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Identifying the genetic loci contributing to variation in traits which
are quantitative in nature (such as the yield from an agricultural crop
or the number of abdominal bristles on a fruit fly) is a problem of great
importance to biologists. The number and effects of such loci (called
quantitative trait loci or QTLs) help us to understand the biochemical
basis of these traits, and of their evolution in populations over time.
Moreover, knowledge of these loci can aid in designing selection experi-
ments to improve the traits.

There are a large number of different methods for identifying the
QTLs segregating in an experimental cross. Little has been written crit-
ically comparing the methods, and there have been few studies compar-
ing their performance; we make an attempt at this.

1. Introduction. Identifying the genetic loci contributing to variation in
traits which are quantitative in nature (such as the yield from an agricultural
crop or the number of abdominal bristles on a fruit fly) is a problem of great
importance to biologists. The number and effects of such loci (called quantitative
trait loci or QTLs) help us to understand the biochemical basis of these traits,
and of their evolution in populations over time. Moreover, knowledge of these
loci can aid in designing selection experiments to improve the traits.

There are a large number of different methods for identifying the QTLs seg-
regating in an experimental cross. Little has been written critically comparing
the methods, and there have been few studies comparing their performance; we
make an attempt at this.

There are three major points which we would like to make in this paper:
first, identifying QTLs is best seen as a model selection problem; most current
methods do not view the problem in this way. Second, it is important to critically
compare the different approaches to any problem; more refined analyses and
more complicated algorithms do not necessarily lead to improved results. Finally,
different situations may require different methods; with each new experiment, one
must reconsider the available approaches, as each new problem may require a
new method.

1This work was part of the author’s Ph.D. dissertation at the University of California,
Berkeley.
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We will focus on a backcross experiment, and will assume that the QTLs act
additively. Identifying interactions between loci is a much more difficult prob-
lem; considering only the simple additive case will lead to greater clarity. We
concentrate almost exclusively on detecting QTLs, considering the estimation of

theI QTLs’ effects and ;)reci e locations of seconi]]aléy im%or%%nc%.
n“the remaining part of this section, we will describe the backcross exper-

iment, the resulting data, some statistical models and the goals of the QTL
experiment and its analysis. In Section 2, we will review the major approaches
to identifying QTLs. In Section 3, we will describe the results of some simulations
to compare the performance of a number of the most important methods.

1.1. Ezperiments. Most experiments aimed at identifying quantitative trait
loci (QTLs) begin with two pure-breeding lines which differ in the trait of interest.
We will call these the low (L) and high (H) parental lines. The lines are the result
of intensive inbreeding, so that each is essentially homozygous at all loci (meaning
that, at each locus, they received the same allele from each of their two parents).
Crossing these two parental lines gives the first filial (or F1) generation. The F4
individuals receive a copy of each chromosome from each of the two parental
lines, and so, wherever the parental lines differ, they are heterozygous. All Fy
individuals will be genetically identical, just as the individuals in each of the

tal li 7 Lo .
Pafgy alclf(ecsro‘ggf%he F individuals are crossed to one of the two parental lines,

for example, the low line. The backcross progeny, which may number from 100
to over 1000, receive one chromosome from the low parental line, and one from
the Fi. Thus, at each locus, they have genotype either LL or HL. As a result
of crossing over during meiosis (the process during which gametes or sex cells
are formed), the chromosome received from the F; parent is a mosaic of the two
parental chromosomes. At each locus, there is half a chance of receiving the allele
from the low parental line (L) and half a chance of receiving the allele from the
high parental line (H). The chromosome received will alternate between stretches

of I;[‘ﬁeaggaﬁg'to look for an association between the phenotype of an individual
and whether it received the L or H allele from the F; parent at various marker

1Oc*?Ve use the backcross as our chief example, because of 1ts simplicity. At each lo-
cus in the genome, the backcross progeny have one of only two possible genotypes.
The strategies developed for analyzing backcross experiments will generally work
for other experimental crosses as well.

1.2. Data. In an experiment like a backcross, each of the progeny is scored
for one or more traits. (We will consider only one trait.) In addition, the progeny
are typed at a number of genetic markers: at each marker, it is determined
whether the allele an individual received from the F; parent was that from the
low or high parental line. Thus, at each of these marker loci, we determine, for
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each of the progeny, whether its genotype 1s LL or HL.

A genetic map specifying the relative locations of the markers may be known,
or will be estimated using the data from the current experiment. Such a map
gives the linear order of the markers on the various chromosomes. The distance
between markers in a genetic map is given by genetic distance, in the units
centiMorgans (cM). Two markers are separated by d ¢cM, if d is the expected
number of crossovers between the markers in 100 meiotic products.

Generally, we will write y; for the phenotype (trait value) of individual 7, and
z;; = 1 or 0 according to whether individual 7 has genotype HL or LL at the jth
marker.

Typical experiments involve 100 to 1000 progeny, and use between 100 and
300 genetic markers.

1.3. Models.

1.3.1. Model for recombination. A diploid organism has two copies of each
chromosome, one from its mother and one from its father. During the formation
of gametes (sex cells), in the process of meiosis, the two homologous copies of
a chromosome may undergo exchanges, called crossovers. Each of the gametes
formed contains one copy of each chromosome, and each of these will be a mosaic
of the two original homologs.

The locations of the crossovers along a chromosome are often modelled as
a Poisson process (the assumption of “no interference”), with the processes in
different individuals and on different chromosomes in one individual being in-
dependent. Moreover, at each locus, there is an equal chance that the allele is
either paternally or maternally derived.

Consider a chromosome with & markers, and let 2;; = 1 or 0 if the ¢th indi-
vidual has genotype HL or LL, respectively, at the jth marker. Then Pr(z;; =
1) = Pr(z;; = 0) = 1/2, for all ¢, j, and letting z; = (z;;), the z; form a Markov
chain.

Consider markers j; and ja, separated by a distance of d ¢M (so that d is
the expected number of crossovers between these two markers in 100 meioses).
If an odd number of exchanges occur between these markers, then z;;, # ;j,.
This event is called a recombination. Let r = Pr(z;j, # z;5,). Then r = 1(1 —
e~ 2d/100) "This is called the Haldane map function (Haldane 1919).

1.3.2. Model connecting genotype and phenotype. Let y denote the phenotype
for an individual derived from a backcross experiment. Let g be a vector giving
its genotype at all loci. Let py = E(ylg), the average phenotype for individuals
with genotype g, and 05 = Var(yl|g), the variance of the phenotypes of individuals
with genotype g. In principle, these could be arbitrary functions of g. But imagine
that there are a small number, p, of loci which affect the trait. Let (g1,...,gp)
denote the genotypes of the individual at these loci. Then

E(y|g) = Hg1...9p
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and Var(y|g) = 05

1---9p°

Often, we assume that the trait is homoscedastic—that the variance is con-
stant within the genotype groups:

Var(y|g) = o2

There are 2P different possible genotypes at the p QTLs. Each genotype could
have a distinct trait mean. But it is often assumed that the loci act additively.
Let z; = 1 or 0, according to whether g; = HL or LL. We imagine that

P
E(ylg) = n+ Y Bz

ji=1

Deviation from additivity (i.e. interactions between the QTLs) is called epistasis.

