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ABSTRACT

Selective genotyping is an efficient strategy for mapping quantitative trait loci. For binary traits, where
there are only two distinct phenotypic values (e.g., affected/unaffected or present/absent), one may
consider selective genotyping of affected individuals, while genotyping none or only some of the
unaffecteds. If selective genotyping of this sort is employed, the usual method for binary trait mapping,
which considers phenotypes conditional on genotypes, cannot be used. We present an alternative
approach, instead considering genotypes conditional on phenotypes, and compare this to the more
standard method of analysis, both analytically and by example. For studies of rare binary phenotypes, we
recommend performing an initial genome scan with all affected individuals and an equal number of
unaffecteds, followed by genotyping the full cross in genomic regions of interest to confirm results from

the initial screen.

WE consider the problem of mapping genetic loci
c

ontributing to a binary trait in an experimental
cross with selective genotyping. There are two clear
approaches for linkage analysis with a binary trait.
Typically, we compare the proportion of affected
individuals across genotype groups (Xu and ATCHLEY
1996). Alternatively, we can compare genotype fre-
quencies between affected and unaffected individuals,
similar to HENSHALL and GopparD (1999). Beyond
these two basic approaches, binary trait mapping has
seen fundamental advances in regression models
(McINTYRE et al. 2001; DENG et al. 2006), extensions
to multiple-QTL mapping (CorrMmaN et al. 2005; CHEN
and Liu 2009), and the development of Bayesian
algorithms (Y1 and Xu 2000; HuanG et al. 2007).
However, the original data structure and approach have
remained intact. Existing methods for binary trait
mapping largely require the availability of genotype
and phenotype data for a representative sample of both
affected and unaffected individuals, and we have not
yet seen a well-developed framework for binary trait
mapping in the presence of selective genotyping.

It is not uncommon to see genotype data on affected
individuals only, in which case the above methods
cannot be used. Instead, we can compare observed
genotype frequencies to the expected segregation ratios
given the cross type, in a test for segregation distortion
(see Faris et al. 1998; LAMBRIDES et al. 2004). For
example, the expected segregation proportions for an
intercross are 1:2:1. The observed genotypes can then
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be described by a multinomial model, and statistically
significant deviation from the expected segregation
ratios among the genotyped affected individuals would
suggest genotype—phenotype association. Gene map-
ping approaches that model genotypes rather than
phenotypes have been developed extensively in the
analysis of affected human relative pairs (see, for
example, Riscu 1990; HoLmaNs 1993; HAUSER and
BoeHNKE 1998). In the analysis of experimental crosses,
however, this type of approach has been developed
primarily for the identification of monogenic mutants
(MORAN et al. 2006).

Once all affected individuals are genotyped, an in-
vestigator may go on to genotype unaffected individuals.
With this genotyping strategy in mind, we present
several potential methods of analysis that might be
applied in this context. First, we consider a standard
analysis of the genotyped individuals, with disease
proportions compared across genotype groups (XU
and ATcHLEY 1996). Having omitted ungenotyped
individuals, this method of analysis appears invalid
because the estimated disease proportions are biased
upward, reflecting an overrepresentation of affecteds in
the set of genotyped individuals under consideration.
As an alternative, we develop a reverse approach with
genotype frequencies compared across phenotype
groups. Because selective genotyping does provide a
representative sample of genotypes for each phenotype
group, this reverse approach does not face the bias in
parameter estimation seen with the standard approach.
We further extend the reverse approach to incorporate
a segregation assumption, as is necessary for an affec-
teds only analysis. Finally, we present a full-likelihood
analysis accounting for selective genotyping, similar to
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TABLE 1

Data at a single genetic marker from a backcross experiment
with binary phenotypes

Genotype
AA AB Missing Total
Phenotype
Affected NAAD NAB.D Nmis,p(= 0) np
Unaffected NaaD L%} Ninis, np
Total naa Nap Nmis (: nmis,lj) N

All affecteds are genotyped, while some or all unaffecteds
may be left ungenotyped.

that suggested by LANDER and BoTsTEIN (1989) for
quantitative traits. We develop the full-likelihood ap-
proach both with and without incorporating an assump-
tion on the genotype segregation proportions.

Having put forth each of these methods, we derive
analytic relationships among them. These relationships
provide important insight regarding application of the
presented methods under selective genotyping. Most
notably, we find that making a segregation assumption
can lead to spurious evidence of a QTL, but is necessary
to treat the case of affecteds only genotyping. We
demonstrate properties of the methods in an analysis
of recovery from infection by Listeria monocytogenes in
intercross mice and further compare power of the
methods through computer simulations. Finally, we
synthesize our analytical and simulation results to offer
more general suggestions for the analysis of binary trait
data with selective genotyping.

METHODS

For simplicity, we present methods for the case of a
backcross. For analysis, we consider backcross data
consisting of binary phenotypes (affected or unaf-
fected) for all individuals and marker genotypes (AA
or AB) on all affecteds and all, some, or none of the
unaffecteds. We present methods of analysis to address
these three genotyping strategies for binary trait data.
The observed data are represented in Table 1.

Throughout our description of the methods, we use
the following notation. Let N be the total number of
individuals in the cross, with n,,s genotyped individuals
and 7, = N — nps ungenotyped individuals. We assign
the indexes ¢ =1, ..., Nsuch that individuals € {1, ...,
Nobs) are genotyped, and the remaining individuals are
ungenotyped. Let D; = 1 or 0 according to whether
individual 7 is affected or unaffected. We take G; € {AA,
AB} to denote the underlying unobserved genotype at
the putative QTL of interest, while O,,; € {AA, AB, — }
denotes the observed genotype at marker m, with “ — 7
indicating a missing value.

