions (Figure 5). This suggests that the most
extreme phenotypic individuals are not as informative
when the phenotype distribution is Cauchy, as it is when
the phenotype distribution is normal.

To study this further, we conducted a simulation study
as follows. We simulated 10,000,000 individuals from a
backcross. Conditional on the genotype, the phenotype
in the two genotype groups was location shifted by 0.1
times the interquartile range (IQR). Then we examined
the genotype ratios conditional on the percentile of the
phenotype distribution. Uninformative percentiles
would be those where the genotype ratio is 0.5. The
further the deviation from 0.5, the more informative the
percentile. Assuming that the two genotypes are coded 0
and 1, let p, be the proportion of 1 genotypes condi-
tional on the phenotype y being in the gth percentile.
We plot (p, — 0.5)* as a function of ¢ to see which
percentiles most discriminate between the two geno-
types (Figure 5).

The simulation study confirmed what the information
gain function suggests: the most extreme individuals are
most informative when the phenotype distribution is
normal or logistic; however, they are not the most
informative if the phenotype has a Cauchy distribution.
This shows that the best selective genotyping strategy
depends on the shape of the phenotype distribution and
that the traditional two-tail selective genotyping strategy
is not always the best. We explore this further by
examining the information gain function for typical
survival distributions.

Scale shifti—lifetime distributions: For lifetime distribu-
tions we focused on the exponential distribution and two
families extending it: the Gamma and Weibull distribu-
tions. We calculated the information gain function for a
scale shift (supplemental Figure 1) and found that the
upper tail, containing individuals with the longest life-

times (top 15%), is more informative than the shortest-
lived individuals. This suggests that for phenotypes with a
long right tail we should selectively genotype by over-
sampling the right tail. Although the information gain
functions for Weibull and exponential distributions
appear different in functional form (Table 2), they are
identical as a function of phenotype percentile.

As with the symmetric distributions we simulated
10,000,000 individuals from a backcross. Conditional
on the genotype, the scale parameter of the phenotype
in the two genotype groups was shifted by 10%. We
examined the genotype ratios conditional on the
phenotype percentile (supplemental Figure 1). As with
the symmetric distributions, the shape of the informa-
tion gain function paralleled that of the squared de-
viation of the segegation ratios from 1/2.

Thus, the information gain function, which we de-
fined on theoretical considerations, shows us which in-
dividuals’ genotypes are most likely to deviate from the
average genotype. It can therefore be used to prioritize
individuals for selective genotyping.

What selective genotyping approach is appropriate
for lifetimes? Since the right tail is more informative for
phenotypes with a long right tail such as lifetimes, we
investigate single-tail selective genotyping, where indi-
viduals with the longest lifetimes are genotyped. We
concentrate on the exponential distribution, which has
a central role in the analysis of lifetimes (and time-to-
event data). The expected information for small-effect
sizes as a function of the selection fraction, o, has a
simple form:

J(@) = a+ alog (a)?

Comparing this with the expected information from
traditional two-tail selective genotyping for normally
distributed phenotypes (Figure 6) reveals important
differences. Although the expected information rises
more steeply for small a, it flattens out for a between 20
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Ficure 5.—Top: Plot of the information gain function
against the phenotype percentile for normal, Cauchy, and lo-
gistic distributions. We see that the extreme phenotypic indi-
viduals are very informative if the phenotype has a normal or
logistic distribution. However, if the phenotype follows a
Cauchy distribution, the extreme phenotypic individuals
are not very informative. The most informative individuals
are those near the first and third quartiles. Bottom: Plot of
the squared deviation of the segregation ratio from the ex-
pected 50% by percentile of phenotype distribution from
10,000,000 simulations. The squared segregation ratios condi-
tional on phenotype have shapes similar to the information
gain function.

and 70%. This is because after ~20% of the individuals
have been genotyped, one-tail genotyping is no longer
the most efficient strategy (as indicated by the informa-
tion gain function); the best strategy is to genotype both
tails after that point. Nevertheless, a one-tail genotyping
strategy is simpler to implement in practice.