Most current methods use this assumption of additivity. Pairwise interactions
are occasionally included, but few studies have found significant effects when us-
ing such an approach (Tanksley 1993), possibly because of the enormous number
of pairwise interactions which must be considered. Strong evidence for epistasis
has been demonstrated in one of the most studied quantitative traits, the num-
ber of abdominal bristles in Drosophila (Shrimpton and Robertson 1988; Long
et al. 1995). Thus one should not discount the importance of epistasis.

It 1s important to note that additional cofactors, such as sex and treatment
effects, may also be included in the above model, though we do not discuss that
issue here.

A further often used assumption is that, given the genotypes at the QTLs, the
trait y follows a normal distribution. Thus, if we group the backcross progeny ac-
cording to their genotypes at the p QTLs, the phenotypes within each group will
be normally distributed. The phenotypes for the backcross progeny, considered
as a whole, will follow a mixture of normal distributions.

In this paper, we will focus on the case of strict additivity, with the further
assumption of normality. This is not because we feel that it is the best approach,
but rather because this simple case is still not well solved. In comparing the
major approaches to identifying QTLs, the important differences will stand out
most clearly if we avoid the added difficulties which accompany a search for
epistasis.

1.4. Goals. Consider a backcross giving n progeny. For individual ¢, we ob-
tain the phenotype, y;, and the genotype at a set of M markers. Let z;; = 1 or
0, according to whether individual ¢ has genotype HL or LL at the jth marker.

We imagine that there are a set of p QTLs, and write z;; = 1 or 0, according
to whether individual 7 has genotype HL or LL at the jth QTL. Let

P
Yi IAH-Z[)’]'ZZ']' +é€

ji=1

where the ¢; are independent and identically distributed (iid) normal(0, 0?).
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The ultimate goal is to estimate the number of QTLs, p, the locations of the
QTLs, and their effects, §;. In estimating the number and locations of the QTLs,
we may make two errors: we may miss some of the QTLs, and we may include
additional, extraneous loci.

In practice, a scientist may be satisfied with finding a few QTLs with large
effect. In QTL experiments aimed at improving an agricultural crop, one seeks
only the major QTLs, which may then be introgressed from one line into another.
Furthermore, with a few major QTLs in hand, it may be possible to design
experiments which identify the other QTLs segregating in a cross.

How one chooses to balance the two errors, of missing important loci and of
including extraneous loci, depends on the goals of the scientists who designed
the cross. In some cases, one may wish to find as many of the QTLs as possible
and be undeterred by the possibility that several of the identified loci are, in
fact, extraneous ones, of no effect. In other situations, one may be satisfied with
identifying only a few major QTLs, in order to avoid including extraneous ones.

2. Major approaches. There are a large number of different methods for
identifying the QTLs segregating in an experimental cross. In this section, we
describe most of the proposed methods and discuss their advantages and disad-
vantages. It is best to distinguish between methods which model a single QTL at
a time from those which attempt to model the effects of several QTLs at once.
In Section 2.1, we review the single QTL methods, and in Section 2.2, we review
the multiple QTL methods.

2.1. Single QTL methods. We will consider five basic single QTL methods:
analysis of variance at a single marker, maximum likelihood using a single marker,
interval mapping (i.e., maximum likelihood using flanking markers), an approx-
imation to interval mapping called “regression mapping,” and a further method
which gives results approximating interval mapping, called “marker regression.”
Each of these methods includes a so-called “genome scan.” The loci are consid-
ered one at a time, and a significance test for the presence of a single QTL is
performed at each. Generally, the significance level used for the tests is adjusted
to account for the multiple tests performed. Areas of the genome which give
significant results are indicated to contain a QTL.

2.1.1. Analysis of variance. Analysis of variance (ANOVA) is the simplest
method for identifying QTLs (see Soller et al. 1976). Consider a single marker
locus, and group the progeny according to their genotypes at that marker. To test
for the presence of a QTL, we look for differences between the mean phenotype
for the different groups using ANOVA. If a QTL is tightly linked to the marker,
then grouping the progeny according to their marker genotypes will be nearly
the same as grouping them according to their (unknown) QTL genotypes, with
recombinants being placed in the wrong groups.

Consider a backcross with a single segregating QTL. Suppose that the progeny
with QTL genotype HL have mean phenotype pg, and that progeny with QTL
genotype LL have mean phenotype pr, so the QTL has effect § = pug — ur.
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Consider a marker locus which is a recombination fraction r away from the QTL.
Of the individuals with marker genotype HL, a fraction (1 — r) of them have
QTL genotype HL, while the remainder have QTL genotype LL, and so these
individuals have mean phenotype (1 — r)ug + rur = pg — fr. The individuals
with marker genotype LL have mean phenotype (1 — r)ur + rpg = pr + Br.
Thus the mean difference between the two marker genotype groups is (pug —
Br) — (pr + Br) = B(1 — 2r). And so a non-zero mean difference between the
marker genotype groups indicates linkage between the marker and a QTL.

There are two drawbacks to this method. First, we do not receive separate
estimates of the location of the QTL relative to the marker (r) and its effect (3).
QTL location is indicated only by looking at which markers give the greatest
differences between genotype group means. Second, when the markers are widely
spaced, the QTL may be quite far from all markers, and so the power for detection
will decrease, since the difference between marker genotype means decreases
linearly as the recombination fraction between the marker and the QTL increases.

2.1.2. Mazimum likelithood with a single marker. To get around the problems
with ANOVA, several authors have proposed to explicitly model the location of
the QTL with respect to the marker, and then use maximum likelihood (ML),
or an approximation to ML, to estimate the distance between the marker and
the QTL as well as the QTL’s effect (Weller 1986, 1987; Simpson 1989). This
method makes use of the fact that the marker genotype groups are not quite the
same as the QTL genotype groups.

Consider again the backcross discussed in the previous section. Suppose
that the individuals who are HL at the QTL have phenotypes which are
normal(pg, o?), and the individuals who are LL at the QTL have phenotypes
which are normal(pur,0?). Then at a marker which is a recombination fraction
r away from the QTL, the phenotype distribution for individuals who are HL is
a mixture of two normals, with density

s o) = (1= )6 (L) g (L2
o (e

where ¢ is the density of the standard normal distribution. The phenotype dis-
tribution for individuals who are LL at the marker has density

Rty pn o) = (1= (L21E) g (1218
a o

Let z; = 1 or 0, according to whether individual ¢ has marker genotype HL or
LL. Let y; denote the phenotype for individual i. Then the likelihood under this
model, letting # denote the vector of parameters (pm, pr, o), is

L0, riy, @) = [ U (s 0,717 [Falys: 0, 7))~

K3

Maximizing this function over 8, using, for example, the EM algorithm (Dempster
et al. 1977), gives the maximum likelihood estimates. This is done for a particular
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value of the recombination fraction r. We then maximize the likelihood over r
to obtain 7.