Standard approach: In dealing with selective geno-
typing, one possible approach is to ignore individuals

without genotype data, performing an analysis of
genotyped individuals only. Once we have omitted
individuals with missing genotypes from our analysis,
we can use the approach of Xu and ATcHLEY (1996) to
look for genotype—phenotype association by testing for
a difference in disease probability across genotypes.

Let TAA — PI'(Dl =1 | Gl‘ = AA) and TAB — PI"(Dl =
1| G; = AB) denote the penetrance values (the condi-
tional phenotype probabilities given the genotype at a
putative QTL), and let w. = Pr(D; = 1) denote the
marginal phenotype probability (i.e., the prevalence of
disease).

Similar to standard interval mapping for quantitative
traits (LANDER and BoTsTEIN 1989), the approach of Xu
and ATCHLEY (1996) makes use of the conditional QTL
genotype probabilities given the full set of multipoint
marker data for the ith individual, p;, = Pr(G; = g 0.).
By convention, evidence against the null hypothesis of
genotype-phenotype independence, Pr(D | G) = Pr(D),
in favor of the alternative hypothesis of a QTL, Pr(D | G) #
Pr(D), is presented as the log;likelihood ratio

LODy = loglo{

1 HiZgE{AA,AB} [pig - (Frg)” - (1= rg) =]
=10810 Hi(ﬁ,)b“(l—’ﬁ'.)lib' ’

maX'”AAs'TTABPr(D ‘ 0. qTAA»"TAB)
max, Pr(D;.)

where we model affection status as a Bernoulli random
variable with a common probability under the null and
with genotype-specific probabilities under the alterna-
tive hypothesis. Assuming no missing genotype data for
reasons other than the selective genotyping, and no
genotyping error, the maximum-likelihood estimates
(MLEs) at the markers are simply sample proportions.
Between markers, we can perform interval mapping by
an EM algorithm (DEMPSTER et al. 1977), which has
been previously described for this application (Xu and
ATcHLEY 1996; BROMAN 2003).

The forward approach using LODy is appropriate in
the case that we have genotyped all individuals. How-
ever, if we have done selective genotyping with regard to
phenotypes, the approach will yield biased and incon-
sistent estimates of w44 and 45 As a result, the validity
of this approach for selective genotyping is not imme-
diately apparent.

Reverse approach, conditioning on phenotypes: As
an alternative, we can also look for genotype—phenotype
association by reversing the standard approach and
instead modeling genotypes conditional on pheno-
types. This approach is technically quite similar to the
logistic regression model presented by HENSHALL and
GoDDARD (1999), but we present it in a framework that
elucidates its relationship with the standard approach of
Xu and ATcHLEY (1996). Placing the reverse approach
in this likelihood framework also allows it to be easily
adapted for analysis of affecteds only, as will be seen
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TABLE 2

Summary of forward and reverse approaches and likelihood functions

Hypothesis MLEs Likelihood
Forward
Alternative Taa 7 Tap Tar = % lik(fran, rap | O.) = [1; 2o peqanan i - (Frg)” - (1= ﬁg)lil)']
=
Null T = TMpp = Tap fr = Mot lik(7) = [L,(7)" - (1 — &)
Reverse R PN
Alternative by # b ¢ = m lik(dp, dp | D) =TI, de{AA,AB}[qig “Pr(Gi=g | Di;bp, dp)]
Null b.=d,=dp ‘i’ = % 1ik(‘i><) =1L de{AA,AB} Pr(G;=g; $.)
Modified Null b =d,=dy b =1 lik($. =1)

Analytical maximum-likelihood estimates (MLEs) are stated for marker locations.

below. Again, we consider only genotyped individuals
and omit the rest from our analysis.

Let ¢p = Pr(G;, = AA | D; = 1) and ¢ =Pr(G, =
AA | D; = 0) denote the affection-status-specific proba-
bilities of the AA genotype at the putative QTL of
interest, and let ¢. = Pr(G; = AA) denote the marginal
probability of the AA genotype. (For an intercross,
we must handle the three possible genotypes {AA, AB,
BB}, and so we would consider the vector ¢ =
[Pr(G; = AA) Pr(G; = AB)]" and analogous vectors for
dpand dj.)

We calculate the LOD score measuring support for a
QTL as the logj¢likelihood ratio comparing evidence
for the alternative hypothesis, Pr(D | G) # Pr(D) [or
equivalently, Pr(G | D) # Pr(G)], in favor of the null
hypothesis of independence. Here, we model genotypes
at the putative QTL using a Bernoulli process (or
multinomial for an intercross) with a common proba-
bility under the null and with disease-status-specific
probabilities under the alternative hypothesis (see
Table 2).

To allow analysis at both marker and nonmarker
locations, we perform interval mapping using an EM
algorithm to calculate the necessary MLEs. Analogous
to the p;,for standard interval mapping, we make use of
the reverse quantities, ¢,,=Pr(O.;| G;= g), probabilities
of the full set of observed marker data given a specified
value of the underlying QTL genotype, g We have
developed hidden Markov models to obtain the g
details are provided in APPENDIX A.

Reverse approach, modified: Having presented the
reverse approach above, a simple modification allows us
to incorporate knowledge regarding the structure of the
cross. In particular, we may specify the null hypothesis
value of ¢. to be % for a backcross (or ¢. = Lll %}T for
an intercross). This prior knowledge is crucial in the
analysis of affecteds only, for which it is infeasible to
simply check for a difference in genotype proportions
across phenotype groups, as was done above.