Next we consider the impact of genotyping cost on
selective genotyping. As in SEN et al. (2005) we considera
simple linear cost function. Let ¢ be the cost of genotyp-
ing relative to raising and phenotyping an individual.
Our goal is to maximize information relative to cost by
focusing on the information—cost ratio:

0 10 20 30 40 50 60 70 80 90 100
| | | | | | | | |

100
100

Expected information
50

o T T T T T T T \ \ 2
0 10 20 30 40 50 60 70 80 90 100
Selection fraction (percent)

FiGure 6.—Expected information for single-tail selective
genotyping as a function of the selection fraction, and propor-
tion censored. We assume that the trait distribution is exponen-
tial and that the effect size affecting the scale parameter is
small. We assume that all individuals until a certain time are
followed up and the rest are censored. The solid black line
shows the expected information for an exponential informa-
tion with no censoring (100% follow-up). The dashed lines
with increasing dash size show, respectively, the expected infor-
mation with 10, 20, and 30% censoring. The solid gray line
shows, for reference, the expected information for a normal
distribution with two-tail selective genotyping. With no censor-
ing, genotyping 20% of the longest-lived individuals gives us al-
most 75% of the information. However, the gains from
selective genotyping more individuals are modest thereafter.

J()

1+ co”

The optimal selection fraction is the value of a that
maximizes this ratio (Figure 7). We observe a “phase
transition” in the optimal selection fraction when the
genotyping cost is approximately half that of raising
and phenotyping an individual. If genotyping is very
expensive, then we should genotype a small fraction of
the population. As genotyping costs get smaller, the
best strategy is to progressively genotype more individ-
uals. If genotyping is cheaper than half the cost of
phenotyping and rearing, the best strategy is to geno-
type everyone.

How should we choose the duration of follow-up?
For many lifetimes (time-to-event phenotypes), such as
time to tumorigenesis (in animals), flowering time (in
plants), and lifespan, an investigator may have to decide
how long to wait for the event of interest (tumorigen-
esis, flowering, or death, in the examples above) to
occur. Individuals for whom the event has not occurred
in the follow-up period are considered “censored” in
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FIGURE 7.—Optimal selection fraction as a function of gen-
otyping cost for exponentially distributed waiting-time pheno-
types. We assume a one-tail selective genotyping scheme is
being used. The cost of genotyping is measured relative to
the cost of raising and phenotyping, assuming everyone is fol-
lowed up with no censoring. The dotted line gives the optimal
selection fraction for two-tail selective genotyping when the
trait is normally distributed. As expected, it is more efficient
to genotype less as the cost of genotyping increases relative to
raising and phenotyping. However, for one-tail selective gen-
otyping there is a “phase transition” or a sudden change in
the optimal fraction when the cost of genotyping is compara-
ble to the cost of phenotyping and raising (by contrast, the
change is gradual with traditional two-tail selective genotyp-
ing). The best strategy is to genotype everyone or <20% of
the individuals depending on genotyping cost.

the language of survival analysis. For these individuals
we do not know the time to event exactly, but we know
that it is greater than the follow-up time.

We consider the problem of choosing the follow-up
duration when measuring lifetimes. We consider the
trade-offs between loss of information due to incom-
plete follow-up and the greater cost of full follow-up.
We develop our ideas in the context of a backcross
population.

Let ydenote the time to an event and gdenote the (0/1)
genotype of an individual in a backcross when the event
time distribution conditional on the genotype is expo-
nential. Assume that the follow-up period for all
individuals is 7, 0 < T < o Then, we can write

fOy g d),
F(T | g, 3d),

ify=T

Pyl g 9d) { ity> T,

where f{-) is the density function of the event times, and
F(-) is the survival function (the complement of the
cumulative distribution function). Without loss of

generality we rescale time so that the average waiting
time for the “0” genotype is exp(—8) and that of the “1”
genotype is exp(d). Then we obtain

piyl g d)
_ { exp(—(2g — 1)d)exp(—y/exp(2(g = 1)3)), ify=T
exp(—T/exp((2g — 1)3)), ify>T.