Linkage between the marker and the QTL is tested by performing a likelihood
ratio test, comparing the above model, with a single QTL linked to the marker,
to the null hypothesis of no segregating QTLs, where the individuals are assumed
to have phenotypes which are normal(y, 0?).

The likelihood under the null hypothesis, letting 6y = (p, o) is

Lo(fo; y) = 1:[¢ <%) :

The likelihood ratio test is performed by calculating the likelihood ratio, or, as
seems to be preferred by geneticists, the LOD score, which is the log (base 10)
likelihood ratio

LOD(r) = log, [max9 Lé.ry, I)]

maxg, Lo(fo;y)

and comparing it to the distribution of the maximum LOD score under the null
hypothesis (that is, under the assumption that no QTLs are segregating).

This method has the advantage of giving separate estimates of the QTL’s
location with respect to a marker and its effect. One disadvantage is the great
increase in computation associated with maximizing the likelihood function to
obtain parameter estimates. But a bigger problem involves combining the infor-
mation for different markers to give a single estimate of the QTL location; it is
not at all clear how this can be done.

2.1.3. Interval mapping. Lander and Botstein (1989) improved on the pre-
vious single marker approaches by considering flanking markers. Their method
has been called “interval mapping,” and is currently one of the most commonly
used methods for identifying QTLs in experimental crosses. (Note that Mather
and Jinks (1977) proposed a similar approach, using the method of moments
with flanking markers.)

Again, they assume that there is a single segregating QTL, and that backcross
individuals have phenotypes which are normally distributed with mean pg or
pr,, according to whether their QTL genotype is HL or LL, and common variance
o?. Further, they use the assumption of no crossover interference, and require a
genetic map specifying the locations of the markers.

Consider two markers which are separated by d cM, corresponding to a re-
combination fraction of r = %(1 — 6_2d/100), and a putative QTL located df ¢cM
from the left marker, corresponding to a recombination fraction of rp = %(1 —
e‘2dL/100). The recombination fraction between the QTL and the right marker
is then rgp = (r —rr)/(1 — 2rr). There are four possible sets of genotypes at the
two marker loci; for each, we can calculate the conditional probability for each
of the two QTL genotypes, given the marker genotypes. These are displayed in
Table 1. Note that, with fully informative markers, the flanking markers provide
all of the information about the QTL genotypes.
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TaBLE 1
Conditional probabilities for the QTL genotype given the genotypes at two flanking markers

marker genotype QTL genotype
left right HL LL
HL HL (I=rp)(1—rr)/(1—7) rrrr/(l1—7)
HL LL (1=rp)rr/r r(l—rg)/r
LL HL ri(l1—rg)/r (1=rp)rr/r
LL LL rerr/(1—r7) (1=rp)1—rr)/(1—7)

For each of the four sets of marker genotypes, we can now write down the
conditional phenotype density, which has the form of a mixture of two normal
distributions, similar to those seen in Section 2.1.2. Thus we can obtain the
likelihood for our four parameters, (psr, pr, o, 7).

Lander and Botstein (1989) proposed to maximize this likelihood, for fixed
rr, using the EM algorithm (Dempster et al. 1977). They then calculated the
LOD score, which is the log (base 10) likelihood ratio comparing the hypothesis
of a single QTL at the current locus (i.e., the current value of rr) to the null
hypothesis of no segregating QTLs (meaning that the individuals’ phenotypes
follow a normal(yu, %) distribution). The two likelihoods in this ratio must be
maximized over their respective parameters.

The procedure outlined above is performed for each locus in the genome. The
likelihood under the null hypothesis is calculated just once. The likelihood for
the hypothesis of a single QTL must be calculated at each locus in the genome
(or, really, just every 1 ¢cM or so), and so the EM algorithm must be performed
at each locus.

The LOD score is then plotted against genome location, and is compared to
a genome-wide threshold. Whenever the LOD curve exceeds the threshold, we
infer the presence of a QTL. The point at which the LOD is maximized is used
as the estimate of the QTL location. A one- or two-LOD support interval, the
region around the inferred QTL in which the LOD score is within one or two of
its maximum, is used as an interval estimate for QTL location.

The genome-wide threshold, used to indicate the significance of a peak in the
LOD curve, is obtained by finding the 95th percentile of the maximum LOD
score, across the entire genome, under the null hypothesis of no segregating
QTLs.

Figure 1 gives an example of a LOD curve calculated using interval map-
ping. We simulated 200 backcross progeny, having a single chromosome of length
100 cM with 11 equally spaced markers, using a model with a single QTL located
35 ¢cM from the left of the chromosome. The effect of the QTL (the difference
between the means for HL versus LL individuals) was 0.750, giving a heritability,
the proportion of the total phenotypic variance due to the QTL, of 0.36. The
dots plotted on the curve point out the locations of the marker loci. Using a LOD
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threshold of 2.5, the observed peak is significant. The inferred QTL is estimated
to be at 37 ¢cM, with a maximum LOD score of 3.4. The one-LOD support inter-
val covers the region from 27 ¢cM to 47 ¢M, which does indeed include the actual
location of the simulated QTL.

4 -
3 -
Q
(@) 2 A
-l
1 .
O ,
0 20 40 60 80 100
location (cM)

Fic. 1. An example LOD curve, calculated using interval mapping, for some simulated data.

A great deal of effort has been expended in trying to understand the appro-
priate LOD threshold to use. Lander and Botstein (1989) performed simulations
to estimate the threshold for various different genome sizes and marker densi-
ties. They gave analytical calculations for the case of a very dense marker map.
These guidelines should suffice for most uses. If one is concerned, additional sim-
ulations, conforming to the particular case under study, can be performed quite
easily, or one can use a permutation test (Churchill and Doerge 1994), which has
the advantage of avoiding the assumption of normally distributed environmental
variation.

A number of studies have assessed the performance of interval mapping in
comparison to ANOVA (van Ooijen 1992; Knott and Haley 1992; Darvasi et al.
1993; Rebai et al. 1995; Hyne et al. 1995). The chief benefit of interval mapping
is that it gives more precise estimates of the location and effect of a QTL. It does
not give an appreciable increase in the power for detecting QTLs, and it requires
a great deal more computational effort than does single marker ANOVA.