Here, the modified LOD score, LODg ., = log,,
{maxy, o, Pr(O. | D; ¢, &;)/Pr(0.; b. = 1)}, quanti-
fies evidence for segregation distortion, i.e., deviation of
observed genotype counts from their expected distri-
bution. In an affecteds only analysis, this view of
evidence suggests genotype—phenotype association
and so indicates the presence of a QTL.

Since the alternative hypothesis remains the same as
in the original reverse approach, LODg, the MLEs for
dpand ¢ may be obtained in the same way as described
above. Note that a reasonable approach to take with
this method is to constrain the conditional geno-
type probabilities such that their weighted average,
¢y - m + by [1 — 7], is equal to the marginal genotype
probability, .. However, we use the unconstrained value
in calculating L.ODg g, incorporating the constraint
through a full-likelihood analysis developed further
below.

Full-likelihood analysis: Performing a full-likelihood
analysis allows us to forgo conditioning on either
genotypes or phenotypes. Conceptually, this model
makes complete use of the available data in assessing
evidence of a QTL. An apparent advantage of this
approach is that ungenotyped individuals can be in-
cluded in the likelihood. However, careful examination
in the RESULTS below shows that full-likelihood analysis
yields results quite similar to those of both the forward
and reverse approaches.

The full-likelihood function models the joint proba-
bility of disease status and observed genotypes. We write
the full likelihood of a QTL at the putative site of
interest in terms of parameters ¢, ¢, and . as

N
hk(d)l)a (blja 1T.) = H Pr(Di7 Ol; d)l)a 4)157 17.)
=1
—1ik(p, b D) Tik(m). (1)

Since the full likelihood can be decomposed into
orthogonal components to separate ¢ and ¢;; from .
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(see APPENDIX B for details), the resulting MLEs are
simply those obtained by performing the maximization
separately. At the markers, these are again the appro-
priate sample averages as specified in the previous
sections above. Estimating the position of a QTL does
not depend on the value m. since this parameter
estimate is fixed across the genome.

Constrained full likelihood: Analogous to the modified
reverse approach that incorporates evidence for segre-
gation distortion, we can also perform full-likelihood
analysis under the assumption that marginal genotype
probabilities should follow their null segregation values.
The resulting full-likelihood function is the same as that
specified above, but subject to the constraint that
disease-status-specific genotype probabilities average
to a marginal value of ¢, = % We write this constraint
in terms of the overall probability of disease, .

1
b = by mtp[1-m] =g, 2)
(For the case of an intercross, ¢ = [i %]T, so the
equation above becomes a two-component constraint.)
Analysis is performed using all Nindividuals in the cross,
both genotyped and ungenotyped. The constrained

full-likelihood LOD score is written as

LOD{T\LH‘seg

R mMaXy, ¢ m|b =1/2 lik(dp, dp, )
810 max, lik(¢. = 1/2, ) '

Under the null hypothesis, the MLE 7. = np/N is the
same as in the absence of the constraint, while J) :é
according to the segregation assumption. To maximize
the constrained likelihood under the alternative hy-
pothesis, we use an EM algorithm, described in APPEN-
DIX C.

Significance thresholds: After performing a genome
scan using any of the methods presented above, we can
make use of significance thresholds in reporting statis-
tical significance for genomic regions of interest. The
significance thresholds must account for multiple
comparisons arising in the complete genome scan. A
typical way to perform this adjustment while controlling
the rate of detecting false positive QTL is to examine the
distribution of the genomewide maximum LOD score
under the global null hypothesis of no QTL.

For standard interval mapping, significance thresh-
olds conditioning on observed genotypes and pheno-
types may be obtained empirically by permutation
(CHURCHILL and DOERGE 1994), shuffling phenotypes
while keeping genotypes fixed to approximate the null
distribution of the genomewide maximum LOD score.

In the case of methods incorporating a segregation
assumption, such as LODRg g, it may not make sense to
condition on observed genotypes. For example, in an
affecteds only analysis, the observed genotypes contain

all of the information we use to test for linkage. If we
condition on those observed genotypes in calculating
the null distribution, we effectively condition out any
evidence in the data. Put more simply, we cannot shuffle
phenotypes in an affecteds only analysis because all
individuals have the same phenotype. Instead, we can
estimate the null distribution by simulation using a
gene-dropping approach (MACCLUER et al. 1986) to
simulate new genotypes preserving the cross structure
and pattern of missing genotypes from the original data
set. The resulting significance thresholds are reported
conditional on observed phenotypes, while averaging
across possible sets of genotypes given the cross used to
generate the data. Since the simulation-based signifi-
cance thresholds do not condition on the observed
genotypes, they are appropriate for analyses in which we
have incorporated evidence for segregation distortion
or deviation from expected segregation ratios. We
describe this form of evidence more explicitly in the
RESULTS below.

RESULTS

We have presented approaches to calculating like-
lihoods and corresponding likelihood ratios to assess
genotype—phenotype association for binary trait map-
ping in the presence of selective genotyping. Since all of
these methods are likelihood based, they are closely
related. In this section, we highlight key relationships
between the various approaches. We summarize all
presented relationships at the end of this section.