We use this to construct the log-likelihood function and
to derive the expected Fisher information for 8,

exp(—exp(d)T) + exp(—exp(—8)T)

I8)=1-—
2
=1—exp(-T)+ % (T? — T)exp(—T) + O(8*). (4)

If C¢is the fixed cost per individual (for rearing and
genotyping, for example), and C, is the cost of waiting
per unit time, then for follow-up period T the in-
formation—cost ratio is

13) 1 1—exp(-T) L= exp(—T)
G+ TC, G 1+ TC,/CG 1+71C °

where C= C,/ . Thus, if we are willing to assume that
the genetic effect, 8 is small, we only need to maximize
the ratio (1 —exp(—17))/(1 + TC). Elementary calculus
shows that maximizing that ratio is equivalent to solving,
for 7T, the equation

exp(T)—1-T=1/C.

The solution of the equation, 7%, the optimal time, has a
one-to-one relationship with the optimal proportion of
uncensored individuals, 1 — exp(—T7%). Supplemental
Figure 2 shows the optimal proportion of uncensored
individuals as a function of C, the ratio of the cost of
follow-up and the fixed costs per individual. As expected,
the optimal follow-up fraction decreases with increasing
follow-up cost. If the cost of following until the mean
event time is approximately the same as the fixed costs for
that individual, we should follow up until ~70% of the
events have been observed. The function, opt.wait in
the R/qtlDesign package (SEN et al. 2007) calculates the
optimal waiting time and the optimal proportion of
uncensored individuals given the cost ratio, C.

How should we combine selective genotyping with
choice of follow-up duration? Selectively genotyping
the longest-lived individuals is a good strategy for
lifetime phenotypes. On the other hand, the longest
lived are the most expensive to follow up and may be
censored to save cost. What is the best strategy when a
fraction of the longest-lived individuals are censored by
design? We investigate this question when the lifetimes
are exponentially distributed.

Suppose the individuals are followed up until time 7
Treating 7T as a parameter, we can calculate the in-
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F16URE 8.—Information gain function for exponential phe-
notypes in the presence of censoring. The dotted line shows
the information gain function for uncensored individuals as a
function of the percentile of their phenotype. The dashed
line shows the level of the information gain function for cen-
sored individuals as a function of the percentile of individuals
who are followed up. As an example, the solid dots show the
information gain function for the case when all individuals
above the 85th percentile are censored. The information gain
function for the first 85% of individuals follows the usual pat-
tern for exponential phenotypes. The information gain for
the censored 15% of individuals is horizontal level, indicated
by the dashed line. We see that one-tail selective genotyping is
a good strategy even in the presence of censoring.

formation gain function, and the expected information,
as with the previously considered distributions. The
expected information for small 8 is

a—B+alog(a)?, ifa=p
alog(B)?, ifa<p
= (@ =B)A0) +alog(a A B),

Jpla) =

where B = exp(—T) is the proportion of censored
individuals and A is the maximum operator (Figure 6).
Note that the upper bound for information with the
B-proportion censored is 3.

The information gain function for the censored
exponential distribution is

4(y—1)% ify=T
472, ify>T.

Figure 8 shows this function when the proportion
censored is 15%. We can see that a one-tail selective
genotyping strategy would be a good one, even in the
presence of censoring.

As with the case with no censoring, we investigated the
effect of follow-up cost and genotyping cost on the
genotyping/follow-up strategy. Let ¢ be the cost of
following up an individual for an average lifetime, and let
¢ be the cost of genotyping an individual. Both costs are
measured relative to the fixed cost of rearing an individual.

Then the cost per individual of a study that genotypes a-
proportion and censors 3-proportion of the population is

1+ ac+ (1 —Ber),
and the information—cost ratio is

Jo(a)

1+ac+ (1 —Be¢)

Given the cost structure, (¢ ¢g), we can find (o, ) that
minimize the information—cost ratio (supplemental
Figure 3).