Hyne et al. (1995) stated that when a QTL is located very near one end of
a linkage group, its estimated location, as given by interval mapping, will be
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biased, since if one looks for QTLs only within the two extreme markers on the
linkage group, its estimated location will never be outside of the last marker. It is
possible to extend the LOD curves beyond the most extreme markers, however;
outside of these markers, we can use the single marker maximum likelihood
method, described in the previous section. Doing this should eliminate the bias
problem. (Of course, a slight increase in variance, and a slight decrease in power,
will accompany this approach.)

Look again at Figure 1. The dots on the LOD curve are at the marker loci.
At these points, interval mapping is really just ANOVA, since the genotypes
there are known exactly. If we performed only ANOVA, we would get exactly
those points on the LOD curve. Interval mapping links these points together,
and indicates that the best estimate for the QTL position is at 37 cM. But the
markers at both 30 and 40 ¢cM are within the one-LOD support interval.

2.1.4. Regression mapping. Knapp et al. (1990), Haley and Knott (1992),
and Martinez and Curnow (1992) independently developed a method which ap-
proximates interval mapping very well, but requires much less computation. The
method has come to be called “regression mapping.” The presentation in Haley
and Knott (1992) is by far the best.

Consider again the model of the previous section, with two markers separated
by a recombination fraction r, and a putative QTL located between them, at a
recombination fraction rr from the left marker. The conditional expected value
of the phenotype for an individual, given its genotypes at the flanking markers,
is

E(y|marker gen.) = pur + (g — pr) Pr(QTL gen. is HL|marker gen.),

where Pr(QTL gen. is HL|marker gen.) is as shown in Table 1.

In regression mapping, we regress the individuals’ phenotypes on their condi-
tional probabilities for having the genotype HL at the putative QTL, given their
marker genotypes. The log likelihood is calculated assuming that

ylmarker gen. ~ normal(§, 0?)

where § = E(y|/marker gen.). This gives the LOD score

RSSq
RSS

where n is the number of progeny, RSS is the residual sum of squares from the
above regression, Y, (y; — ;)%, and RSSy is the residual sum of squares under
the null hypothesis of no segregating QTLs, Y, (v — y)?.

Like interval mapping, the LOD score is calculated at each locus in the
genome, but here, we need only calculate a single regression at each locus, rather
than perform the EM algorithm at each locus, which requires a number of itera-
tions, each containing a regression. Thus, there is a great savings in computation

LOD = gloglo (

time. Also, because regression mapping requires only simple regression calcula-
tions, 1t 1s much easier to include additional effects into the analysis, such as sex
or treatment effects. This may translate into large increases in performance.
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Figure 2 displays the difference between the LOD curves calculated by regres-
sion mapping and interval mapping, for the data used in the previous section. The
difference between the two curves is very subtle, being less than 0.1 in absolute
value. Regression mapping gives results every bit as good as interval mapping,
with a great deal less computation.
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location (cM)

FiG. 2. The difference between the LOD curves calculated using regression mapping and in-
terval mapping for some simulated data.

2.1.5. Marker regression. Kearsey and Hyne (1994) and Wu and Li (1994)
independently developed a further method, which seems to approximate inter-
val mapping quite well, with less intensive computation. But this method, which
Kearsey and Hyne call “marker regression,” seems more awkward and less adapt-
able than Haley and Knott’s “regression mapping,” and has not been shown to
provide any further benefits.

Consider a linkage group with M markers, and fix the location for a putative
QTL. Let r; be the recombination fraction between the QTL and the jth marker.
Group the individuals according to whether they have genotype HL or LL at
marker j. Let Bj be the difference between the phenotype means for these two
groups. As shown in Section 2.1.1,

() = A(1 - 2ry),
where 0 = pg — pr, the effect of the QTL.
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Kearsey and Hyne (1994) suggest regressing the Bj for the M markers on the
values (1 — 2r;), without an intercept. This is performed for each locus on the
linkage group; we seek the locus giving the minimum residual sum of squares in
this regression.

Wu and Li (1994) point out that the Bj do not have constant variance. The
variance of B]' is approximately 4[o% + 7;(1 — r;)3?]/n, where n is the number
of progeny, and ¢? is the environmental variance. They suggest using weighted
least squares, using weights inversely proportional to the variances of the Bj. But
since o and 3 are not known, it is not clear how to do this, unless one were to
use a form of iteratively re-weighted least squares.

Wu and Li (1996) further point out that the Bj are correlated, and recommend
using general least squares using an estimate of the covariance matrix.

We applied the method of Kearsey and Hyne (1994) to the simulated data
analyzed in Sections 2.1.3 and 2.1.4. Figure 3 displays the residual sum of squares
curve. The minimum is realized at 42 cM.
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Fic. 3. The residual sum of squares curve calculated using the marker regression method for
some simulated data.

Kearsey and Hyne (1994) gave a small number of simulations which suggested
that marker regression performs as well as interval mapping. But they have not
made a case for real improvements, aside from ease of computation. The method
seems to have no advantages over regression mapping.
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2.2. Multiple QTL methods. Recent efforts in developing methods to identify
QTLs have focused on multiple QTL methods. There are three principal reasons
for modelling multiple QTLs: to increase sensitivity, to separate linked QTLs,
and to estimate epistatic effects (i.e., interactions between alleles at different
QTLs).

When several QTLs are modelled, one can control for much of the genetic
variation in a cross, and thus individual QTLs can be more clearly seen. In
contrast, when one models a single QTL at a time, the genetic variation due
to other segregating QTLs is incorporated into the “environmental” variation.
When two QTLs are linked, single QTL methods, such as interval mapping, often
view them as a single QTL. Searches which allow multiple QTLs do a better job of
separating the two loci, and identifying them as distinct. The presence of epistasis
can only be detected and estimated using models which include multiple QTLs.
Incorporating epistatic effects into multiple QTL models will be very difficult,
however. If one were to include all possible pairwise interactions, the number of
parameters in the model would quickly explode. The methods discussed here all
neglect the possibility of epistasis.

In this section, we discuss four important methods which explicitly consider
multiple QTLs: multiple regression, interval mapping type methods using ei-
ther forward selection or multi-dimensional searches, composite interval map-
ping (also called MQM mapping), and Markov chain Monte Carlo using a full
Bayesian model.

2.2.1. Multiple regression. The obvious extension of analysis of variance is
multiple regression. We attempt to form a model which includes a number of
different marker loci, rather than looking at the markers one at a time. Let M
be the number of markers, let z;; = 1 or 0, according to whether individual 7 had
genotype HL or LL at the jth marker, and let y; be the phenotype for individual
1. We write

ji=1

where z; = (z;;). We presume that most of the markers have 5; = 0. We seek
the set of markers, S, with non-zero coefficients, g;, so that

E(yilzi) = p+ Y Bizij.
JES
The markers in S are indicated to be near QTLs.

There are two problems associated with this method. First, we must find a
way to search through the set of possible models, in order to seek good ones. In
an experiment with 100 genetic markers, there are 2'%0 & 103° possible models
to consider; it will be impossible to look at each of them. Second, we must form
a criterion for choosing from these models. For models that include the same
number of markers, one generally picks the one with the smallest residual sum
of squares. The difficulty is in choosing between models of different sizes: what
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change in the residual sum of squares must we see before we will accept an
additional marker into the model?

