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Abstract 

We introduce mixtures of binomial distributions derived by assuming that the 
probability parameter p varies according to some law. We use the transforma
tion p = exp(-t) and consider various appropriate densities for the transformed 
variables. In the process, the Laplace transform becomes the fundamental en
tity. Large numbers of new binomial mixtures are generated in this way. Some 
transformations may involve several variates that lead to "multivariate" binomial 
mixtures. An extension of this to the logarithmic distribution, with parameter p, 
is possible. Frullani integrals and Laplace transforms are encountered. 

Graphical representations of some of the more significant distributions are 
given. These include probability functions, regions of validity, and three dimen
sional representations of probability functions showing the response to variation of 
parameters when two parameters are involved. 
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1. Introduction 

Here we describe new mixtures of binomial distributions in which the probability pa
rameter, transformed exponentially, is taken to be a random variable with a known 
probability structure. The derived binomial mixtures may depend on several parame
ters, which, in general, can be estimated by using the first few sample moments. Once 
the parameters are estimated, the corresponding probabilities are readily computed 
by the use of finite differences. Such methods are applied to the data of Bender, et 
al. (1) on spontaneous chromosomal aberrations in human blood lymphocytes. These 
authors observe that the Poisson model works well in some cases, but that the Poisson 
characteristic, mean equals variance, does not always hold, and that, in general, the 
variances exceed the means. The new binomial mixtures prElsented here include this 
type of "overdispersed" model, as well as models for " underdispersed" data. 

Various generalizations are mentioned including (a) representation for the param
eter pas t 2 /(a2 + t2 ), -oo < t < oo; (b) truncated densities for p; (c) multivariate 
densities for p. A link is given to deviates deriY ·'l from other densities by varying the 
parameters. One typical case is the variation 01 ae Poisson parameter as a x2 variate. 
Mixtures relating to the logarithmic distribution are studied. 

Historically, Skellam [11] studied a beta modification of the binomial, deriving the 
expression for factorial moments, as well as an iterative scheme for maximum likelihood 
(m.l.) estimation of the two beta density parameters. He applied his results to data 
on the secondary association of chromosomes in Brassica oleracea ( Catcheside [3]). 
Shenton [10] studied the asymptotic efficiency of the method of moments, deriving the 
first terms in a rather complicated series. He pointed out that the Skellam modified
binomial may be regarded as a negative hypergeometric distribution which arises also 
in the relation between the binomial and negative binomial distributions. In a related 
study, Bowman, Kastenbaum and Shenton [2] show that the efficiency of the method of 
moments is fairly high over a segment of the parameter space, and does not contradict 
Shenton 's [10) assertion that the method of moments rarely has low efficiency. Indeed 
the study shows a joint efficiency of 993 when the asymmetry of the ha.sic distribution 
is low. The authors also present new expressions for the likelihood equations and a 
brief study of extended series for moments of the moment estimators. 

2. Beta Distribution 

2.1. Beta Density for p 

The binomial probability function being 

B(x; k,p) = (~) Pxl-x, (x = 0, 1,. · · ,k;O $ p $ l,p+ q = l; k = 1,2, · ·-) 

the beta modified form is 

S f3 [1 (k) x(l _ )k-x o-l(l _ )/J-1 f(o + {3) d 
(x;k,o, ) = lo x p p p p r(o)r(,B) p 
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= (k) f(o + x) f(,B + k - x) f(o + ,8) 
x f(a) f(,B) f(k + o + ,8) · 

(x = 0,1,···,k;o > 0,,8 > 0) 
Let 

Po = S(O; k, o, ,8) = 

= 

Then 

f(,B + k) f(o + ,8) 
f(,B) f(k + 0 + ,8) 

{(k+,B-1) ...... ,a} 
(k + o + ,8 - 1) · .. · .. (o + ,B)' 

(1) 

Px+I k - x o + x 
---· (x=0,1, ... ,k-l) (2) 

Px - x + 1 k + ,8 - x - 1 ' 

is a simple recursive relationship, with L:x Px = 1. It may be readily shown that 

(3) 

whereµ~ and µ 8 are, respectively, the sth crude and central moments of distribution. 

2.2. Moment Estimators 

For the moment estimators of a, ,8 use equation (3), with sample moments mi, m~ 
replacing µi, µ~. Th us 

2.3. Properties 

Table 1 demonstrates how o and ,8 values affect the modified distributions, and how 
the results compare with the basic binomial distribution. Values of Px, for k = 5, 
(x = 0, · · ·, k), are derived from equations (1) and (2). Similar calculations will yield 
values of Px fork= 20. These were omitted from Table 1 in the interest of conserving 
space. The binomial parameter p = o/( a + ,8), µ~ = ko/( o + ,8), u is the standard 
deviation, and ../fJi and ,82 are skewness and kurtosis parameters. 

We note, from Table 1, that with increases in o, the beta distribution approaches 
the binomial with p = o/(o + ,8). For small o, the beta distributions are skewed and 
platikurtic, and have larger standard deviations. In other words, these distributions are 
overdispersed in comparison with the binomial, in general. illustrations of the densities 
for k = 20 are given in Figures 1. 
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Table 1: Moments of the Beta Distribution 

k=5 
/3 = Q f3 = 3o./4 

0. 4.0000 8.0000 Binomial 4.0000 8.0000 Binomial 
(J 1.3437 1.2426 1.1180 1.3553 1.2454 1.1066 

V7Ti 0.0000 0.0000 0.0000 -0.1991 -0.1721 -0.1291 
/32 2.2531 2.4115 2.5528 2.2630 2.4234 2.5758 
x Px 
0 0.0707 0.0511 0.0312 0.0455 0.0294 0.0145 
1 0.1768 0.1703 0.1562 0.1299 0.1176 0.0964 
2 0.2525 0.2786 0.3125 0.2165 0.2353 0.2570 
3 0.2525 0.2786 0.3125 0.2597 0.2941 0.3427 
4 0.1768 0.1703 0.1562 0.2273 0.2311 0.2285 
5 0.0707 0.0511 0.0312 0.1212 0.0924 0.0609 

(3 = o/2 f3 = o/4 
Q 4.0000 8.0000 Binomial 4.0000 8.0000 Binomial 
(J 1.3214 1.2054 1.0541 1.1547 1.0445 0.8944 

V7Ti -0.5045 -0.4346 -0.3162 -1.1135 -0.9574 -0.6708 

/32 2.4818 2.5891 2.6838 3.6429 3.4551 3.0447 
x Px 
0 0.0238 0.0128 0.0041 0.0079 0.0030 0.0003 
1 0.0794 0.0641 0.0412 0.0317 0.0200 0.0064 
2 0.1587 0.1648 0.1646 0.0794 0.0719 0.0512 
3 0.2381 0.2747 0.3292 0.1587 0.1798 0.2048 
4 0.2778 0.3022 0.3292 0.2778 0.3297 0.4096 
5 0.2222 0.1813 0.1317 0.4444 0.3956 0.3277 

k = 20 
f3 = Q f3 = a/4 

Q 4.0000 8.0000 Binomial 4.0000 8.0000 Binomial 
(J 3.9441 3.2540 2.2361 4.0658 3.3320 2.2131 

V7Ti 0.0000 0.0000 0.0000 -0.1835 -0.1447 -0.0645 

f32 2.4312 2.6444 2.7764 2.4243 2.6395 2.7bi9 
{3 = a/2 f3 = 3o/4 

Q 4.0000 8.0000 Binomial 4.000 8.000 Binomial 
(J 4.0630 3.3076 2.108 3.6515 2.9542 1.7889 

V7Ti -0.4 717 -0.3743 -0.1581 -1.0563 -0.8463 -0.3354 

f32 2.6099 2.7596 2.8419 3.6911 3.4860 3.0224 
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3. Generalized Mixtures of Binomials 

3.1. Density on (O, 1) 

The Skellam (11] distribution treats the probability parameter p as a beta random 
variable with density 

D(p) = p0
-

1(l - p)J3-1r(a + ,8)/{f(a)f(,B)} (a,{3 > 0). 

Families of binomial distributions exist that are generalizations of the beta-binomial. 
A more general binomial mixt ur0 is 

(5) 

where f(p) is a valid density on interval (0, 1 ). The rth factorial moment, 

where z(r) = x(x - 1) · · · (x - r + 1), is remarkable for its simplicity; note that µ[t] rep
resentc:; the first non-central moment. For a probability parameter p, with distribution 
function u(p ), the factorial moment generating function is 

l (1 + patdu(p). 

From this expression, both non-central and central moments may be set up. However, 
the central moments may be computed more directly from µr = E(x - µ[i1y. Hald (5] 
gives asymptotic results for forms like (5) with f(p) a density on (O, 1). In particular 
he gives numerical error values when /( ·) is a beta density. 

3.2. Transformed Beta Density 

Since p satisfies 0 $ p :5 1, we may consider the transformation, p = e-t, (0 :5 t < oo) 
and the resulting, generalized binomial distribution 

(6) 

where <f>(t; g) is a valid density on (0, oo ), with parameters 01, ···,Om. More generally, 
we may use the Stieltjes form 

B9 (x; n, u) = ( ~) la''° e-zt(l - e-1 r-xdu(t). 

For </>(t;g.) = 0 (except when t = logl/p)), (6) reduces to the binomial. Another 
possible transformation is p = t 2/(1 + t2), with -oo < t < oo. 
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The probability function in ( 6) is expressible in terms of the Laplace transform of 
</>( ·) or a(·). Thus if 

<P(s;¢) = fo00 

e-st¢>(t;g_)dt (s > 0), 

is assumed to exist, then 

(7) 

with a similar expression for the case of a discontinuous density. The summatory term 
in ( 7) will be recognized as an adva,1cing difference. 