The optimal selection fraction, o, shows an abrupt
change, while the censoring proportion, B, increases
gradually with follow-up cost. This is consistent with
the optimal o when there is no censoring (f = 0) and
the optimal B when everyone is genotyped (a = 1). The
optimal censoring proportion is fairly insensitive to
genotyping cost once genotyping cost is cheaper than
the cost of rearing an individual. The optimal selection
fraction is fairly insensitive to follow-up cost if follow-up
cost is less than one-quarter of the cost of rearing.

DISCUSSION

In this article we have analyzed strategies in QTL
experimental design in the context of nonnormal
phenotype distributions and multilocus models. We
analyze QTL study design by calculating the information
content of design choices. Genotyping and phenotyping
strategies can be analyzed using this framework. This
approach can provide useful guidance for a range of
scenarios more general than those considered in the
literature so far.

Our central conclusions are the following:

1. Selective genotyping is effective for detecting linked
and epistatic QTL as long as no locus has a large
effect. When one or more loci have large effects, the
effectiveness of selective genotyping is unpredictable—
it may be heightened or diminished relative to the
small-effects case. As a rule of thumb, if a locus explains
=10% of the trait variation, then the effectiveness of
selective genotyping for detecting other loci may be
compromised.

2. Selective phenotyping efficiency decreases as the
number of unlinked loci used for selection increases,
and approaches random selection in the limit.
However, when phenotyping is expensive, and a
small fraction can be phenotyped, the efficiency of
selective phenotyping is high compared to random
sampling, even when >10 loci are used for selection.

3. For time-to-event phenotypes such as lifetimes, which
have a long right tail, right-tail selective genotyping is
more effective than two-tail selective genotyping. For
heavy-tailed phenotype distributions, such as the
Cauchy distribution, the most extreme phenotypic
individuals are not the most informative.
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4. When the phenotype distribution is exponential, and
a right-tail selective genotyping strategy is used, the
optimal selection fraction (proportion genotyped) is
<20% or 100% depending on genotyping cost.

5. For time-to-event phenotypes where follow-up cost
increases with the lifetime of the individual, one can
calculate the optimal follow-up time that maximizes
the information content of the experiment relative to
its cost. For example, when the cost of following up
an individual for the average lifetime in the popula-
tion is approximately equal to the fixed costs of
genotyping and breeding, the optimal strategy is to
follow up ~70% of the population.

A limitation of our approach is that it is model based,
is asymptotic, and makes assumptions about the nature
of the phenotype and genotype distributions. Our
information analysis does not necessarily reflect how
the data will be analyzed; a sample may be more
informative, but the analysis method may not take full
advantage of it. However, making design choices neces-
sitates making assumptions about yet unseen data and
making choices considering different scenarios. Our
approach is flexible enough to permit explicit consid-
eration of complexities that have not been contem-
plated for complex trait genetic study design.

Our information approach requires that we know (or
guess) the conditional distribution of the phenotype
given the genotype. In practice, only the marginal
distribution of the phenotype is known, thus posing
difficulties for our analytic approach. However, for the
most interesting and useful scenarios, when the effect
size is small, the marginal and conditional distributions
are approximately the same. Thus, for the purposes of
selecting a genotyping scheme, it is reasonable to use
the marginal phenotype distribution as a guide.

Our analysis of selective genotyping was performed in
the context of a backcross population where two
genotypes segregate with equal frequency at each locus.
Our current article does not conclusively establish how
generally applicable the results are to Fo intercrosses
and human association studies with multiple haplo-
types. However, there are reasons to expect that the
conclusions apply more generally. SEN et al (2005)
showed that expected information under selective
genotyping for any contrast between haplotypes in an
association study behaves the same way as in a backcross.
Our simulation study provides further support for the
idea that selective genotyping is effective in the context
of multiple QTL as long as the individual effects of each
locus are small. Further work would be needed to
provide explicit quantitative guidelines regarding when
we may expect the payoff from selective genotyping to
break down in nonbackcross populations.