Cowen (1989) discussed using stepwise selection and backward deletion, and
using Mallows’ C}, and the adjusted-R? criteria, when using multiple regression
to identify QTTLs. More recently, Doerge and Churchill (1996) described using
forward selection, with permutation tests to determine the appropriate size of
the model. Wright and Mowers (1994) and Whittaker et al. (1996) described the
relationship between the partial regression coefficients, obtained by regressing a
trait on a set of marker loci, and the locations and effects of a set of QTLs, but
they did not provide a procedure for using this information to identify QTLs.

Broman (1997) discussed the use of model selection procedures in regression to
identify QTLs. A number of different methods of searching through the space of
models were compared: forward selection, backward selection, and Markov chain
Monte Carlo (MCMC). Forward selection was found to perform as well as the
other search methods, while it requires much less extensive calculations. Further
discussion focussed on the criteria for choosing a model. The usual approaches to
model selection focus on minimizing prediction error, and, as a result, standard
criteria for choosing models, such as Mallows’ C;, and adjusted-R2, tend to choose
models with a large number of extraneous variables. With some modification,
the Schwartz’s BIC (Schwartz 1978) performs much better. This criterion has
the form BIC-6 = log RSS + g6 log n/n, where RSS is the residual sum of squares
for the model, ¢ is the number of markers in the model, and n is the number of
progeny. With this method, one attempts to find the model which minimizes the
above criterion. The parameter § must be chosen to balance the error of missing
important QTLs with the error of including too many extraneous markers; a
value between 2 and 3 may be appropriate in many situations.

2.2.2. Interval mapping revisited. TLander and Botstein (1989) briefly men-
tioned a method for distinguishing linked loci. If, when performing interval map-
ping, the LOD curve for a linkage group shows two peaks, or a single very broad
peak, Lander and Botstein recommended to fix the position of one QTL at the
location of the maximum LOD, and then search for a second QTL on that linkage
group. In the model selection literature, this method is generally called forward
selection (Miller 1990). Though some authors (Haley and Knott 1992; Satagopan
et al. 1996) have interpreted this method as applying interval mapping to the
residuals from the best fit of one QTL, it is best to estimate the effects of both
QTLs simultaneously, using the original data (cf Dupuis et al. 1995).

We fix the location of the first QTL, and vary the location of the second
QTL along the linkage group. At each location for the second QTL, we calculate
a LOD score, comparing the maximum likelihood under the hypothesis of two
QTLs at these locations, to that with a single QTL, located where the first QTL
was placed. Each individual’s contribution to the likelihood has the form of a
mixture of four normal distributions, the four components corresponding to the
four possible QTL genotypes. The EM algorithm can again be used to obtain
the maximum likelihood estimates and the corresponding LOD score. (One could
also apply the “regression mapping” method.)
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Several authors have criticized this method (Haley and Knott 1992; Marti-
nez and Curnow 1992), pointing to the phenomenon of “ghost QTLs.” When
two or more QTLs are linked in coupling (meaning that their effects have the
same sign), interval mapping often gives a maximum LOD score at a location in
between the two QTLs.

Consider, for example, a 60 cM segment of a chromosome, with four equally
spaced markers (20 ¢M spacing). Consider a backcross with QTLs located at 15
and 45 cM, acting additively and having equal additive effect 0.5¢. The solid
line in Figure 4 gives the expected LOD (ELOD) curve for this situation, when
using 200 progeny. (Since there is no closed-form expression for the ELOD curve,
it was estimated by performing 1000 simulations of the above situation and
averaging the LOD curves obtained. We also used the fact that the ELOD curve
is symmetric about the 30 ¢cM point, and so averaged the pairs of points on
the curve which are symmetric about 30 ¢M.) Note that the ELOD curve is
maximized at 30 ¢cM, even though the simulated QTLs were at 15 and 45 cM.
This gives rise to the term “ghost QTL.” Forward selection here would give bad
results. We would generally pinpoint the first QTL at around 30 ¢cM, and then
search for a second QTL, and so would be completely mistaken.

expected LOD

0 10 20 30 40 50 60

location (cM)

Fic. 4. Ezpected LOD curves, with two QTLs located at 15 and 45 cM. The solid line, dashed
line and dotted line correspond to using equally-spaced markers at spacings of 20, 10 and 5 cM,
respectively.

But this “ghost QTL” problem turns out to be an artifact of interval mapping.



16 K. W. BROMAN AND T. P. SPEED

The dashed and dotted lines in Figure 4 are the ELOD curves for the above
example, using marker spacings of 10 and 5 ¢cM, respectively. When the markers
are more tightly spaced, the ghost QTL disappears. The ELOD curves are not
maximized exactly at the true QTL locations, but things do get better as marker
density increases. Note that if one considered only the marker loci, one would
not be so misled. The marker loci at which the LOD is maximized are those
closest to the true QTLs. Similar observations were made by Whittaker et al.
(1996) and Wright and Kong (1997).

As an alternative to forward selection, several authors have recommended per-
forming a full two-dimensional search for QTLs (Haley and Knott 1992; Martinez
and Curnow 1992; Hyne and Kearsey 1995; Whittaker et al. 1996; Wu and Ia
1994, 1996). Instead of fixing the location of one QTL and then searching for an
additional one, the locations of both QTLs are allowed to vary simultaneously. A
great deal more computation must be performed. Extending this method to more
than two QTLs, as recommended by Wu and Li (1996), is possible in principle,
but the computation requirements would very quickly become prohibitive.

One problem that these authors have not discussed carefully is the question
of when to add an additional QTL: how large an increase in LOD should we
require before allowing an additional QTL? Such guidelines are necessary, if one
is to use these methods in practice.

2.2.3. Composite interval mapping and MQM mapping. Jansen and Zeng in-
dependently developed a method which attempts to reduce the multi-dimensional
search for identifying multiple QTLs to a one-dimensional search (Jansen 1993;
Jansen and Stam 1994; Zeng 1993, 1994). This is done using a hybrid of interval
mapping and multiple regression on marker genotypes. By including other mark-
ers (on the same chromosome and on different chromosomes) as regressors while
doing interval mapping, one hopes to control for the effects of QTLs in other
intervals, so that there will be greater power in detecting a QTL, and so that the
effects of the QTLs will be estimated more precisely. Jansen called the method
MQM mapping (short for “marker-QTL-marker” or “multiple QTL models”);
Zeng called it composite interval mapping.