Factorial moments readily result from 

A list of .Possible forms for these generalizations is given in Table 2 and Table 3. It 
seems reasonable to describe these forms as mixtures which, to our knowledge, have 
not been described in the literature. 

One case that does not arise obviously from the variation of parameters is model 
29 for which 

(0 < t < oo;m = 1,2, ... ) 

we assume positivity and integrability. In particular J0
00 ¢(t)dt = 1. Then for the 

transform, (Hardy [6], p126), take 

k(-l)m ~ Aam- 1 ln(a + s) 
~(s) = {Aam- 1 ln(a + s) + Bbm-1 ln(b + s) + · · ·} = LI • 

(m - 1)! L: Aam-1 ln a 

For example, for the case 

we may take as a valid density 

A = ( d - b) ( c - d) / { (a + b) ( c - a)}, 
B =(a - d)(d - c)/{(a - b)(b- c)}, 
C = (b- d)(d- a)/{(b- c)(c - a)}, 

and similar confluent expressions, when there are equivalences. In particular, for the 
two-parameter case, 

we have 
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Table 2: Generalized Binomial Distributions (1 - 15) 

</>( t) 

{ 

<l>(t) = 0 

</>(In!) = 1 

e-bltP-lbP 
f(p) 

e-bt_e-at 
tfu{a/6) 

e-bt_e-ac 
i7a-v'b)2J;t°3 

2aKo(2v'Cii) 

e-ac (l+at)-e-b'(l +bt) 
t2(b-a) 

J_H-AI 

(
e-at_e-b')m ct/T"''( b· ) t e .d. m,a, ,c 

-:! -:! 
( j,+1 )e-U -h{+i )e ~ 

2(8-A) 

e-at sin(ty'U)~ 

~(s) = J0
00 e-at</>(t)dt limits 

p' 0 < p < 1 

(ot;Y b,p > o 

In ( %$;) / In ( %) a > b > 0 

1 - 6 ln (!$~) 

lnl(Ba+tJl{Aa+tll 
JB-~a 

i.m: _ ~a2 2cu_ 1 ln( !:±.!.) 
~ ~- a+a 

-a /2 

K_im,a,b;c+al 
KJ_m,a,b;cl 

{aA+l)(aB+l) 

k>O 

b>a>O 

a>O 

b>a>O 

B>A>O 

b>a>O 

B>A>O 

B>A>O 

R,A > 0 

a,u > 0 

Functions in 5, 7, 11, and 14 are classical functions defined, for example, in 

Handbook of Mathematical function, AMS 55, National Bureau of Standard. 



- 8 -

Table 3: Generalized Binomial Distributions ( 16 - 29) 

Model 

j ¢( t) ~( s) = f0
00 e-•t </>( t )dt limits 

16 e-ar cos{t\/'UHu+a2} (tt!) ( uta2 ) a,u > 0 a a u+{a+a}2 

17 a2;~ tanh (*) e-btl sin(at)I a2±b2 coth~ b>O a2+{•+ir:i coth{fil 

18 b( b2 +4a2) e-bt sin 2( at) b_1b2+4a2J b>O 2a2 JO+•llib+•E_ Ha'] 

19 {b3+4a2b}e-"' cos2{at} 
2a2+l;2 

f 2a2+(a+b}2 ~{b3 +4a2b} 
(2a!2+l>!2}Hb+ar Ha2~b+•H b>O 

20 4e-flt sin2Ja~}_ ln .!it4a2_L{b+a)2) b>O t ln]" 1 +4071 b:l] ~1+4~~) 

21 (2k/t)e-bt sinh(at) k{Ei(-a - B) - Ei(a - B)} t > 0, b > a 

B = b+ s 

22 e-flt cosh{2v'titlv'b ea/(•H)~ b,a > 0 ea7fly11't ea/fl_...[aR 

23 ksinh2_l../btJ e-bt 
-;n ~_&{er+- -1} (!; > O) 

24 ce-at-k2 /(4t) /(2..J.ii3) ek{ ./0.-.;a+i'} a> O,k > 0 

25 ~e-at sinh { 2v'kt'} ea~•-~ /(1 + s/a)3/2 k>O,a>O 
11' 

26 ce-ater Jc (&t) elr{ v'G-'\/'Ci+.} 
a> 0, k > 0 t+a]a 

27 c{ e-ate-k2 /(4t)} / J'it, elr{v'Q-VQ.ti} 
k > 0,a > 0 

~l+a/a 
Joo 12.se-lraan-J"(t)dt 

28 (see paragraph 3.3) -JO ~i+t2ln~i+t22m m > 1/2 Joo e-lr&an-i(t)dt 
-oo l~t~m 

29 k{Ae-a'+Be- 11'+···} 0 < t < oo; tm 

m = 1,2,··· 
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lo"°</>( t )dt = l"" k{ e-•• - 3e-< a+b )• + 3e-< •+2b l• - e-< •+3b )t} / t3 dt 

= ;, { a2 ln a - 3( a+ b )2 ln( a + b) + 3( a+ 2b )2b( a+ 2b) - (a+ 3b )2b( a+ 3b)}. 

If 

'11(s) = (a+ b)2 ln(a + s) - 3la + b + s )2 ln(a + b +a)+ 3(a + 2b + s)2 ln(a + 2b + s) 
-(a + 3b + s) In (a + 3b + s), 

then 
~(s) = \ll(s)/\11(0). 

Clearly w(s) is a valid density overs> o. 

3.3. Pearson Type IV Density {Student's t included} 

A different kind of mixture, Model 28, (Table 3), is based on Karl Pearson's Type IV 
density. In this case 

(m > 1/2). 

We use 

<f>(t; a, k) = y0 e-ktan-l(t/a) /(t 2 /a2 + 1r (-oo < t < oo; m ~ 1/2), 

and 

Bg(n;x,<f>) = (n) Joo ( 2 t2 2)z ( 2 a2 2)n-.r <f>(t;a,k)dt, 
x -oo t +a t +a 

which is independent of a, so that 

(n) Joo t2:r 
B9 (n; x, </>) = x -oo {l + t2 )n <f>(t; 1, k)dt. 

Defining 

we can either integrate by parts and derive the recurrence 

Qz = {(x - l)Qz-2 - kQz-d/(2N - X - 1) (N = m + n; X = 1, · · ·), {8) 
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with Qo to be determined, or make the transformation t = tan 8 and consider integrals 
such as 

( ) 17r/
2 

M -kB M(M - 1) 
G M, k = cos 8e d8 = M 2 k2 G(M - 2, k), 

-7r/2 + (see K. Pearson[8]). 

Qo, in (8), is given by 

Qo = J1r/2 cos2n+2m-2 8e-kB dB/ J1r/2 cos2m-2 8e-kB d(J 
-7r/2 -7r/2 

= G(2n + 2m - 2, k)/G(2m - 2, k), 
(2n + 2m - 2)(2n) 

= n~=l {k2 + (2n + 2m - 2r)2} (n + m 2: 1/2, n = 0, .. ·), 

and Qi = -kQo/(2n + 2m - 2). Similarly for the rth factorial moment of the binomial 
distribution, 

µ[r] =Yon r sm r 8cos m- 2 Be- d8 = n r L...J(-1)" . ( ) 11r/2 . 2 2 kB ( ) ~ (r) G(2m + 2s - 2, k) 
-7r/2 a=O s G(2m - 2, k) 

In particular, 

, n(k2 + 2m) 
µ(1) = (k2 + 4m2)' 

, _ (2) {k4 + (12m + 4)k2 + 12m(m + 1)} 
µ[2] - n (k2 + 4m2){k2 + 4(m + 1)2} · 

Moment estimators (k•, m•), based on these equations, are found from the relationships 

Am*3 + Bm*2 +cm·+ D = 0, k*2 = 2m*(2m*v1 - 1)/(1 - Vt), 

where 

B= 

D = -2(1 - 112)/(l - 111). 

The validity of these equations is conditioned by the restraints, m* ~ 1/2 and 2m•111 2: 
1. 

Properties and figures, related to the generalized binomial distributions may be 
found in the appendix. 
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3.4. Applications 

We now apply the moment approach to Catcheside's [3) data on the secondary associ
ation of chromosomes in Brassica, using Models 2, 15, and 28. (Note: There may be 
no solutions to the moment equations. In fact, solutions may exist that do not yield 
valid probabilities.) Thus for Model 2 

b* p• 

m~ = 3 (b• + 1) = 1.741840, 
b* )p• 

m(21=6(b.+ 2 = 2.148368, 

and b* = 7.537223, p* = 4.363957, with ¢(t) = ¢0e-7·537223tt3·363957. For Model 15 the 
density is not always positive. However, the moments 

yield solutions 

and 

where 

, _ k(a2 + u) 
µ1 - la+ 1 )2 + u' 

I - k(2)( a2 + U) 
µl 2l - (a + 2 )2 + u ' 

V1 = µ[i]/k, 112 = µ[21/k( 2), k(2
) = k(k - 1). 

Estimates of the Model 15 parameters are 

a* = 1.574527, u"' = 3.264956. 

For Model 28, 

Pr X = x = (k) /_oo t2xe-w tan-1 (t)dt J_oo e-w tan-1 (t)dt. 

{ ) X -oo {1 + t2)k(l + t2)m/ -oo (1 + t2)m 

Moment estimators are found from 

m[i1 = k(w2 + 2rn)/(w2 + 4m2
), 

, _ k(2) {w4 + (12m + 4)w2 + 12m(m + 1)} 
m(2] - (w2 + 4m2){w2 + 4(m + 1)2} · 

(m > 1/2) 

In Table 4, the fits of three generalized binomials (Model 2, 15 and 28) are compared 
with Skellam's modified binomial. Also the results of fitting Models 2 and 15 to a second 
set of data presented by Skellam appear in Table 4. 