Reverse approach vs. modified reverse approach:
There is a direct relationship between LODg, in which
we use the MLE dA> to calculate the null likelihood, and
LODg eq, in which we assume ¢. = % according to the
expected genotype frequencies in a backcross,

lik(6. =10,

_ hk(&)Da (’i\)[) | Da Oﬂln)
=lo 10{ lik((j) ‘Om) X

= LODR + LODseg.dist.v

lik($,, by | D, O,
LODR,seg—loglo{1 (004D ’”)}

lik(. |0,
lik(d. =4:0,.)

where LOD, aii. = log,, {lik(d. | O,,) /lik(d. = 1] O,,)}
quantifies evidence for segregation distortion or de-
viation of the observed genotypes from the assumed
segregation proportion, ¢. = %

Full likelihood ws. reverse approach: Let LODy; be
the full-likelihood LOD score based on genotyped
individuals only and LODy, be the corresponding
LOD score obtained from all individuals whether geno-
typed or not. The LOD score to test for genotype—
phenotype association based on the reverse approach is
closely related to the corresponding LOD based on full-
likelihood analysis. Recall that the full likelihood can be
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decomposed as a product of the likelihood for parame-
ters ¢, ¢ and the likelihood for m, as shown in (1)
above. So, we can factor out the likelihood for phenotype
probability from the full likelihood to relate it back to the
reverse approach. Because this factorization applies at
both marker and nonmarker locations, the relationship
LOD;:5 = LODy, , = LODg holds quite generally even in
the presence of missing genotype data or genotyping
error (see APPENDIX D for details).

Forward uvs. reverse approach: The forward and
reverse methods of analysis are closely related as they
are both likelihood-ratio-based tests of independence.
For the case of no missing genotypes or genotyping
error, we can examine the relationship analytically at
marker locations

PI'(D | 0, 'ﬁ'AA, 'ﬁ'AB)
LODy = logm{ Pr(D; )
o {Pr(D |O.; fraa, 7ra) - Pr(0.; )
810 Pr(D; %) - Pr(0.: b))

b= roni)

= LODg,

where the estimated parameters 7 4, 745, and (i) are the
MLE:s as specified in the METHODS section above. Note
that these relationships apply only at marker locations,
in the case of no missing genotypes. It is in this special
case that all MLEs are obtained as sample averages, and
so the computed likelihood ratio is the same whether
conditional on genotypes or phenotypes. At nonmarker
locations, we must employ the relationships in (A6) to
obtain the full-likelihood MLEs, 44,5, and (I),, SO
these values could differ from those obtained by the
standard approach, LODy

Overall relationships: Here, we summarize the rela-
tionships among the proposed methods presented
here, together with those shown in APPENDIX D. At the
markers we have the following relationships:

LODph = LODy = LODg

LODR,seg = LODy + LODSCg.diSL'

The following relationships hold more generally at
both marker and nonmarker locations:

LODg = LODR), = LODg

LODIIT\{lll‘seg

= LODR,seg = LODR + LODseg.dist.

That LODg agrees with full-likelihood analysis, whether
or not we include ungenotyped individuals in the
analysis, suggests it is unnecessary to perform full-
likelihood analysis, since we can get the exact same
results using the simpler reverse approach. However, we
also see that the modified reverse approach incorpo-
rates evidence for segregation distortion, which can be

irrelevant to linkage if we have genotyped both affecteds
and unaffecteds. Hence, full-likelihood analysis may still
be necessary to incorporate the segregation assumption

. . . . . . N
while avoiding spurious evidence, as in LODg;; .,

APPLICATION

To demonstrate features of our proposed methods,
we perform analysis of recovery from L. monocytogenes
infection in 116 mice from an intercross of the resistant
strain C57BL/6ByJ and the susceptible strain BALB/
cBy] (BOYARTCHUK et al. 2001), using the data set
available in the R/qtl package (BROMAN et al. 2003).
In our analysis, we make use of genotypes at 131 genetic
markers on the 19 autosomes. Although phenotypes
were recorded as survival times in the original study, we
converted them to binary values to demonstrate appli-
cation to our proposed methods. (Note that analyzing
survival data as binary values is only one possible strategy
in handling survival data; see BRoMAN 2003 for a more
complete treatment of this particular data set.) Accord-
ingly, binary phenotypes were calculated to indicate
whether or not mice survived to 264 hr following
infection. Among the 116 phenotyped mice in this data
set, 35 survived and 81 died within 264 hr. Since survival
is the rarer phenotype in this cross, we refer to the 35
survivors as affected individuals. With the full data, an
appropriate analysis would use the standard approach,
LODy, with the available full genotypes. To explore the
set of possible genotyping strategies using real data, we
subset the available genotypes to create two additional
versions of this data set for analysis: one data set with
genotypes on affecteds only and another with equal
numbers of affecteds and unaffecteds genotyped. In
each case, we apply methods of analysis appropriate for
the genotyping strategy at hand.

Since some of the presented methods are sensitive to
segregation distortion, we note in advance that chro-
mosome 13 showed the strongest evidence of overall
deviation from the expected genotype proportions. In
particular, the marker D13M233 had genotype segrega-
tion proportions of 40:41:21 rather than the expected
1:2:1, giving a segregation distortion LOD score of 2.97
(P = 0.097 by gene-dropping simulation with 10,000
replicates). In contrast, the marker D2M365 on chro-
mosome 2 showed little segregation distortion, with
segregation proportions of 24:59:27 and a segregation
distortion LOD score of 0.12.