The method is performed as follows. We choose a set of markers, S, to control
for background genetic variation. Then, we perform a genome scan, as in interval
mapping. At each locus in the genome, we hypothesize the presence of a QTL,
and we write

y ~ normal(p + Bz + Z Bizj,o?),
JjES*
where y is the phenotype, z = 1 or 0, according to the whether the genotype at
the putative QTL is HL or LL, z; = 1 or 0, according to whether the genotype
at the jth marker is HL or LL, and S* is a subset of our set of markers, S, where
we exclude any markers that are within, say, 10 cM of the putative QTL. Under
this model, the contribution of each individual to the likelihood has the form
of a mixture of two normal distributions with means p + g + ZjeS* Bjx; and
u+ EjeS* B;x;, with mixing proportions equal to the conditional probabilities
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of the individual having QTL genotype HL and LL, given its marker genotypes.
The EM algorithm, or a variant called the ECM algorithm (Meng and Rubin
1993), can be used to maximize the likelihood function.

As in interval mapping, at each locus, a likelihood ratio or LOD score is
calculated, comparing the likelihood assuming that there is a QTL at that locus,
to the likelihood assuming that there is not a QTL there, in which case we
imagine that all progeny have phenotypes which are normally distributed with
mean g + Z]’ES* Bjz; and variance o?. The LOD score is plotted as a function
of genome position, and is compared to a genome-wide threshold. As in interval
mapping, areas of the genome for which the LOD curve exceeds the threshold
are said to contain a QTL.

The genome-wide threshold is obtained by considering the distribution of the
maximum LOD score under the hypothesis of no segregating QTLs anywhere in
the genome. This distribution should take into account the selection of the set of
marker regressors, S. The distribution can be estimated by simulating a set of
data under the hypothesis of no segregating QTLs, performing the entire proce-
dure, and calculating the maximum LOD curve obtained, and then repeating the
process a number of times. The 95th percentile of these maximum LOD scores
is used as the threshold.

The key problem in this method is the choice of which markers to use as re-
gressors: using too many markers will increase the variance of the LOD score,
and thus will decrease the power for detecting QTLs. Jansen (1993) and Jansen
and Stam (1994) used backward deletion, with Akaike’s Information Criterion
(AIC) (Akaike 1969) or a slight variant, to pick the subset of markers. Zeng
(1994) recommended using either all markers, dropping those within 10 ¢cM of
the putative QTL, or using all markers that are not linked to the putative QTL.
Basten et al. (1996), in a manual for the program QTL Cartographer, recom-
mended using forward selection up to a fixed number of markers, say five, and
then dropping any markers that are within 10 ¢cM of the putative QTL.

We have found that the methods that Zeng (1994) originally recommended,
using all markers or all markers not linked to the putative QTL, work very badly.
Including so many markers increases the corresponding LOD threshold to such
a large value that power is reduced to almost zero. Only QTLs with extremely
large effect will be found by this method.

The performance of the other methods for choosing the set of marker regres-
sors depends on how many markers are chosen. And once we have found a way
to choose this set, the task of identifying QTLs is essentially done: the best set
of markers to use is exactly the set of markers which are closest to the under-
lying QTLs. In Section 3, we present some simulation studies which assess the
performance of these methods.

2.2.4. Markov chain Monte Carlo. Satagopan et al. (1996) have applied the
Markov chain Monte Carlo (MCMC) method to the problem of identifying QTLs.
MCMC is a very popular approach to solving very complex statistical problems,
especially those which include a large amount of missing information. Gelman et
al. (1995) gives a very good introduction to the subject.
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Consider again a backcross. Satagopan et al. (1996) consider a single linkage
group. (The method can be extended to several linkage groups in a straightfor-
ward way.) Consider n progeny. Let y; be the phenotype for individual 7. Suppose
there are M markers, at locations D = (D1, Da, ..., Dpr), in ¢M, from the left
end of the linkage group. Let z;; = 1 or 0, according to whether individual ¢ has
genotype HL or LL at the jth marker.

Let S be the number of segregating QTLs, and let A = (A1,...,As) be their
locations, in ¢cM, from the left end of the linkage group. Let z;; = 1 or 0, according
to whether individual ¢ has genotype HL or LL at the jth QTL. Let §; be the
effect of the jth QTL, and assume that the environmental variation is normally
distributed, with variance o%. Let y be the mean of individuals for whom z;; = 0
for all j.

As shorthand, we will write y = (y1,...,¥n), & = (zi1,.
(z1,...,2y), and similarly for z;, z and 3. Also, let 8 = (p, 3, 0).

We have

..,CL‘Z'M), r =

s
Yilzi, 0 ~ normal(p + E B; zij, 02).
ji=1
This gives the likelihood

n

L\ Oly, 2, D) =[] D_ Flwilzi = ¢,0) Pr(zi = |\, 21, D)

i=1 ¢

where the sum over ¢ is over the 2° possible QTL genotypes for individual i and
where f is the conditional (normal) density for y.

Satagopan et al. (1996) use a full Bayesian framework, meaning that they as-
sign a prior probability distribution to the unknown parameters (A, 8), say p(A, ),
and then look at their posterior distribution, given the data, p(A, 8|y, z, D).

The goal of the MCMC method is thus to estimate the posterior distribution
of the unknown parameters. This is done by creating a Markov chain whose
stationary distribution is the desired posterior distribution.

Simulating from this chain gives a sequence (Ag, o), (A1,01),...(An, 0n). Es-
timates of the desired parameters, such as the QTL effects, §;, are obtained
by averaging over these samples. Interval estimates for the QTL locations can
be obtained by looking at the smallest intervals which contain, say, 95% of the
samples.

In order to determine the number of QTLs, S, Satagopan et al. (1996) run
separate chains for different values of S, and use Bayes factors. In brief, for each
value of S, they use their samples to estimate the probability of the data given
the model, p(y, z|S). They estimate the number of QTLs to be the value of S
for which this estimated probability is large. If one were willing to give a prior
on the number of QTLs, say Pr(S = s), the posterior distribution for S could be
calculated

- _ oy, z|S =5)Pr(S =5s)
Pr(S =sly,z) = S p(p.2lS= 5 Pr(S = 5)
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The estimated number of QTLs would then simply be the value of S with the
largest posterior probability.

A later report (Satagopan and Yandell 1996), using an idea developed by
Green (1995), describes how to allow the unknown number of QTLs, S, to be
included as an unknown parameter, so that a single Markov chain can be used to
estimate S along with the other parameters. Doing this requires placing a prior
distribution on the number of QTLs.

We have skipped all of the details of the MCMC method. The difficulties in
applying this approach are entirely in those details. First, you need to create a
Markov chain which has your posterior distribution as its stationary distribution.
There are a number of standard ways to do this, such as the Gibbs sampler (Ge-
man and Geman 1984) and the Metropolis-Hastings algorithm (Hastings 1970).
The most important characteristic in the chain is that it mixes well: that it
moves around the parameter space rather easily, and that it very quickly reaches
its stationary distribution. Forming good Markov chains, and monitoring their
behavior, is a delicate and sophisticated art.