Here the computed moments are m} = 0.465224, and m[21 = 0.44204, and the 
corresponding parameter estimates are 

{ 
Model 2 b"' = 1.1183, p* = 3.7171, 

Model 15 a* = -0.1062, u* = 0.0695. 
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Table 4: Skellam 's Example 

Secondary Association of Chromosomes in Brassicca 
N um her of Associations Observed Skellam Model 2 Model 15 Model 28 

0 32 33.92 33.90 31.98 30.37 
1 103 97.24 97.28 103.06 99.59 
2 122 127.76 127.73 121.94 133.97 
3 80 78.08 78.09 80.02 73.20 

Degrees of Freedom 1 1 1 1 
x2 0.76 0.75 0.00007 1.91 

Accident Data 
N um her of Associations Observed Skellam Model 2 Model 15 

0 447 448 448.32 442.07 
1 132 129 128.05 142.99 
2 42 47 46.77 38.45 
3 21 17 17.20 15.03 
4 3 5 5.49 6.28 

5 or more 2 1.4 1.17 2.18 
Degrees of Freedom 3 3 3 

x-2 2.60 3.18 5.32 

In this application we note that the Model 2 parallels the Skellam very closely, but 
that the Model 15 cannot be excluded as a reasonable fit. 

The data presented by Bender, et al. [1] provide additional applications. These 
authors cautjon that their data, in many instances, depart from the Poisson, with 
variances generally larger than means. The results of applying Models 4, 24, and 15 to 
one of these data sets are presented in Table 5. For Model 4, 

1 3 w• 0 0028 / - 6 -w'v'2 - 0 00026 m 1 = e- = . , m 121 - e - . , 

and w• = 6.9819, with </>( t) = </>oe12.19/t /t3/2. 
For Model 24, 

mi = 3ew'{y(i'-v'a•+i} = 0.0028 ~ m(2J = 6ew'{y'Ci'-v'a•+2} = 0.00026. 

and w• = 7.4431, a• = 0.0041 with </>(t) = </>oe-0.004.lt- 13·85/t/t3/2 
For Model 15, 

a* = -0.4494, u* = -0.2018. 

The parameters estimated for the Model 2 fit to the second set of data are b* = 1. 7718, 
p* = 5.2926. 

Model 4 and Model 24 are variations of the Poisson distribution with the variance 
greater than the mean. As the x2 values show, they provide a satisfactory fit to the 
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Table 5: Bender's Data 

Number of AberrCitions Observed Poisson Model 4 Model 24 Model 15 
0 85571 85561.33 85573.77 85571.60 85570. 72 
1 220 238.34 213.93 218.11 220.84 
2 8 0.33 12.30 9.95 7.16 
3 1 - - 0.34 1.28 

Degrees of Freedom 1 1 1 1 
x2 229.20 1.06 1.68 0.16 

Number of Aberrations Observed Poisson Model 2 
0 267 244.61 271.14 
1 110 137.42 100.92 
2 33 38.60 37.80 
3 14 7.23 13.54 
4 3 }u4 4.33 
5 1 } 1.27 
6 1 

Degrees of Freedom 3 3 
x~ 27.73 2.33 

data. Their meaning, however, in a biological con text, remains to be explained. 

4. Truncated Densities for p 

Finally we note that the generalized binomial mentioned in Section 1 belongs to the 
family 

B(n;</>) = (:) l pr(l - Pt-r</>(p)dp, 

</>(p) being a valid density on (0, 1). If¢(·) is a point mass distribution, then the 
classical binomial is returned. A truncated form, namely, 

B( n; </>; u, v) = (:) { p"'( 1 - Pt-r!/J(p)dp (0 $ u < v $ 1), 

where .,P(-), a valid density on ( u, v ), suggests itself. Thus the beta density, 

(9) 

involves four parameters a, (3, u, and v, where u, v relate to the range of p. A moment 
solution using the first two moments and the trial values of u, v may be optimized for 
a minimum x2 value. 
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Expression ( 9) may be writ ten as 

(n) f1 - ya-t(l-y)/j-tr(a+,B) 
B(n;</>;u,v)= ~ Jo {u+(v-u)y}x{l-u-(v-u)y}n x I'(a)I'(,B) dy 

involving four parameters u, v, a, and ,8, the first two of which define the range of 
the probability parameter pin (9). The "binomial" probabilities B(n; </>; u, v) may be 
evaluated by quadrature or by expanding the two binomial components of the integrand. 

Given frequency data on the integers 0, · · ·, n where n ~ 6 it is possible to use the 
first four sample moments m[81 (s = 1 ,...., 4) to determine a solution, if solutions exist. 
However, m[31 and m[41 may involve high sampling variation in general. An alternative 

is to select values of u, v, and then use the first two moments m[t1 and m[21 to determine 
a* and ,8*. If a• and ,a· are positive, then a unique solution is available. Thus, there 
are two criteria for deciding on the optimum choice of u and v: 

• Minimize the goodness of fit x2 value; 

• Compute the skewness and kurtosis, and look for the closest approximation to 
the normal values, (0, 3). 

Define Vt = m[t1/n, v2 = m[21 /n(2). Then 

• (lit - u){(u + v)vt - uv - v2} 
Q = 2 ' 

( V - U )( V2 - Vt ) 

are solutions, provided they are positive. 

,B * ::: Q * ( v - lit ) , 
(vt - u) 

It is also useful to guess at values of a*, ,B* in order to arrive at estimates of u and 
v. In this case 

u* =lit - .j{(v2 - vf)(o* + ,8* + l)o*/,8*}, v* = u* + (vt - u*)(o"' + ,B*)/a*. 

For an example, David and Johnson [4] gave data on the distribution of the number 
of defective teeth in 11 year old boys. These data were used by Rao and Chakravarti 
[9] for the test for a Poisson distribution. Here n = 12, N = 265, m[t1 = 2.573585, 
m[21 = 9.841509, with variance m2 = 5.791755, greater than the mean. 

For the model of equation (9) we calculate a Pearson x2-value of 6.81, with five 
degrees of freedom, when u = 0.001, v = 0.85, a* = 0.942848 and ,B* = 2.80707. This 
fit (Table 6) appears to be satisfactory. By way of comparison, when u = 0, and v = 1, 
we found a• = 1.05056, ,8"' = 3.84 794, and x2 = 6. 78 with seven degrees of freedom. 

Another alternative is to use the model of Model 1 (Table 2) transformed onto (0, 
1). We calculate a Pearson x2-value of 7.01, with five degrees of freedom when u=0.001, 
v = 0.800, b* = 1.2898 and p* = 2.2996. By way of comparison, when u = 0 and v = 1, 
we found b* = 1. 7506, p* = 3.4073, and x2 = 7.30 with seven degrees of freedom. 

In a number of cases which we have studied, the introduction of the interval pa
rameters ( u, v) does not always provide improvement. 
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Table 6: Davi<l a:!d Johnson Data 

Defected teeth Number of boys Poisson ~quation (9) Model 1 
0 61 20.21 ~1.81 61.58 
1 47 52.01 50.:'l 50.60 
2 43 66.93 40.47 40.48 
3 35 57.41 32.36 32.13 
4 28 36.94 25.34 25.14 
5 15 19.01 19.26 19.rn 
6 20 8.16 14.06 14.12 
7 5 3.00 9.69 9.82 
8 5 0.96 6.16 6.27 
9 2 
10 1 
11 2 0.37 5.74 5.69 
12 1 

Degrees of Freedom 8 5 5 
x2 224.30 6.81 7.00 

5. Further Binomial Mixtures 

5.1. Exponential Density 

In Section 3, we introduced binomial mixtures defined as 

(x = 0 · · · n· k = 1 · · ·) ' ' ' ' 

where </>(t) is a valid probability density on (0, oo ). For the most part we do not 
use the purely discontinuous case. Here we show a link with distributions arising as 
probability densities subject to random variable parameters; for example, the Skellam 
[11] distribution, which assumes that the binomial probability parameter p has a beta 
distribution. 

In addition, we list further examples of binomial mixtures including multivariate 
densities which may have interest or applicability. Diagrams are presented to give some 
insight into the question of modality of mixtures, because we have encountered serious 
problems with approaches that are purely mathematical. 

Let 
<l>n(t,o) = ae-ot (t > O;o > 0) 

be the basic distribution, where o has the distribution 

</>p(o) = k/o, (0 <A~ o < B;k = 1/ln(B/A)). (10) 
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Then the (variated) basic distribution becomes 

¢ 11 (t) = {e-At - e-Bt}/{tln(B/A)}, (0 < t < ~) (11) 
= 0, (t < 0). 

The corresponding binomial mixture is 

(12) 

Upon expanding the second binomial factor in the integrand, we require the fundamen
tal entities 

t(s) = fo00 

e-at</>v(t)dt, 

which, from (12), yields (A - A+ s, B--+ B + s) 

t ( s) = ln { ( B + s) / (A + s)} / ln ( B /A). 

We notice the role played by Laplace transforms in ( 12), and the appearance of 
Frullani integrals (see Hardy [6]) from ( 12). We have, for simplicity, sometimes omit
ted the parameter in probabilities such as <Pv( t), which doubtless should be written 
<Pv(t; A, B). 

There are several generalizations. First, take the cases: 

¢b(x) = o 2xe-ox (x > 0) 

= 0 (x < 0) 

with o varying as ( 10). Then 

¢v(t) = {(1 + At)e-At - (1 + Bt)e-Bt}/{tln(B/A)}, (t > 0) 

= 0, (t < 0) 

and 

~(s) = {1n (!:;)+(A~ s - B ! s)} /ln(B/A), 

and 

Take another case: 

(t > O; o > 0, m = 0, .. ·). 