Standard analysis: We first consider a standard
analysis with full genotypes. In this case, itis appropriate
to perform standard interval mapping using the forward
approach, LODy, conditioning phenotypes on geno-
types. In calculating our LOD curve, we use an EM
algorithm, as implemented in R/qtl (BROMAN et al.
2003), with genotype probabilities calculated every
1 cM. We use a permutation test (CHURCHILL and
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FIGURE 1.—Analysis of intercross data from BOYARTCHUK
et al. (2001) with significant results on chromosomes 5 and
13, and chromosome 2 shown for comparison. LOD curves
are generated using four different methods and normalized
by their corresponding 5% significance thresholds for com-
parison: (i) The LOD with full genotypes is calculated by stan-
dard interval mapping according to the method of Xu and
ArcHLEY (1996) (shaded line), with a 5% permutation
threshold of 3.57; (ii) with genotypes on affecteds only, the
LOD curve is calculated by the reverse approach using an in-
tercross segregation assumption, LODgc, (dashed shaded
line), and the appropriate 5% simulation threshold is 3.57;
(iii) using genotypes on 35 unaffecteds and all 35 affecteds,
the LOD curve is calculated by the reverse approach, LODg
(solid line), with a corresponding 5% permutation threshold
of 3.65; and (iv) using genotypes on 35 unaffecteds and all 35
affecteds, the LOD curve is calculated by the full likelihood

with the segregation assumption, LODY seg (dashed  solid

line), using constrained maximum likelihood. The corre-
sponding 5% permutation threshold is 3.56.

DOERGE 1994) to assign statistical significance and
obtain (with 10,000 permutation replicates) a 5%
significance threshold of 3.57.

The LOD curve (Figure 1) has statistically significant
peaks on chromosomes 5 and 13, with corresponding P
values of <0.001 and 0.042, respectively. The evidence
seen on chromosome 13 is not influenced by segrega-
tion distortion and shows that genotype proportions
differ significantly by affection status.

Affecteds only analysis: If only the 35 affected
individuals were genotyped, the forward and reverse
approaches, LODr and LODg, respectively, are not
appropriate because they will always produce LOD
scores of strictly zero. Instead, we calculate the LOD
curve using the reverse approach, LODg e, making use
of the intercross segregation assumption, with geno-
types CC, CB, and BBsegregating according to the ratios
1:2:1. A 5% significance threshold is calculated by
simulation to be 3.57.

The LOD peak on chromosome 5 (Figure 1) is
statistically significant with a LOD score of 4.07 (P =
0.019). To follow up on this result, it is appropriate to
obtain genotypes for the full cross at the peak position
on chromosome 5. In our follow-up analysis of D5M357,

we test for a difference in genotype proportions across
affected and unaffected individuals. Among affected
individuals, the observed genotype distribution was
18:16:1, compared to 12:39:30 among unaffecteds,
yielding an exact pointwise Pvalue of 2.9 X 107°. On
the basis of this analysis, we conclude there is evidence
for a QTL on chromosome 5, and the significant result
obtained using affecteds only was not driven by spurious
segregation distortion.

Although there was good evidence of a QTL on
chromosome 13 using full genotypes, we detected no
evidence of a QTL on chromosome 13 using affecteds
only (maximum LOD score of 1.25, P > 0.99). The
results on chromosome 13 demonstrate that the reverse
approach, LODg g, provides reliable results only when
there is little segregation distortion in the overall set of
genotypes. In this particular data set, there was strong
segregation distortion among the pooled set of affec-
teds and unaffecteds, while affected individuals alone
had genotype proportions close to their null values.

Equal numbers of affecteds and unaffecteds geno-
typed: By genotyping both affecteds and unaffecteds, we
no longer require the use of a segregation assumption
and so can avoid the problem of distorted evidence that
we encountered in our affecteds only analysis. Here, we
consider the same intercross as above, but now we have
genotyped 35 unaffected mice (selected at random), in
addition to the 35 affected individuals. In this case, we
perform analysis using the reverse approach, LODg,
and use permutation to get a 5% significance threshold
of 3.65.

The profile of our observed LOD curves (Figure 1) is
very similar to that obtained by standard analysis with
complete genotyping. The overall strength of the signal
obtained by partial genotyping is somewhat attenuated,
but we still have reasonable evidence of QTL on
chromosome 5 and 13, with Pvalues 0.085 and 0.026,
respectively. After the initial genome scan using this
portion of the cross, we recommend following up with
genotypes on the full cross in genomic regions of
interest. For example, on chromosome 5 we find that
the remaining unaffected individuals show D5M357
genotype proportions of 5:21:20, compared to 7:18:10
among the first 35 genotyped unaffecteds. These results
confirm that the unaffecteds overall have a relatively
larger proportion of homozygote BB individuals and
smaller proportion of CCindividuals. Further, the peak
positions obtained by our partial genotyping strategy
are identical to those obtained by analysis of the full
cross. Thus, genotyping an equal number of affected
and unaffected individuals combined with follow-up
using the full cross provides an effective way to locate
QTL while vastly reducing the amount of genotyping
required.

To examine sensitivity of our results to randomness in
the set of unaffected individuals selected for genotyp-
ing, we repeated the analysis with 100 different sets of 35
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randomly selected unaffected mice. We saw qualitatively
similar results across this set of replicates, with reason-
able evidence of QTL on chromosomes 5 and 13 in the
majority of samples (results not shown). This investiga-
tion suggests genotyping all affecteds and an equal
number of unaffecteds is an effective way to capture
evidence of QTL in the full cross, while genotyping only
a fraction of the individuals.

Some unaffecteds genotyped using constrained
maximum likelihood: Incorporating a segregation as-
sumption is most useful for affecteds only analysis,
where we have zero power to map QTL without such
an assumption. Here, we consider incorporating this
assumption in the more moderate case of selective
genotyping with equal numbers of affecteds and un-
affecteds genotyping.