The other important problem is in the determination of the number of QTLs.
Whether we assign a prior to the unknown number of QTLs or use Bayes factors,
we must make choices which balance the problem of missing real QTLs with that
of including extraneous loci.

3. Simulations. In thissection, we present the results of a small simulation
study aimed at comparing several different methods for identifying QTLs. Our
focus is on identifying QTLs, and so we look only at whether the methods detect
the simulated QTLs, and not at the estimated effects and the precision with
which the location is estimated. Simulations are necessary, because the methods
for identifying QTLs are too complex to be assessed by analytical means, at least
in the situations in which they would be used in practice.

Most authors have used simulations to demonstrate their methods for finding
QTLs. Many have presented the results of applying their method to a single data
set (Jansen 1993; Knapp 1991; Lander and Botstein 1989; Zeng 1994), a practice
which precludes a true assessment of the method’s performance. Others consider
only very simple situations, such as simulating only one or two chromosomes with
one or two segregating QTLs (Haley and Knott 1992; Kearsey and Hyne 1994).
In practice, most QTL studies involve a search over ten or more chromosomes,
and very often there is evidence for at least a moderate number of segregating
QTLs (from three or four to as many as a dozen). A method’s ability to detect
QTLs in simulation studies which use very limited searches and in which only a
small number of QTLs are allowed will say little about its performance in the
more complex situations where the method is anticipated to be used.

Also missing from the literature is a careful comparison of the performance
of the many methods available for identifying QTLs. It is surprising that such
comparisons are not a routine part of the presentation of a new method. Before
dropping a simple approach in favor of a more complex one, we should have
evidence that the complexities of the new approach will be accompanied by a
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real improvement in performance.

We compared four different methods for identifying QTLs: analysis of variance
(ANOVA) at the marker loci, the method of Zeng (1994), forward selection using
a BIC-type criterion, and forward selection using a permutation test at each stage
(Doerge and Churchill 1994). These methods were described in Section 2.

Interval mapping (IM) was ignored, because it provides no improvement over
simple ANOVA when using a relatively dense marker map (10 ¢cM spacing or less)
and a small or moderate number of progeny (500 or less), at least when it comes
to 1dentifying QTLs. This can easily be seen when inspecting the one- or two-
LOD support intervals which accompany any application of IM: they invariably
span several markers. The benefit of IM is in providing more precise estimates
of QTL location and effects.

For Zeng’s method, we used forward selection up to either 3, 5, 7 or 9 mark-
ers to obtain the set of regressors, and limited the search for QTLs to marker
loci. With ANOVA and Zeng’s method, we obtained genome-wide thresholds by
performing 1000 simulations under the hypothesis of no segregating QTLs: the
estimated threshold was the 95th percentile of the maximum LOD score across all
markers. In addition, for these two methods, we required that the LOD dropped
by at least 2.2 in base 10 (corresponding to 5 in base e) between “peaks” before
we declared that two QTLs were identified. This value was obtained empirically
(in other words, by trial and error).

The BIC-type criterion used is log RSS + 6q log n/n, where RSS is the residual
sum of squares, n is the number of progeny, ¢ is the number of markers in the
model, and ¢ is either 2, 2.5 or 3. We use BIC-2, BIC-2.5 and BIC-3 to identify
these criteria. For the permutation method, at each stage we used the 95th
percentile of 500 permutations to determine whether to add another marker.

In the study described in this section, we simulated 250 backcross progeny,
obtained from inbred lines, with nine chromosomes, each of length 100 ¢cM and
having 11 equally spaced markers per chromosome (thus at a 10 ¢M spacing).
The recombination process was assumed to exhibit no interference. The environ-
mental variation followed a normal distribution with standard deviation o = 1.

We modelled three QTLs with equal additive effect 0.5. One QTL was located
at the center of chromosome 1, and two QTLs were located on chromosome 2 at
30 and 70 ¢M. The linked QTLs were either in coupling (effects of equal sign) or
repulsion (effects of opposite sign). The QTLs were assumed to act additively.
The heritability for these models (defined as the ratio of the genetic variance to
the total phenotypic variance) was 0.20 and 0.12 when the linked QTLs were in
coupling and repulsion, respectively. Note that all QTLs were located exactly at
marker loci.

For each QTL model we performed 1000 simulations. The result of the appli-
cation of each method was a set of marker loci indicated to be at or near QTLs.
In assessing the results, we defined a chosen marker to be correctly identifying
a QTL if it was within 20 ¢cM of a QTL; otherwise it was deemed incorrect. If
more than one chosen marker were within 20 ¢cM of the same QTL, one was
called correct and the others were called incorrect.
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The estimated genome-wide LOD (base 10) thresholds for ANOVA and Zeng’s
method (using forward selection up to 3, 5, 7 and 9 markers) are displayed
in Table 2. The estimated standard errors for the thresholds, obtained using
a bootstrap (Venables and Ripley 1994), are approximately 0.1. For ANOVA,
the threshold corresponded closely to the threshold in Figure 4 of Lander and
Botstein (1989). For Zeng’s method, the threshold increased with the number of
regressors used.

TABLE 2
Estimated genome-wide LOD thresholds for a backcross with 250 progeny and nine 100 cM
chromosomes each containing 11 equally-spaced markers

Zeng
ANOVA 3 5 7 9
2.5 33 36 38 4.0

In Table 3, we display the joint distribution, across the 1000 simulations, of the
numbers of correctly and incorrectly chosen markers for the case of three QTLs
with two QTLs linked in coupling, and using 250 progeny. The four columns
labelled “Zeng” correspond to Zeng’s method using forward selection up to either
3, 5, T or 9 markers. The three columns labelled “BIC” correspond to forward
selection using the BIC-2, BIC-2.5 and BIC-3 criteria. The column “permu”
gives the results for using forward selection with a permutation test at each
stage. The second-to-last row in the table includes all simulations with two or
more incorrectly chosen markers. The last row in the table gives the number of
simulations in which at least one incorrect marker was chosen.

TABLE 3

Distribution of the numbers of correctly and incorrectly chosen markers in 1000 simulations of
a model containing three QTLs with two QTLs linked in coupling, and using 250 progeny

# # Zeng BIC
cor incor ANOVA 3 5 7 9 2 2.5 3 permu
3 0 69 31 25 19 13 180 65 19 133
2 0 526 412 315 240 199 509 496 395 539
1 0 332 429 443 430 421 199 395 554 246
0 0 1 97 184 281 334 0 2 9 0
3 1 4 0 0 0 0 7 0 0 6
2 1 26 6 7 5 6 59 13 5 37
1 1 40 18 12 18 13 35 28 17 34
0 1 6 11 5 12 0 0 0 0
other 2 1 3 2 2 11 1 1 5
> 1 wrong 72 31 33 30 33 112 42 23 82

ANOVA nearly always found at least one QTL, and often found two, but it had
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difficulty in separating the two linked QTLs. ANOVA added incorrect markers
about 7% of the time. Zeng’s method did worse than ANOVA in this situation.
It suffered from low power for detection, and the power decreased sharply as the
number of markers used as regressors increased; using three markers as regressors
worked best in this case. Forward selection using BIC-2 did a better job of
detecting the QTLs, but included incorrect markers 11% of the time—much
more often than the other methods. The use of a larger multiplier helped to
avoid this problem, but at the expense of a lower power for detection. Forward
selection using a permutation test did well: it detected more QTLs than ANOVA
and Zeng’s method, while including incorrect markers only 8% of the time.