Then if o varies as in ( 10) 

<f>v(t) = {Hm(t,A)- Hm(t,B)}/{tln(B/A)}, (t > 0) 
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where 
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m k>.(' 
Hm(t,k)=e-ktl:-,, 

>.=O S. 

{ (
B+s) m 1( A-' B>. )} ~( s) = ln A + s + {; :\ (A + s) >. - ( B + s )'' / ln( B /A). 

5.2. Modified Exponential 

<l>b(t) = e-t/o /o., (0 < t < oo; o. > 0) 

with o. varying as in ( 10). Then 

where E1 ( x) is the exponential integral. Thus 

- {oo (e-t(o+B-1) e-t(o+A-1)) d8 
<l>v ( t) - j o (J + B-1 - (J + A -1 ( B - A) 

and for the binomial mixture 

1 (Bs+l) ~(s) = (B - A)s ln As+ 1 · 

(Note that 4l(O) = lim,_0 ~(s) = 1). 

5.3. Another Example 

where 

</>p ( o:) = 1 / { o: ln ( B /A)}. (A < t < B; B > A > 0) 

Then 

<Pv(t) = {H2(t, A) - H2(t, B)} / { t ln(B /A)}, (t > 0) 

(see (13)) and 

(13) 

{ ( 
B + s) A B 1 ( A 

2 
B2 ) } ~( 8 ) = In A + s + A + s - B + s + 2 (A + s )2 - ( B + s )2 I {ln ( B /A)}· 

5.4. Gamma {Chi-squared) 

tP-le-t/rJ> 
</>b(t) = </>Pf(p) , (0 < t < oo;p > 0,</> > Q) 



1 
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where <P has the density 

tr-1e-t/A 
</Jp ( t) = Arr ( r) . ( r > 0; A > 0, t > 0) 

Then 

which in terms of a Bessel function, gives 

For the Laplace transform function, after simplification, 

6. Miscellaneous Generalizations 

6.1. Binomial Gamma-Gamma Mixtures 

Let 

and 

h(t; r) = e-ttr /r!, 

so that max( h) occurs when t = r. It follows that 

H(t; r) = e-ttr /(e-rrr) ;?: 1 for r > 0. 

The binomial gamma-gamma mixture is 

Pr(X = :i:) = (!)lo"° H .. (t; r0){1 - H(t; ro)}k-zg(t; a, r)dt, (ro > 0, a> 0, r > -1) 

and 

~(s; k, ro: a, r) 

with 

~(O; k, ro; a, r) = 1. 



• 
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The binomial gamma-gamma mixt1!re is now defined as 

, (k) k-:r (k - x) Pr(X = x) = x [;(-1):\ ,\ 4>(x+ ,\,k,r0 ;a,r), 

depending on the parameters k, r0 , a, and r. 
In particulz.r with r0 = 1 

(r > -1) 

and 

4>(s; r) = ar+le"(s + r)!/{(a + sy+a+1 r!}, 

with 

6.2. Mixtures and Multivariate Densities 

Consider the mixture 

( ;) [[ '' ' [ 9~(1 - 9m)k-z ft ¢,(p,)dp,, 
0 0 0 r=l 

where the density of P1 is ¢1 (p1) for (0 ~ p1 ~ 1 ), and 0 elsewhere, and similarly for 
the remaining variates p2, p3, ···,pm, which we assume to be independent. Then by 
expansion 

where 

and 

iP1(s) = f P1¢1(pi)dp1. 

Similarly for '112(s), · · ·, '11m(s). In the case of identically and independently distributed 
(i.i.d.) variates, 
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Examples 

• Let the common density be the uniform U(O, 1 ). Then 

p X (k) { 1 (k - x) 1 (k - x) 1 } 
r( =x)= x (x+l)m- 1 (x+2)m+ 2 (x+J)m'"' 

( m = 1, 2, .. ·; x = 0, 1, .. ·, k ). 

If m = 1, the binomial mixture becomes the discrete uniform with probabilities 
1/(k + 1). 

The factorial moments are, 

and clearly as m - oo, the binomial mixture tends to a point mass at x = 0. In 
general the multivariate case tends to concentrate tht binomial probabilities near 
the origin. 

• If the variate follows a beta density with parameters a and (3, then, in the mul
tivariate case (i.i.d.) 

with 

{
r(o + s)r(a + {3)}m 

~m(s;2; o,,B) = r(o)r(s + 0 + ,B) (m=l,2, .. ·). 

Alternatively, one may use 

- - (k) J e-tx(l - e-t)k-xdt 
Pr(X - x) - x (B _A) , 

the integration being from A to B ( B > A > 0). Here 

{ 
e-•A - e-•B }m 

~m(s; A, B) = s(B _A) 

For example, in Skellam's example (k = 3) we could try A = 0, B > 0 with 

1 _ (1- e-B)m 
µ1 - k B 

.. 

" 
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• For the mixture use 

.. 
where T =ti+ t2 + · · · + tm, for which 

m ao 
cp m ( s) = IT ( ) , ( ao > 0, 8 = 1, 2, · · · , m). 

8=1 s + ll(} 

depending on m parameters. If the range of each variate is 0 :::; A :::; t < B, then 

{ 

e-aA _ e-aB }m 
(pm(s) = s(B - A) (s=l,2,···) 

• For another example, take 

Pr(X = x) = (;) f e-•1(1- e-•)k-•dt/A, 

J 
I 

j 4\(s) = c-s~-•A) (A > 0). 

Multivariate 

(p*(s) = {(p(s)}m (m = 1,2, .. ·). 

Guess m (positive integer), and solveµ} = k{4>(1)}m for A. Search for min x2 • 

• For yet another example, take 

(k) LA 2tdt Pr(X = x) = e-xt(l - e-t)k-x_ 
x o A2 (A> 0), 

4\(s) = 2 { 1 - (A~~;)e-A•}. 

For the multivariate case (i.i.d.), we have (pm(s) is {4>(s)}m. 

7. Mixtures of Logarithmic Distributions 

7.1. General Forms 

For the logarithmic distribution 

(x = 1, 2, · .. ; 0 < p < 1). 
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Following the ideas in Section 3, we consider the mixture 

Pr(X = x) = .!. t'° (l - e-t)x ¢(t;{3)dt 
x Jo t 

(14) 

for a valid density (parameters {31 , {32, • • ·) on (0, oo ). The probability generating func
tion (p.g.f.) is 

l oo ¢( t· {3) oo 
P(w) = - ' ln(we-t + 1 -w)dt = Ewx Pr(X = x), 

0 t 1 
(lwl :5 1) 

with factorial moments, if they exist, 

µ' _ roo e'(l-d_A..(t· f.l)dt 
(1) - JO t 'I' ' I-' ' 

1 _ ( T roo e''(l-e-')' ( . )d µ[2] - s -1).Jo t d> t,{3 t, (s = 2, 3, .. ·). 

7 .2. Gamma Density 

Here 

and 
1 loo ( 1 _ e-t )X bPe-bttp-1 

Pr(X :: x; b,p) = - r( ) dt. 
x 0 t p 

Factorial moments of orders or less exist, if b > s. In fact 

µf.1 = s! (b ~Sr Pr(X = s;b- s,p) (b > s) 

There are three cases to consider: 

• p > 1. By expansion of ( 1 - e-t )x, 

b 1 x ( ) ( b ) p-1 
Pr(X=x;b,p)= (p-l):r~(-1)' : b+r . 

Note if p = 2, then 

Pr(X = x; b, 2) 

(15) 

• 
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For example, 

Pr(X = l;b,2) = b/(b+ 1) 

Pr(X = 2; b, 2) = l!b/ {(b + 2)(b + 1)} 

Pr(X = 3;b,2) = 2!b/{(b+ 3)(b+ 2)(b+ 1)} etc. 

This is a factorial-type series (see Johnson and Kotz [7]). The mean exists if 
b > 1, the variance if b > 2 and so on. The distribution will be long-tailed if 
b( > 0) is small. The probability generating function is 

l:wx Pr(X = x) = -62 fo00 
e-bt ln(we-t + 1 - w)dt, 

with sth factorial moment 

µi.1 = b2(s - 1)! fo''" e<b-•)t(l - e-t)'dt (b > s) 

• p = 1. Here 

Pr(X = x; b, 1) = !!_ f
00 

(l - e-t)x e-btdt = !!_ f)-1r+i (x) ln(b + r), 
X Jo t X r=O T 

this being a Frullani integral (Hardy (6]). 

• 0 < p < 1. To allow for the apparent singularity at t = 0 in ( 14 ), we consider 

_ . _ . 1 loo (1 _ e-t)x bPtP-le-bt 
Pr(X - x, b,p) - lim - r( ) dt, 

t-+o x ( t p 

for which the integral of a finite sum is that of the sum. A typical term is now 

and the integral component is 

e - tP-1 ( b + r )e-(b·'·r)tdt, 
I 

bP -(b+r)ttp-1 loo bP loo 
p-1 ( (1-p) f 

= - - e-(b+r)ttp-ldt bPlP-le-(b+r)t b.P(b + r) 100 
p - 1 f(p )( 1 - p) ( . 