We examine the same set of genotyped individuals
as above, with genotypes on 35 unaffecteds and all
35 affected individuals, and perform analysis with the
inclusion of a segregation assumption. Toward this end,
both the reverse approach and the full likelihood are
possible options to accommodate the assumption. How-
ever, as shown in RESULTS above, LODg s, is equivalent
to a standard analysis, plus the LOD for segregation
distortion. In mapping QTL, we are generally not in-
terested in overall segregation distortion. We perform
analysis by LOD’FVu“_’ch to eliminate the possibility of
spurious evidence. Since we have eliminated evidence for
segregation distortion, we use permutation, rather than
simulation, to obtain a 5% significance threshold of 3.56.

The overall shape of the LOD curve produced by this
approach agrees quite closely with the full and partial
genotyping results shown in Figure 1. Still, we do note
differences that reflect properties of the methods. The
peak on chromosome 5 shows a LOD score of 4.06 (P=
0.018), greater than the value of 3.37 using the reverse
approach. On the other hand, the peak evidence on
chromosome 13 using LOD]{‘\;II,SCg was only 2.42 (P =
0.449), which is considerably less than the reverse LOD
of 3.98. These results show that constrained maximum
likelihood can improve the strength of our signal,
particularly when the segregation assumption matches
the observed data well. At the same time, using a
segregation assumption can also attenuate the strength
of evidence when there is deviation from this assump-
tion, as seen on chromosome 13.

POWER STUDIES

Simulations were performed varying cross type, her-
itability, and expected proportion of affecteds, to in-
vestigate the impact of these factors on power to detect a
QTL across four approaches to binary trait mapping.
Data were generated for backcrosses of 250 individuals
and intercrosses of 500 individuals, using a marker map
based on the mouse genome with markers about every
10 c¢M [the full map is included with the R/qtl package

(BROMAN et al. 2003) ]. In all simulations, a single QTL
was placed between the sixth and seventh markers on
chromosome 1 with heritability of the continuous liability
phenotype (Xu and ATcHLEY 1996) set at either 5 or
10%. Binary traits were generated from the continuous
liability values, with thresholds set such that the ex-
pected proportion of affecteds was either 10 or 25%.

The four mapping strategies assessed in the simula-
tions are the same as those presented in the AppLICA-
TION: (1) full genotyping of the cross using the standard
approach of Xu and ATcHLEY (1996), (2) affecteds only
analysis using LODg .4, (3) genotypes on all affecteds
and an equal number of unaffecteds using the reverse
approach, LODg, without the segregation assumption,
and (4) genotypes on all affecteds and an equal number
of unaffecteds using constrained full-likelihood analysis,
LOD?{lll,seg' For each set of parameter values and each of
the four mapping strategies, we obtained a 5% signifi-
cance threshold as the 95% quantile of the distribution
of genomewide maximum LOD scores under the null,
as estimated by 10,000 simulation replicates.

Power for all combinations of parameters based on
10,000 simulation replicates is shown in Table 3. For
each of the scenarios considered, the highest power was
obtained by full genotyping with standard analysis.
Affecteds only analysis and constrained full-likelihood
analysis with partial genotyping had comparable power
to detect a QTL, with slightly lower power in the
affecteds only analysis under all investigated scenarios.
Finally, reverse analysis with partial genotyping showed
notably lower power to detect a QTL compared to the
other three approaches.

When the affected phenotype is rare, an affecteds
only analysis can provide power comparable to anal-
ysis of the full cross and requires only a small fraction
of the genotyping. To check for spurious evidence due
to segregation distortion, further genotyping of un-
affecteds can serve as a useful supplement to affecteds
only analysis, particularly when incorporated by con-
strained full-likelihood analysis, and with greater im-
provements seen when the affected phenotype is more
common. Although analysis of affecteds and unaffec-
teds using the reverse approach, LODg, has lower
power than other approaches, we should keep in mind
that this approach is more robust to segregation dis-
tortion than the constrained full-likelihood analysis,
which can suffer from reduced power in the presence
of segregation distortion. The relatively weaker perfor-
mance of the reverse approach, LODg, suggests this
robust strategy is more suitable as a follow-up check for
segregation distortion, rather than as a genomewide
QTL mapping strategy.

DISCUSSION

We have presented methods for linkage analysis of
binary phenotypes in the presence of selective genotyp-
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TABLE 3

Power to detect QTL using four different strategies for binary trait mapping

Power (%) of methods

Expected proportion Heritability Full Affecteds  Both with ~ Both with full
of affecteds (%) Cross type (%) genotypes only reverse likelihood
10 Backcross 5 9.5 7.7 4.2 7.7
10 28.6 24.2 12.9 24.8
Intercross 5 19.9 16.5 7.1 16.7
10 59.6 52.0 25.5 53.0
25 Backcross 5 20.2 12.5 10.4 14.8
10 58.3 39.9 34.6 46.4
Intercross 5 41.7 26.0 22.1 31.3
10 89.5 72.4 64.2 79.3

Estimates are based on 10,000 simulation replicates for each combination of parameter values, in backcrosses
of 250 individuals and intercrosses of 500 individuals. The segregation assumption is incorporated for affecteds
only analysis, as well as for full-likelihood analysis of affecteds and some unaffecteds.

ing. As alternatives to standard interval mapping, we
presented a reverse approach of modeling genotypes
conditional on phenotypes and also a full-likelihood
approach. Our suggested modifications to the standard
approach of Xu and AtcHLEY (1996) are developed in
terms of fundamental likelihood modeling strategies.
Accordingly, a key contribution here is our presentation
of approaches to binary trait analysis using a cohesive
likelihood framework, elucidating fundamental rela-
tionships among the methods. Our formal develop-
ment of allele sharing methods presented as the reverse
approach, LODg, led to the use of hidden Markov
models to allow interval mapping in the reverse and full-
likelihood approaches (APPENDIXES A and ¢). Through
analytical comparisons, we found that our reverse
approach, LODg, is identical to a fulllikelihood ap-
proach at both marker and nonmarker locations.