Table 4 shows which of the QTLs were correctly identified by the different
methods. The first three columns, labelled “model,” correspond to the three
QTLs: first the QTL on chromosome 1, and then the two linked QTLs on chro-
mosome 2. A one in these columns indicates that the QTL was correctly identi-
fied; a zero indicates that it was not found. Note that in this table, we ignore the
markers which were incorrectly identified. For example, in the column labelled
“ANOVA,” the model “1 1 1”7 was identified 73 times out of 1000 simulations;
this includes 69 times in which no extraneous markers were included, and 4 times
in which one extraneous marker was included (see Table 3).

TABLE 4
Models identified in 1000 simulations of the model containing three QTLs with two QTLs
(represented in the second and third columns) linked in coupling, and using 250 progeny

Zeng BIC
model ANOVA 3 5 7 9 2 2.5 3 permu
111 73 31 25 19 13 187 65 19 139
110 254 189 140 102 83 258 239 189 260
101 257 191 144 112 92 264 241 192 274
011 41 39 40 33 31 52 30 20 45
100 3 115 173 182 180 1 3 8 1
010 200 161 136 131 120 131 218 293 152
001 171 171 147 135 135 107 202 270 129
000 1 103 195 286 346 0 2 9 0

When forward selection and ANOVA identified just one QTL, it was almost
always one of the two linked QTLs, but Zeng’s method often picked only the
QTL on chromosome 1. When two QTLs were identified, all of the methods
tended to pick the QTL on chromosome 1 and one of the two linked QTLs. Note
that the two linked QTLs on chromosome 2 were chosen at approximately equal
frequencies by all of the methods, as expected by symmetry: the models “1 1 0”
and “l1 0 17 were chosen nearly the same number of times, as were the models
“010”and “00 1.

Table 5 displays the joint distribution, across the 1000 simulations, of the
numbers of correctly and incorrectly chosen markers when the linked QTLs are
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in repulsion.

The methods did not perform as well when the linked QTLs were in repul-
sion; ANOVA and forward selection suffered much more than Zeng’s method.
The number of incorrectly chosen markers showed little change from the case of
coupling, for all of the methods. But the number of correctly identified QTLs,
in comparison to coupling, was halved for ANOVA and forward selection. Zeng’s
method, on the other hand, showed very little change in its ability to identify
QTLs, with the result that here his method worked better than ANOVA.

TABLE 5

Distribution of the numbers of correctly and incorrectly chosen markers in 1000 simulations of
a model containing three QTLs with two QTLs linked in repulsion, and using 250 progeny

# # Zeng BIC
cor incor ANOVA 3 5 7 9 2 2.5 3 permu
3 0 4 102 83 60 46 174 80 27 78
2 0 123 222 225 203 168 135 79 46 99
1 0 572 402 412 385 381 426 458 398 524
0 0 231 230 242 314 372 156 338 507 219
3 1 0 0 1 2 2 25 5 0 6
2 1 7 7 6 10 10 21 6 2 12
1 1 30 19 20 19 13 29 12 4 28
0 1 32 18 10 4 7 24 22 16 31
other 1 0 1 3 1 10 0 0 3
> 1 wrong 70 44 38 38 33 109 45 22 80

It is interesting to see that whereas Zeng’s approach performed quite poorly
when the QTLs were linked in coupling, even in comparison to ANOVA| it per-
formed somewhat better than all of the other methods when the QTLs were in
repulsion. The reason that Zeng’s method is more successful in teasing out a
pair of QTLs linked in repulsion, may be that such QTLs look more important
when both are included in the model. Zeng’s method forces the fit of the larger
model, whereas forward selection considers the markers one at a time. This dif-
ference is best illustrated in Table 4. When identifying just one QTL, ANOVA
and forward selection generally pick one of the two linked QTLs, whereas Zeng’s
method picks from the three QTLs at nearly equal proportions.

Whereas the simulations presented here considered only cases with three
QTLs, Broman (1997) also performed simulations with five QTLs; the results
were similar.

4. Conclusions and discussion. Current methods for identifying QTLs
focus on interval mapping: inferring the location of a QTL between marker loci.
Yet interval mapping and its approximations have been shown to provide little
improvement in power over simple ANOVA at the marker loci. When we dispense
with interval mapping, we are left only with ANOVA and multiple regression;
the use of these more simple methods for identifying QTLs has been neglected.
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In addition, most current methods use multiple tests of hypotheses. The prob-
lem of identifying QTLs is best viewed as a problem in model selection. Having
discarded interval mapping, we then seek to choose a set of marker loci which are
at or near QTLs. The problem is not the standard one in model selection, where
attention has been on minimizing prediction error. Still, the model selection lit-
erature has much to say about our current problem. Clearly, the single-QTL
methods, such as ANOVA and interval mapping, will perform poorly when mul-
tiple linked QTLs are segregating in a cross. An appropriate approach is difficult
to prescribe. In the simulations in Section 3, one method (forward selection)
performed best in the case of QTLs linked in coupling, while another (Zeng’s
approach) performed best in the case of QTLs linked in repulsion. A more re-
fined method, such as Markov chain Monte Carlo, does not necessarily lead to
improved results. For example, for the data in Satagopan et al. (1996), interval
mapping seemed to give nearly identical results to MCMC.

A number of decisions must be made when performing any model selection
procedure. First, one must choose a criterion. For Zeng’s method, one must
choose how many variables to use as initial regressors; for the BIC-§ criterion,
one must choose the value of the parameter 6. Second, one must decide how
to search through the space of models: will forward selection suffice, or would a
more extensive search, as provided by MCMC, give improved results? The choices
that one makes will depend upon the experiment being performed: whether it
is a backcross or an intercross, the number of progeny, the density of marker
loci, the underlying genetic structure of the trait, and the ultimate goal of the
experiment. When making these choices, one will need to perform multiple sim-
ulation experiments, using scenarios that seem reasonable, and using criteria for
determining the performance of an approach which correspond to the goals of
the study.

Simulation studies of the kind we mention can be helpful for designing a
strategy, but, after the data are obtained, further analysis must be carried out.
We see the need for research on the use of resampling and bootstrap methods
of analysis, to complement the randomization approach of Churchill and Doerge
(1994), which focuses on null models.
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