How small should the effect of individual loci be for
selective genotyping to be effective? The answer de-
pends on the underlying genetic mode of action, which

is not known in advance, and also on the experiment’s
cost structure. Examining Figures 1 and 2 suggests that
ifnolocus contributes >20% of the phenotypic variance
in a backcross population, the expected information
gain from selective genotyping is close to what would be
predicted if a single locus contributed to the trait. We
expect individual loci to explain much smaller fractions
of the variance for complex traits. This leads us to
conclude that selective genotyping would be effective in
reducing the genotyping cost for complex traits with a
single phenotype of interest.

Our results show how follow-up time for time-to-event
phenotypes can be optimized in conjunction with
selective genotyping. If subject recruitment and follow-
up is a dominant contributor to study cost, these results
may have a significant impact. We note, however, that
experimenters should carefully choose the cost function
to reflect the cost structure of their study. We used a
linear cost function in our analysis, for convenience, but
that may frequently not be the correct choice. In such
cases, the cost-information trade-offs should be recalcu-
lated to obtain choices better suited to the study at hand.
More generally, there is the broader question: How
should we valuea study, and how would thatimpact study
design (BACCHETTI et al. 2008)? Our approach implicitly
valued a study by its information—cost ratio; other ways of
valuing a study would lead to different results.

The optimal selection fraction for one-tail selective
genotyping with exponentially distributed phenotypes
exhibits a discontinuity. This is surprising, and probably
undesirable. However, as we have noted, it is not the
most efficient genotyping strategy, but a “good” one
that is easily implemented. A strategy devised using the
information gain function will have expected informa-
tion equaling or exceeding that for one-tail selective
genotyping. That strategy will not exhibit a discontinuity
in the optimal genotyping fraction as a function of cost.

Our analysis of selective genotyping for nonnormal
trait distributions has led us to conclusions similar to
those of PARK (1996) and ZHENG and GASTWIRTH
(2000) who used more involved analytical techniques
calculating the exact distribution of order statistics.
They asked the question “Where does the Fisher in-
formation in order statistics lie?” For prioritizing
individuals for genotyping we ask the related question:
“Where does the Fisher information in the quantiles
lie?” For this question we were able to use asymptotic
results that are obtained more easily than the exact
results for order statistics. A biproduct of our approach
is the information gain function that can be used to
devise selective genotyping strategies appropriate for
any trait distribution.

The next wave of genetic studies is expected to collect
high-dimensional data using various “omic” technolo-
gies. In these studies, somewhat different study design
questions from those considered in this article might
arise. For example, for two-color microarrays, a selective
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phenotyping approach has to consider pairing of
samples per array. Fu and JaNSEN (2006) proposed
using a distant-pair design, using an information ap-
proach for this setting. Another question might be
“How should one select individuals for microarray
phenotyping based on a trait of interest and genotypes
at a locus of interest?” The information approach may
be used in this setting as well, but this requires further
development.

Finally, although power calculations have a justified
place in guiding study design, they depend on the un-
known effect size and change nonlinearly with sample
size. This has led some to question their dominant role
in determining study design in biomedical research
(BACCHETTI et al. 2008) . Information is arguably a better
criterion, although it too has to be used judiciously
in conjunction with the cost structure of the study and
perhaps the value (which is harder to quantify). Relative
to calculating power, calculating information is harder
and sometimes impossible; our work shows that for
some genetic studies information can be calculated
explicitly using algebraic or numeric approximations.
This may help us make more realistic study design
choices than those based on power calculations alone.

Computer code used for symbolic algebra using
Maxima (http:/maxima.sourceforge.net) and for nu-
merical calculation (including code for generating
figures) using R (http:/www.r-project.org) is available
at http: /www.epibiostat.ucsf.edu/biostat/sen.
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