The first term in the sum is dominated ( l-+ 0) by 

~ , ~ Ix\ , 'b , ~ p 1 ~(· , (x) 
£"-& ~ I r} tl - l + r )£ + .. ·J = -£ - . £LI b + r) r ' 

r=O \ r=O 
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Table 7: Example 

x Pr(X = x; 1, 1/4) Pr(X = x; 5, 1/4) 
1 0.909057 0.976876 
2 0.056052 0.020036 
3 0.015682 0.002360 
4 0.006712 0.000494 
5 0.003551 0.000284 
6 0.002135 0.0000.50 

$7 0.006811 0.000021 

and will approach 0, since p > 0. Finally for 0 < p < 1. 

(1- p) Pr(X = x;b,p) =; ta(-1)'+1 (:) (b + r) (b ! J · 
In particular 

Pr(X = l; b,p) = -bP{b1-P - (b + 1)1-P}/(l - p), 

2 Pr(X = 2; b,p) = -bP{b1-P - 2(b + I)l-p + (b + 2)1-P /(1 - p), 

3 Pr(X = 3; b,p) = -bP{b1-P - 3(b + 1)1-P + 3(b + 2)1-P - (b + 3)1-P}/(l - p). 

values for b = 1, p = 1/4 are shown in Table 7. From (15), mor.1ents do not exist. 

By contrast, for b = 5,p = 1/4, and mean approximately equal to 1.027, derived 
values are shown in the Table 7. Expression (15) expands as 

1 + _e_ + p(p + l) + p(p + l)(p + 2) + ... "' 1 0273 
2!b 3!b2 4!b3 . 

for b = 5,p = 1/4. 

7 .3. Riemann Zeta Function (( s) Density 

Take 

( 
t•-1 ) 

<l>(t) = e-t _ 
1 

/ {((s)f(s)}. (s > 1) 

Then 

Pr(X = x) 
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= 1 { (x - 1) 1 (x - 1) 1 } 
x( .. - l)({s) l - 1 2s-l + 2 3s-l - .. · · 

In particular for s = 2, Pr(X = x) = 6/(11" 2x2) (x = 1, 2,. · ·). 

7 .4. Uniform Density 

P (x~ _ ) _ 1 lA ( 1 - e-t )X dt 
r - x - - , 

x o t A 

7 .5. Triangular Density 

Here 

(A> 0). 

<I>( t) = 2t/ A 2, (0 < t < A) 

= 0, otherwise 

and 

Pr(X = x) = - {1-C ) -dt = - 1 - · + - .. · . 1 lA t x 2 2 { (x) ( 1 - e-A) (x) ( 1 - e-2A) } 
x o A 2 Ax 1 A 2 2A 

7 .6. Trigonometric Density 

<l>(t) = yoe-bt sin2(at), ( t ~ 0, b > 0, a real) 

and 

loo -atsin2(at)d 11 (1 4a2) e t=-n +-, 
o t 4 s2 

(s > 0). 

Thus 

Pr(X 

7. 7. Beta Density 

Pr(X = x) 
1 [1 ,r pa-1(1 - p).0-1r(o)f(,8) 

= ; lo ln{l/(1 - p)} r(o + ,8) dp {o,,8>0) 

= .!. roo (1 - e-tyc+a-1 {e-(.0-l)te-t} r(o)r(,B) dt 
x}o t f{o+,B) 

= .!. r(o)r(,8) [oo {1- e-t).r+cr-1 e-f3tdt. 

xf(o:+,B)Jo t 
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This reduces tv a Frullani integral if a is a positive integer. The sth factorial moment 
is 

I - (S - l)!r(a)r(,B) roo (1 - e-t)a+s-1 -·({3-s)td 

µ(s] - r( a + ,B) lo t e t (,B > s,s = 1,2,· ··;a> 0). 

8. Concluding Remarks 

Using a truncated form of the beta density, or any other appropriate form of the dis
tribution of the binomial parameter p, it may be possible to gain some insight into the 
variation of p among sets of observations. The search technique for truncation param
eters suggested here becomes feasible with the aid of a computer. Suitable examples to 
test models seem to be rare in the literature, perhaps because poor fits of the binomial 
were naturally withheld from publication especially in the early part of the century. 
Nevertheless, with the accumulation of massive data sets in biology and other areas 
of research, one should expect to find numerous applications in which the probability 
parameter pis confined to a subinterval of (0, 1). 

9. References 

[1] M.A. Bender, et al. On the distribution of spontaneous chromosomal aberrations 
in human peripheral blood lymphocytes in culture. Mutation Research, 244:215-
220, 1990. 

[2] K.O. Bowman, M.A. Kastenbaum, and L.R. Shenton. The negative hypergeomet
ric distribution and estimation by moments. Commun. statist. Simula-Computa., 
1991. 

[3] D.G. Catcheside. Secondary pairing in Brassica oleracea. Cytologia, Fujii Jub. 
Vol., pages 366-378, 1937. 

[4] F.N. David and N .L. Johnson. Truncated Poisson. Biometrics, 10:275-285, 1952. 

[5] A. Hald. The mixed binomial distribution and the posterior distribution of p for 
a continuous prior distribution. JRSS Series B, 30:359-367, 1968. 

[6] G.H. Hardy. On the Frullani integral J~(¢(axm)-¢(bxm)){ln{x)}P /x dx. Quar
terly Journal of Pure and Applied Mathematics, 33:113-144, 1901. 

[7] N .L. Johnson and S. Kotz. Discrete Distributions. Houghton Mifflin Company, 
Boston, 1969. 

[8] K. Pearson. System of frequency curves. Phil. Trans. A, 186:343-414, 1985. 

[9] C.R. Rao and l.M. Chakravarti. Some small sample tests of significance for a 
Poisson distribution. Biometrics, 12:26'i-282, 1956. 

[10] L.R. Shenton. Maximum likelihood and the efficiency of the method of moments. 
Biometrika, 37:111-116, 1950. 



.. 

• 

- 27 -

[11] J .G. Skellam. A probability distribution derived from the binomial distribution 
by regarding the probability of success as variable between the sets of trials. J. 
Roy Statist. Soc., Series B, 10:257-261, 1948 . 



- 28 -

APPENDIX 

A. Graphical Analysis 

The following is a graphical analysis of a set of generalized mixtures of binomial distri
butions. 

In addition to the graphical analysis, the skewness and kurtosis of the distributions 
were used in order to compare them with the Pearson-type frequency curves. Models 
7 and 14 were not compared in this fashion, because of the difficulty in obtaining data. 

In what follows, n is taken to be 20. "sd" denotes the standard deviation, "skew" 
denotes the skewness, and "kurt" denotes the kurtosis. 

A.1. Model 1 

The model 1 distribution is simply the binomial distribution. A short description will 
be helpful in comparing it with the other mixtures. 

For the model 1 distribution, /(x; p = po) = /( n - x; p = 1 - Po), for 0 < Po < 1. 
The model 1 distributions are in the form of bell-shaped curves. When p = 0.5, the 
distribution has skewness=O, the kurtosis is at a minimum and the standard deviation 
is at a maximum. Thus as p deviates from 0.5, the kurtosis increases and the skewness 
decreases. When pis very close to 0 or 1, the distribution becomes J-shaped. When 
p < 0.5, the distribution is skewed to the left (skewness> O); when p > 0.5, the 
distribution is skewed to the right (skewness< 0). 

For 0.03 ::; p ::; 0.97, the model 1 distribution could be classified as a Pearson type 
I distribution. For p ::; 0.29 or p ~ 0.98, it could be classified as a Pearson type I( J) 
distribution. 

p: 0.1000 0.3000 0.5000 0.7000 0.9000 
sd: 1.3416 2.0494 2.2361 2.0494 1.3416 
skew: 0.5963 0.1952 0.0000 -0.1952 -0.5963 
kurt: 3.2556 2.9381 2.9000 2.9381 3.2556 

A.2. Model 2 

The model 2 distributions include J-shaped and bell-shaped curves. For small b, in
creasing p changes the distribution from a U-shaped curve to a J-shaped curve with 
skewness< 0 to a bell-shaped curve with skewness> O. For larger b, increasing p changes 
the distribution from a J-shaped curve with skew11ess< 0 to a bell-shaped curve with 
skewness< 0 to a bell-shaped curve with skewness> 0. 

In general, for p < 1, the model 2 distribution coP ... d be classified as Pearson type 
I(U) when b < 0.5 and Pearson type I(J) when b > 1.0. For p > 1, it could be classified 
as Pearson type I( J) for b < 1 and Pearson type I for b > 2 or b > 3. 

Note that /(x; b = 1,p = 1) is a discrete uniform distribution. 
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p b = 0.50 b = 1.00 b = 2.0 b = 4.0 b = 8.0 
b/2 sd: 6.1950 5. 7910 5.0553 4.2248 3.4980 

skew: -1.1629 -0.8181 -0.5671 -0.3927 -0.2770 
kurt: 3.0240 2.5053 2.3922 2.4870 2.6379 

b sd: 6.9394 6.0553 4.9876 4.0181 3.2845 
skew: -0.3025 0.0000 0.1820 0.2488 0.2401 
kurt: 1.6560 1.7945 2.1348 2.4692 2.6916 

3b/2 sd: 6.7409 5.4956 4.2789 3.3340 2.7016 
skew: 0.2208 0.5255 0.6712 0.6614 0.5672 
kurt: 1.6616 2.2163 2.7866 3.0881 3.1342 

2b sd: 6.1824 4.7140 3.4775 2.6312 2.1224 
skew: 0.6393 0.9625 1.0776 0.9948 0.8297 
kurt: 2.1391 3.1221 3.8578 3.9680 3.7118 

A.3. Model 3 

The model 3 distribution is in general J-shaped. Fixing b and increasing a changes the 
distribution from a J-shaped curve with skewness> 0 to a relatively uniform curve to a 
J-shaped curve with skewness< 0. Fixing a and increasing b results in similar changes. 