We also proposed another version of the reverse
approach, L.ODg ¢, which incorporates a segregation
assumption of the expected genotype proportions based
on the type of cross that was performed. This approach
formalizes a natural method of analysis for dealing with
genotypes on affecteds only and presents it in a more
general form that can be applied with genotypes on
both affecteds and unaffecteds. We found the log;o-
likelihood ratio, LODg g, could be decomposed as the
sum of two types of evidence: (1) deviation of genotype
proportions by phenotype group and (2) segregation
distortion. For the case of genotypes on affecteds only,
incorporating the segregation assumption was espe-
cially crucial, as it provided a view of evidence for a
QTL where none was available by LODg or LODF.

The inclusion of evidence for segregation distortion
was deemed inappropriate in dealing with data having
genotypes available on both affecteds and unaffecteds.
For this case, we proposed incorporating the segrega-
tion assumption using a constrained full-likelihood

approach. In this way, the segregation assumption was
imposed under both the null and alternative hypothe-
ses, so that the resulting test statistic, LODiT\:lll,seg’ did not
contain evidence for segregation distortion. Eliminat-
ing evidence for segregation distortion helps ensure
that a large LOD score indicates evidence of a QTL,
as segregation distortion can arise simply by random
chance, systematically as a result of genotyping error, or
as a result of embryonic lethal alleles that are unrelated
to the trait of interest.

An understanding of these approaches as they relate
to one another helps us to decide which method to
use on the basis of the existing pattern of selective
genotyping. In the case that we have genotyped every-
body in our sample, we are not interested in overall
evidence for segregation distortion and would choose
a standard approach LODy On the other hand, if we
have genotyped affecteds only, the standard approach
does not allow us to detect association. In this case, all
evidence of association will be captured as evidence for
segregation distortion, which shows up only with use of
LODR,seg as LODseg.disl.-

Since full genotyping of a cross can be costly, while
affecteds only analysis can be prone to spurious evi-
dence, a reasonable balance is to genotype some
affecteds and some unaffecteds. Specifically, we recom-
mend an initial screen with genotypes on all affected
individuals and an equal number of unaffecteds, fol-
lowed by analysis of the full cross in genomic regions of
interest. As demonstrated in the APPLICATION, this
economical strategy can be an effective way to charac-
terize QTL from the full cross and requires only a
fraction of the genotyping. The ideal selective genotyp-
ing approach for any particular study may of course vary
from this recommendation and could be studied as a
function of animal rearing and phenotyping costs
relative to genotyping cost.
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The reverse approach, LODg, with no segregation
assumption is a natural method of analysis for data with
genotypes on affecteds and some unaffecteds. Although
this approach was shown to be quite similar to the standard
approach LODy at marker locations, we prefer LODg as it
is not susceptible to biased parameter estimates and so
produces more reliable results in between markers.

A full-likelihood analysis with constrained maximiza-
tion under both the null and alternative hypotheses,
presented as LODﬁlLseg, is another reasonable way to
approach selective genotyping data with both affecteds
and unaffecteds. Incorporating the segregation assump-
tion in this setting is a practical compromise to preserve
the evidence reported in an affecteds only analysis while
bringing in unaffected individuals. The drawback, as
seen in the Listeria example (BOYARTCHUK et al. 2001),
is that evidence can be attenuated when there is overall
segregation distortion in the data. Still, our computer
simulation studies indicate constrained full-likelihood
analysis offers notably higher power than the reverse
approach, LODg, across a variety of parameter val-
ues. Thus, our power studies suggest constrained full-
likelihood analysis is preferable as long as there is no
pervasive segregation distortion in the cross.

Afurther limitation of the reverse approach lies in the
treatment of multiple-QTL models. While single-QTL
models may be set up quite naturally by conditioning
genotypes at a single locus on the observed phenotypes,
modeling genotypes at multiple loci can be much more
cumbersome. Instead, when exploring multiple-QTL
models with data on both affecteds and unaffecteds
available, the standard approach of conditioning phe-
notypes on genotypes is more natural. The close re-
lationship between the forward and reverse approaches
in a single-QTL scan makes it quite reasonable to go
ahead with the forward approach for the consideration
of multiple-QTL models in the presence of selective
genotyping. When using the forward approach for
multiple-QTL. mapping under selective genotyping,
inferences at nonmarker positions may still be some-
what unreliable, while entirely valid results will be
produced for models involving marker positions only.

After performing an analysis of a cross experiment
under selective genotyping, we may always follow up by
genotyping all individuals in genomic regions of interest
identified from the initial scan. Such follow-up will be
especially important if the initial scan is performed with
affecteds only, since this strategy is most sensitive to
spurious evidence due to segregation distortion.

We thank William Pu at the Children’s Hospital in Boston for
presenting us with data motivating this research. This work was
supported in part by National Institutes of Health grant GM074244

(to KW.B.) and by a National Science Foundation Graduate Research
Fellowship (to A.M.).
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APPENDIX A: THE REVERSE APPROACH AT NONMARKER LOCATIONS

We describe the algorithm for obtaining $. here. Analogous methods for obtaining $,, and ¢ follow directly by
applying the same algorithm within each of the two phenotype groups.