For b < 0.4 and a < 1, the model 3 distribution could be classified as Pearson type 
I(U). For larger values of a and b, it could be classified as Pearson type I(J). 

b a= 1.0 a= 2.0 a= 4.0 a= 8.0 
a/5 sd: 6.2675 6.3548 5.6090 4.3073 

skew: 0.6926 0.0524 -0.5424 -1.1064 
kurt: 2.1743 1.7219 2.2354 3.6662 

2a/5 sd: 6.3021 5.8948 4.7321 3.3308 
skew: 0.3960 -0.2194 -0.7810 -1.2739 
kurt: 1.8724 1.8925 2.8178 4.4619 

3a/5 sd: 6.2338 5.5389 4.2219 2.8597 
skew: 0.2209 -0.3739 -0.9030 -1.3443 
kurt: 1.7920 2.0766 3.1838 4.8197 

4a/5 sd: 6.1448 5.2673 3.8879 2.5799 
skew: 0.0966 -0.4823 -0.9876 -1.3976 
kurt: 1. 7792 2.2422 3.4576 5.0770 

A.4. Model 4 

The model 4 distribution is generally bell-shaped. For very small k,the distribution is J-
shaped with skewness< O. Increasing k causes the distribution to become bell-shaped, 
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decreasing the skewness and the kurtosis. When the skewness becomes positive, the 
kurtosis begins to increase. For large k, the distribution is again bell-shaped. 

For 0.03 :5 k :5 0.51, the model 4 distribution could be classified as a Pearson type 
I distribution. Fork :5 0.02 or k ~ 0.52, it could be classified as Pearson type I(J). 

k: 0.1000 0.4000 1.0000 2.0000 4.0000 
sd: 1.3123 2.1023 2.1566 1.5298 0.5997 
skew: -0.6170 -0.1620 0.1225 0.4 767 1.6065 
kurt: 3.2807 2.9263 2.9150 3.1273 5.4808 

A.5. Model 5 

The model 5 distribution is either J-shaped or U-shaped. Increasing k changes the 
curve from J-shaped with skewness< 0 to U-shaped to J-shaped with skewness> 0. 

For k :5 1.55, the model 5 distribution could be classified as Pearson type I( J). For 
k ~ 1.56, it could be classified as Pearson type I(U). 

k: 1.0000 2.0000 4.0000 8.0000 
sd: 5.5153 6.5717 6.9035 6.5275 
skew: -0.7655 -0.2162 0.3390 0.9235a 
kurt: 2.5280 1. 7058 1.6734 2.4338 

A.6. Model 6 

The model 6 distribution is either J-shaped or U-shaped. Fixing a and increasing b 
changes the distribution from a U-shaped curve with skewness> 0 to a J-shaped curve 
with skewness< 0. Fixing ·b and increasing a causes a similar change. 

For a < 0.1 orb < 1, the model 6 distribution could be classified as Pearson type 
I(U). For larger values of a and b, it could be classified as Pearson type I(J). 

b a= 0.25 a= 0.5 a= 1.0 a= 2.0 
3a/2 sd: 7.3742 6.6608 5.3703 3.8488 

skew: 0.0410 -0.4574 -0.9812 -1.5095 
kurt: 1.4726 1.8338 2.9257 4.8784 

3a sd: 7.0902 6.0679 4.6375 3.1870 
skew: -0.2446 -0.7621 -1.3123 -1.8648 
kurt: 1.5946 2.3543 3.9950 6.6561 

9a/2 sd: 6.8379 5.6778 4.2301 2.8578 
skew: -0.4325 -0.9680 -1.5447 -2.1251 
kurt: 1.7779 2.8347 4.9160 8.1789 

A.7. Model 7 

The model 7 distribution is U-shaped. Increasing a changes the skewness from positive 
to negative. For small and large values of a, the kurtosis is larger and the standard 
deviation is smaller. 
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The model 7 distribution has not been classified in regard to the Pearson distribu
tions. 

a: 0.1000 0.5JOO 1.0000 2.0000 5.0000 
sd: 6.1092 7.1723 6.7103 5.6720 3.8671 
skew: 1.3962 0.0879 -0.43i7 -0.9935 -1.8017 
kurt: 3.5853 1.5177 1.8184 2.9097 6.1301 

A.8. Model 8 

The model 8 distribution is generally J-shaped. Fixing b and increasing a changes the 
distribution from a J-shaped curve with skewness> 0 to a relatively uniform curve to a 
J-shaped curve with skewness< 0. Fixing a and increasing bis accompanied by similar 
changes. 

For large values of a, the model 8 distribution could be classified as Pearson type 
I(J). For smaller values of a, it could be classified as Pearson type I(U) for small values 
of b and Pearson type I( J) for larger values of b. 

b 
3a/2 sd: 

2a 

3a 

A.9. Model 9 

skew: 
kurt: 

sd: 
skew: 
kurt: 

sd: 
skew: 
kurt: 

a = 0.5 a = 1.0 a = 2.0 a = 4.0 a = 8.0 
6.2552 5.8417 4.6582 3.2532 2.0967 
0.4272 -0.1884 -0.7376 -1.2057 -1.5739 
1.9092 1.8885 2. 7486 4.2386 5.9437 

6.2640 5.6448 4.3647 2.9873 1.9082 
0.2633 -0.3379 -0.8791 -1.3390 -1.6969 
1.8030 2.0249 3.1028 4.7806 6.6019 

6.1926 5.3074 3.9468 2.6387 1.6697 
0.0155 -0.5728 -1.1122 -1.5696 -1.9184 
1.7633 2.3535 3.8066 5.8436 7.9062 

The model 9 distribution is, in general, J-shaped. Fixing B and increasing A changes 
the distribution from a J-shaped curve with skewness< 0 to a relatively uniform curve 
to a J-shaped curve with skewness> 0. 

For A > 1, the model 9 distribution can be classified as Pearson type I(U). For 
A < 1, it can be classified as Pearson type I( J) for small values of B and Pearson type 
I(U) for larger values of B. 
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B A= 0.3 A= 0.6 A= 1.0 A= 2.0 
5A/4 sd: 4.2728 5.5i75 6.1474 6.1179 

skew: -0.8601 -0.3331 0.1002 0. 7537 
kurt: 3.0730 2.0336 1. 7791 2.3057 

3A/2 sd: 4.4996 5.7391 6.2110 6.0481 
skew: -0.7946 -0.2535 0.1877 0.8539 
kurt: 2.8902 1.944 7 1.7855 2.4763 

2A sd: 4.8900 5.9821 6.2774 5.9037 
skew: -0.6806 -0.1172 0.3367 1.0250 
kurt: 2.6014 1.8311 1.8394 2.8211 

A.IO. Model 10 

The model 10 distribution is either J-shaped or bell-shaped. Fixing b and increasing a 
changes the distribution from a J-shaped curve with skewness> 0 to a flatter, more cen
tered, bell-shaped curve to a bell-shaped curve with skewness< 0 and higher kurtosis. 
Fixing a and increasing b causes similar changes. 

For a < 1.3, the model 10 distribution could be classified as Pearson Type I(J) for 
small or large values of band Pearson Type I for intermediate values of b. For a > 1.4, 
it could be classified as Pearson Type I for small values of b and Pearson Type I( J) for 
large values of b. 

b a= 0.5 a= 1.0 a= 2.0 a= 5.0 
3a/2 sd: 3.9785 4.9485 4.8753 3.5205 

skew: 1.6844 0.6834 -0.0245 -0.6946 
kurt: 5.4265 2.5750 2.1392 3.0663 

5a/2 sd: 4.5993 5.1678 4.6626 3.1303 
skew: 1.1523 0.3136 -0.3227 -0.9472 
kurt: 3.5594 2.1403 2.3302 3.7333 

5a sd: 5.3055 5.1975 4.2377 2.6376 
skew: 0.4842 -0.2136 -0.8004 -1.3998 
kurt: 2.2141 2.1141 3.1157 5.3675 

A.11. Model 12 

The model 12 distribution is bell-shaped or J-shaped. Fixing B and increasing A 
changes the distribution from a bell-shaped curve with skewness< 0 to a J-shaped 
curve with skewness> 0. Fixing A and increasing B causes similar changes. 

For A ~ 0. 73, the model 12 distribution could be classified as Pearson type I for 
small values of B and Pearson type l(J) for larger values of B. For A ~ 0.74, it could 
be classified as Pearson type I( J). 



.. 

- 33 -

B A= 0.3 A= 0.6 A= 1.0 A= 2.0 
5A/4 sd: 4.6598 5.0213 4.5697 3.3081 

skew: -0.1692 0.4846 1.1192 2.3596 
kurt: 2.2305 2.3225 3.5089 8.7901 

3A/2 sd: 4.7996 4.9985 4.4347 3.1219 
skew: -0.0917 0.5926 1.2602 2.5831 
kurt: 2.1701 2.4435 3.9063 10.1458 

2A sd: 5.0114 4.9194 4.1899 2.8284 
skew: 0.0457 0.7829 1.5094 2.9814 
kurt: 2.0996 2.7252 4.7249 12.8617 

A.12. Model 13 

The model 13 distribution is bell-shaped or J-shaped. Fixing B and increasing A 
changes the distribution from a bell-shaped curve to a J-shaped curve with skewness> 0. 
Fixing A and increasing B causes a similar change. 

For A :5 0.6, the model 13 distribution could be classified as Pearson type I for 
small values of B and Pearson type I(J) for larger values of B. For A 2: 0.625, it could 
be classified as Pearson type I(J). 

B A= 0.2 }, = 0.4 A= 0.6 A= 0.8 
3A/2 sd: 4.2827 4.3238 3.8053 3.2608 

skew: -0.0390 0.6550 1.2192 1. 7366 
kurt: 2.3256 2.7438 4.0718 6.0489 

2A sd: 4.4825 4.2209 3.5606 2.9678 
skew: 0.0920 0.8586 1.4882 2.0747 
kurt: 2.2667 3.0903 4.9704 7.6843 

3A sd: 4.6912 3.9714 3.1625 2.5454 
skew: 0.3294 1.2100 1.9508 2.6570 
kurt: 2.2787 3.9303 6.9322 11.1696 

A.13. Model 14 

The model 14 distribution is U-shaped or J-shaped. For R = 1, it is U-shaped and 
for R 2: 2 it is J-shaped. Fixing R and increasing A increases the skewness and the 
kurtosis. 

The model 14 distribution has not been classified in regard to the Pearson distri
butions. 
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R A= 1.0 A= 2.0 A= 3.0 
1 sd: 6.7066 7.1663 7.1396 

skew: -0.4334 0.0911 0.3967 
kurt: 1.8170 1.5186 1.6494 

2 sd: 6.7248 6.2878 5.7890 
skew: 0.3106 0.9307 1.3355 
kurt: 1.6978 2.5102 3.5200 

3 sd: 6.3103 5.4690 4.8417 
skew: 0.7811 1.5073 2.0080 
kurt: 2.2748 4.1088 6.0751 

A.14. Model 15 

For many values of a and u, the model 15 di~tribution assumes negative values for 
extreme values of the variate (this phenomenon is noted and in sequel, we refer to it a 
"bad" case). For a= ao, there is some value u0 (depending on a) for which f(x; ao, u) 
is positive (a "good" case) for u < u0 but "bad" for u > uo. For a < 20, the value 
uo( a.) increases at a not quite linear rate. For 20 < a < 30, the values fluctuate rather 
intricately, finally dropping down to u0 = 0 for a = 35, meaning that the model 15 
distribution yields negative values for a > 35. 

The model 15 distribution is J-shaped or bell-shaped. Fixing u and increasing a 
changes the distribution from a J-shaped curve with skewness> 0 to a bell-shaped curve 
with skewness< 0. 

The model 15 distribution could be classified as Pearson type I(J) for a< 0.75 and 
Pearson type I for a > 1.25. For 0. 75 < a < 1.25, it could be classified as Pearson type 
I(J) for small values of u and Pearson type I for larger values of u. 

u a= 0.5 a= 1.0 a= 2.0 a= 4.0 a= 8.0 
a/5 sd: 3.8795 4.7567 4.8653 4.1105 2.9906 

skew: 1.6909 0.8047 0.1286 -0.4034 -0.8120 
kurt: 5.5454 2.8344 2.1504 2.5161 3.3935a 

2a/5 sd: 4.0854 4.7396 4.7336 3.9989 2.9357 
skew: 1.4215 0.6904 0.0900 -0.4090 -0.8076 
kurt: 4.5719 2.6676 2.1675 2.5339 3.3842 

3a/5 sd: 4.1969 4.6794 4.5956 3.8899 2.8824 
skew: 1.2389 0.6111 0.0660 -0.4093 -0.8017 
kurt: 4.0136 2.5683 2.1778 2.5385 3.3688 

A.15. Model 16 

For many values of a and u, the model 16 distribution assumes negative values (and 
is thus "bad"). Just as for the model 15 distribution, for a = ao, there is some value 
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uo {depending on a) for which /( x; a0 , u) is "good" for u < u0 but "bad"for u > uo. 
Similarly to ~he model 15 distribution, the value of u0 (a) increases at a not quite linear 
rate for a < 15, and then fluctuates intricately for 15 < a < 25, at which point . 
quickly drops to 0. Thus the model 16 distribution yields negative values for a > 25. 

The model 16 distribution is J-shaped or bell-shaped. Fixing u and increasing a 
changes the distribution from a J-shaped curve with skewness> 0 to a bell-shaped curve 
to a J-shaped curve with skewness> 0. 

For a < 1, the model 16 distribution could be classified as Pearson I(U) for very 
small values of u and type l(J) for larger values of u. For 1 < a < 3, it could be 
classified as Pearson type I( J) for small values of u and type I for larger values of u. 
For a> 3, it could be classified as Pearson type I(J). 

u a= 0.5 a= 1.0 a= 2.0 a= 4.0 a= 8.0 
a/20 sd: 6.1577 5.9238 4.9357 3.5866 2.3680 

skew: 0.5276 -0.0477 -0.5812 -1.0544 -1.4417 
kurt: 2.0257 1.8260 2.4310 3.6923 5.2896 

a/10 sd: 6.0873 5.7762 4.8127 3.5213 2.3425 
skew: 0.4334 -0.0866 -0.5898 -1.0497 -1.4349 
kurt: 1.9558 1.8574 2.4571 3.6815 5.2576 

3a/20 sd: 5.9726 5.6125 4.6859 3.4556 2.3171 
skew: 0.3581 -0.1141 -0.5918 -1.0420 -1.4271 
kurt: 1.9156 1.8810 2.4652 3.6565 5.2191 

A.16. Model 17 

The model 17 distribution is either J-shaped or bell-shaped, and may have more than 
one "peak". For small a, increasing b changes the distribution from a J-shaped curve 
with skewness> 0 to a bell-shaped curve with decreasing skewness. For larger a, the 
curve changes from a curve that has a J-shape on the left and a bell-shape on the right 
(a sideways S-curve) to a simple bell-shaped curve. Similar changes occur when b is 
fixed and a is increased. 

For a < 3 (approximately), the model 17 distribution could be classified as Pearson 
type I( J) for small values of b and type I for larger values of b. For a > 3, it could be 
classified as Pearson type I(U) for small values of b, type I(J) for intermediate values 
of b, and I for larger values of b. 

Note that f(x;a,b) = f(x;--a,b). 
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b a= 1.0 a= 2.0 a= 4.0 a= 8.0 
a/10 sd: 3.2092 4.6997 5.8236 6.1156 

skew: 2.5979 1.5092 0.7924 0.1673 
kurt: 9.8685 4.2197 2.3Hs7 l.7550a 

a/2 sd: 4.6644 5.1610 4.6341 3.4854 
skew: 0.8535 -0.0068 -0.6317 -1.0998 
kurt: 2.9835 2.0971 2.6624 3.9494 

a sd: 4.7792 4.3977 3.3883 2.3340 
skew: 0.4622 -0.2537 -0.8165 -1.1969 
kurt: 2.4265 2.4996 3.6198 4.9412 

2a sd: 4.6931 3.7346 2.6038 1. 7212 
skew: 0.0653 -0.4426 -0.8172 -1.1068 
kurt: 2.1828 2.6401 3.5028 4.4115 

A.17. Model 18 

The model 18 distribution is either J-shaped or bell-shaped, but it may have several 
"peaks", forming the sideways S-curve as in model 17. When a is small, increasing 
b changes the distribution from a J-shaped curve with skewness> 0 to a bell-shaped 
curve with skewness< 0. For larger a, increasing b changes the distribution from a 
sideways S-curve (J-shaped on the left and bell-shaped on the right) to a simple bell
shaped curve and finally back to a J-shaped curve with skewness< 0. Similar changes 
arP. observed when bis fixed and a increases. 

For a < 2, the model 18 distribution could be classified as Pearson type I(J) for 
small values of b and type I for larger values of b. For a > 2, it could be classified 
as Pearson type l(U) for small values of b, l(J) for intermediate values of b, and I for 
larger values of b. For a > 5, there is a range of values of b for which the model 18 
distribution could be classified as Pearson type III. 

As for the model 17 distribution, f(x;a,b) = f(x;-a,b). 

» 
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b a= 1.0 a= 2.0 a= 4.0 a= 8.0 
a/10 sd: 2.8406 4.5006 5.7369 6.0805 

" skew: 2.4291 1.4155 0.7577 0.1542 
kurt: 9.0316 3.8612 2.2276 1.7385 

" a/2 sd: 3.9363 4.7311 4.4341 3.4066 
skew: 0.8320 -0.0903 -0.7014 -1.1384 
kurt: 3.2064 2.2089 2.8114 4.0962 

a sd: 3.9882 3.9546 3.1947 2.2742 
skew: 0.5917 -0.2025 -0.7869 -1.1369 
kurt: 2.8848 2.7403 3.8311 4.9959 

2a sd: 4.1086 3.5270 2.5838 1.7734 
skew: 0.3320 -0.2064 -0.5828 -0.8658 
kurt: 2.5035 2.5776 3.1687 3.8290 

A.18. Model 19 
I 

The model 19 distribution is generally J-shaped, but it may have several "peaks", .J 
I 

forming sideways-S curves or W-sha.ped curves. Fixing a and increasing b changes the 
distribution from a J-shaped cur·,e with skewness> 0 to a W-shaped curve (J-shaped 
at both ends with a bell-shaped in the center) to a backwards sideways-S curve (J-

.. shaped on the right and bell-shaped on the left) and finally to a J-shaped curve with 
skewness< 0. Similar changes occur when bis fixed and a increases. 

The classification of the model 19 distribution with regard to the Pearson frequency 
curves is quite complicated. For small values of b, the distribution could be classified 
as Pearson type I(U). For larger values of b, it could be classified as type I(J), I or III. 
For large values of b, the distribution is type I(J). 

As for models 17 and 18, f(x;a,b) = f(x;-a,b). 
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b a= 1.0 a= 2.0 a= 4.0 a= 8.0 
a/10 sd: 4.9755 5.7537 6.3096 6.3166 

skew: 2.2988 1.6784 0.9289 0.2320 
kurt: 6.9581 4.5010 2.6102 1.8253 

a/5 sd: 7.1262 6.7517 5.4217 3.7985 
skew: 0.1141 -0.2719 ~0.6751 -1.1125 
kart: 1.4685 1.5430 2.2349 3.5731 

a sd: 5.9061 4.9260 3.5369 2.2816 
skew: -0.7175 -1.2778 -1.6837 -2.0170 
kurt: 2.4774 3.7455 5.3564 7.3280 

2a sd: 4.0938 2.8546 1.8659 1.1871 
skew: -0.9441 -1.6183 -2.1196 -2.3953 
kurt: 3.6488 6.7665 9.9997 11.9942 

A.19. Model 20 

The model 20 distribution is very similar to the model 18 distribution, forming J-shaped 
curves, sideways-S curves, and hell-shaped curves, and undergoing similar changes. As 
with models 17, 18, and 19, f(x;a,b) = f(x;-a,b). 

The classification of model 20 with regard to the Pearson type frequency curves is 
nearly identical to that of the model 18 distribution. 

b a=l a=2 a=4 a=8 
a/10 sd: 4.6975 5.6233 5.6753 4.8714 

skew: 0.8362 -0.0340 -0.6567 -1.2128 
kurt: 2.9182 1.8871 2.2967 3.6729 

a/5 sd: 4.6422 4.3944 3.5068 2.4749 
skew: 0.4706 -0.3396 -1.0111 -1.4703 
kurt: 2.5289 2.7006 4.2488 6.2015 

a sd: 4.6090 3.8950 2.8326 1.9136 
skew: 0.3006 -0.3054 -0.7842 -1.1211 
kurt: 2.3369 2.6325 3.7361 4.8805 

2a sd: 4.5127 3.4821 2.3929 1.5810 
skew: -0.0053 -0.4737 -0.8173 -1.0984 
kurt: 2.2203 2.7025 3.4827 4.3223 

A.20. Model 22 

The model 22 distribution is either J-shaped or U-shaped. Fixing a. and increasing b 
changes the distribution from a J-shaped curve with skewness> 0 to a U-shaped curve 
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to a J-shaped curve with skewness< 0. Fixing b and increasing a is accompanied by 
similar changes. 

For a < 2, the model 22 distribution could be classified as Pearson type I(U) for 
small values of b and type I( J) for large values of b. For 2 < a < 7, it could be classified 
as Pearson type I( J) for small and large values of b and type I(U) for intermediate 
values of b. For a > 7, it could be classified as Pearson type I( J) for all values of b. 

b a= 0.5 a= 1 a=2 a=4 
a/2 sd: 6.3199 6.8660 6.9023 6.1453 

skew: 1.4557 0.8816 0.3191 -0.2277 
kurt: 3.6704 2.3017 1.6790 1.8032 

a sd: 7.3303 6.8491 5.6579 4.1023 
skew: 0.3403 -0.1646 -0.6755 -1.1667 
kurt: 1.5829 1.6108 2.3088 3.7024 

2a sd: 6.5140 5.1404 3.5957 2.3032 
skew: -0.4623 -0.9759 -1.4 709 -1.9026 
kurt: 1.8669 2.9632 4.7981 7.1018 

A.21. Model 24 

The model 24 distribution is either J-shaped or bell-shaped. Fixing a and increasing 
k changes the distributio!l from a J-shaped curve with skewness< 0 to a bell-shaped 
curve with increasing skewness. Fixing b and increasing a is accompanied by similar 
changes. 

For a < 0.5, the model 24 distribution could be classified as Pearson type I(U) for 
small values of k and type I(J) for larger values of k. For a > 0.5, it could be classified 
as Pearson type I(J) for small and large values of k and type I for intermediate values 
of k. 

k a= 1 a=2 a=4 a=8 
a/4 sd: 3.0508 3.0808 2.9579 2.7770 

skew: -2.5650 -1.6889 -0.9948 -0.4989 
kurt: 10.6347 6.3018 4.0322 3.1037 

a sd: 4.6123 4.0205 3.1944 2.3809 
skew: -0. 7615 -0.2466 0.1356 0.3841 
kurt: 2.8878 2.4704 2.6325 2.9658 

3a/2 sd: 4.6937 3.7214 2.6324 1. 7194 
skew: -0.3234 0.1427 0.4754 0.7050 
kurt: 2.2917 2.4432 2.9622 3.4601 
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A.22. Model 25 

The model 25 distribution is either J-shaped or bell-shaped. Fixing a and increasing k 
changes the distribution from a bell-shaped curve to a J-shaped curve with skewness> 0. 
Fixing k and increasing a is accompanied by the opposite change: from a J-shaped curve 
with skewness> 0 to a bell-shaped curve with decreasing skewness. 

For small values of a or large values of k, the model 25 distribution could be classified 
as Pearson type I(J). For large values of a, it could be classified as Pearson type I. 

k a= 1 a=2 a=4 a=8 
a/2 sd: 5.2518 5.3782 4.5127 3.2398 

skew: 0.8814 0.1464 -0.4286 -0.8718 
kurt: 2.7856 2.0058 2.4149 3.4187 

a sd: 4.8416 5.3328 4.7589 3.5585 
skew: 1.2362 0.4071 -0.2174 -0.6923 
kurt: 3.6963 2.1679 2.2050 2.9958 

2a sd: 3.8874 4.8758 4.8753 3.9442 
skew: 1.9691 0.8783 0.1317 -0.4065 
kurt: 6.6518 2.9536 2.1646 2.5539 

A.23. Model 26 

For many values of a and k, the model 26 distribution assumes negative values (and is 
thus "b(f~d"). Similarly to model 15 and 16, for a given k = k0 , there is some value ao 
(depending on k) for which f(x,a,ko) is "good" for a> ao but "bad" for a< ao. It 
appears that this value is a(k) = 6.5 (approximately) for all values of k. [A more exact 
value is a(k) = 6.497596] 

The model 26 distribution is a sideways, backwards S-curve (J-shaped on the right 
and bell-shaped on the left. It is the point at x = 19 that becomes negative, while 
x = 20 is very large (giving the curve the J-shape) and for x < 19 the curve is bell
shaped. Fixing a and increasing b results in a decrease in the value at x = 20 and 
changes the bell-shaped part of the curve from skewness< 0 to skewness> 0. 

For small values of k, the model 26 distribution could be classified as Pearson type 
I(J). For larger values of k, it could be classified as Pearson type I. 

II 
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a k = 0.5 k = 1.0 k = 2.0 k = 4.0 k = 8.0 
6.5 sd: 3.0450 4.0008 4.8858 5.1607 4.1030 

skew: -2.0870 -1.2271 -0.5058 0.1849 0.9914 
kurt: 6.9579 3.6768 2.2840 2.1720 3.7200 

8 sd: 2.7583 3.6414 4.4890 4.8317 3.9880 
skew: -2.0819 -1.2440 -0.5495 0.1002 0.8266 
kurt: 7.1020 3.8508 2.4405 2.2266 3.3824 

10 sd: 2.4709 3.2793 4.0857 4.4915 3.866 
skew: -2.0776 -1.2632 -0.5970 0.0116 0.663 
kurt: 7.2544 4.0377 2.6103 2.2970 3.1086 

15 sd: 2.0117 2.6959 3.4245 3.9128 3.6352 
skew: -2.0706 -1.2972 -0.6787 -0.1360 0.4085 
kurt: 7.5058 4.3592 2.9110 2.4522 2.8128 

A.24. Model 27 

The model 27 distribution takes the form of a bell-shaped or J-shaped curve. Fixing 
k and increasing a changes the distribution from a sideways-S curve (J-shaped on the 
left and bell-shaped on the right) to a simple bell-shaped curve to a J-shaped curve 
with skewness> 0. Fixing a and increasing k is accompanied by similar changes. 

For k < 1, the model 27 distribution could be classified as Pearson type I(U) for 
small values of a and type I( J) for larger values of a. For k > 1, it could be classified 
as Pearson type I( J) for small values of a and type I for larger values of a. 

k a= 1.0 a= 2.0 a= 4.0 a= 8.0 
a/2 sd: 5.6099 4.4989 3.6004 2.9637 

skew: -0.3550 -0.4107 -0.2433 -0.0118 
kurt: 2.0268 2.4298 2.6093 2.7212 

a sd: 5.2450 4.1383 3.1522 2.3362 
skew: -0.0252 0.0485 0.2388 0.4194 
kurt: 1.9736 2.3117 2.6674 3.0030 

2a sd: 4.3326 3.0671 1.9734 1.1711 
skew: 0.4651 0.6326 0.8214 1.0560 
kurt: 2.3883 2.9859 3.6304 4.2393 

5a sd: 2.0613 0.9926 0.4154 0.1410 
skew: 1.5266 1.8655 2.8110 7.2022 
kurt: 5.5795 7.4999 11.9636 55.6491 
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B. Three Dimensional Graphs 

Three axes refer to probability, a parameter and the variable x; n is taken to be 20. 

Model 1 Model 4 

Model 5 Model 7 

Figure 2: Models 1, 4, 5, and 7 



J 
1 
j , . 

.. 

•• 

p = b/4 

p= 3b/4 

p= 5b/4 

- 43 -

p = b/2 
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Figure 3: Model 2 
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Figure 4: Model 2 
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b = 3a/5 
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Figure 5: Model 3 
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Figure 7: Model 8 
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Figure 9: Model 10 
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Figure 10: Model 10 
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Figure 11: Model 12 
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Figure 12: Model 13 
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Figure 14: Model 16 
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Figure 15: Model 17 
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Figure 17: Model 18 
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Figure 18: Model 18 
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Figure 22: Model 20 
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Figure 25: Model 24 
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Figure 29: Model 26 
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