Given the full set of observed genotype data O.; = (Oy;,..., Op) for a single individual at the p putative
QTL positions to be considered, let G; denote the underlying genotype at the mth putative site of interest. We
can expand the probability of the observed marker data given the underlying genotype at the putative QTL of
interest as

gig = Pr(Oviy ..., Opp)i | Gi = g) X Pr(O0,i | Gi = g) X Pr(Opps1)is - -+ Oni | Gi = g)
= Blmz(g) X e(gv Oml) X B;m(g)v

where the conditional probabilities of observed marker data, B! ;(g) and B’ ,(g), to the left and right of putative QTL
may be obtained inductively using the backward equations in the context of hidden Markov models (HMMs) (LANDER
et al. 1987). Here, e(g, O,,;) is the corresponding emission probability at the mth genetic position of interest for

individual ¢, which can also be interpreted as the genotyping error rate.

The likelihood function for the parameter ¢. based on the observed genotype data O.;on individuals i € {1, . . ., nops}
is
Nobs
lik(b H Pr(0.;;¢.)
Nobs
=11 X lgePr(G=gb)l
i=1 ge{AA,AB}

At iteration s + 1, we have the parameter estimate, 5)@. In the E-step, we calculate the expected number of
individuals with genotype AA at the putative QTL of interest as

s 2 ()
(s+1 R Pr(G; = AA, 0.0, 7)
dA)(S) * i.AA
gar+ (1= 0Y) - g

(A1)

HM

In the M-step, the updated parameter estimate is simply (i>($+ v ‘H
)

/ Nobs- A reasonable initial estimate of ¢. is the
sample average of conditional genotype probabilities, " =

(1/"obs) 22 Piaa-

APPENDIX B: ALTERNATE REPRESENTATIONS OF THE FULL LIKELIHOOD

We may expand our presentation of the full likelihood from Equation 1 as follows:

N
lik(dbp, by, m) = [ [ Pr(Di, 015 bp, b, )
=1

Nobs N

= {HPr(O-iDﬁ(bDvd)Ii)} : { [T Pr(D; “)} (B1)
i=1 i

— 1ik(dp, by | D) - lik(m ). (B2)

Here, the pattern of missing genotypes generated by selective genotyping depends only on the observed phenotypes,
D, and is conditionally independent of the underlying genotypes, G, given D. Hence, the model implicitly condi-
tions on the pattern of selective genotyping, with Pr(O,; | D;; ¢, ¢5) =1 for all ungenotyped individuals,
1€ {nobs + 1,,N}

We may reparameterize the full likelihood in terms of parameters w44, Tap, and ¢. as
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lik(maa, mag, . HPr D;, O.;mau, Wag, b.)
=1
N
= [ [ Pr(Di|0.; mas, wa) - Pr(0.;: ), (B3)
i=1
where ungenotyped individuals, ¢ = 7., + 1, ..., N, are incorporated by applying the marginal genotype probabilities

as mixing proportions in modeling disease status using a binomial model with m. = 4 - . + w5 (1 — ¢.). To find the
appropriate MLEs, note that the likelihood in (B3) is a reparameterization of (B1). Specifically, the parameters of
interest 744, Tap and ¢. can be written in terms of ¢p, ¢y, and 7

b= dp-m + by (1—m)
bp - .
.
(1—dp) -
-6
Then, the appropriate MLEs for 744, 745 and ¢. in (B3) can be obtained as plug-in estimates using the relationships in

(B4). We have provided these MLEs for completeness, but if our primary aim is the appropriate likelihood-ratio
statistic, then calculating these MLEs is unnecessary.

TAA —

(B4)

TAB —

APPENDIX C: CONSTRAINED FULL-LIKELIHOOD ANALYSIS AT NONMARKER LOCATIONS

To start, we incorporate the constraint by transforming the expression in (2) to yield ¢ = (b. — ¢, - w.)/(1 — 7).
Hence, our constrained likelihood is equivalent to a two-parameter model in which each individual has the following
contribution to the likelihood,

lik(dp, ;0. D;) = Pr(0.; | Di; bp, ) - Pr(D;.),
with observed genotypes modeled according to disease status as

2 geianan Pr(Gi = gidp) - gig D;=1

§ ()
> getanan Pr(Gi =gidy="2 ﬂ)b ) Gigy Di=0

Pr(O.; | Di; bp, ) = {

for genotyped individuals and identically equal to one for ungenotyped individuals.

Atiteration s + 1, we have the parameter estimate, ¢,, . In the E-step, we calculate the expected number of affected
and unaffected individuals with genotype AA at the putative QTL as shown in (Al).

In the M-step, the updated parameter estimates are obtained by maximizing the likelihood function in (Cl), using a
numerical optimization approach such as that of NELDER and MEAD (1965). Similar to the EM for the reverse
approach above, we use the sample average of conditional genotype probabilities, p;,, among diseased individuals as an
initial guess for ¢p and take the sample average np/N as the initial estimate for ..

APPENDIX D: MORE RELATIONSHIPS BETWEEN THE FULL AND REVERSE APPROACHES

Full likelihood uvs. reverse approach: Let LOD%; be the LOD score based on full likelihood for genotyped
individuals i = 1,..., 7o only and LODy , be the LOD score from full-likelihood analysis using all individuals
i=1,..., N, whether genotyped or not. We see the following analytic results comparing LOD{%; to LODg from the
reverse approach:

Pr(O. |D; b, ¢
LOD?iiﬁ—logm{ 4 (| 4;”)4’”) Pr(D ;) )}

1o {01 by bp)
10 Pr(0.; )

} = LODg.

Likewise, we can compare LODﬁ’uH from a full-likelihood analysis with all N individuals to LODyg, which uses
genotyped individuals only. Recall that our full-likelihood analysis conditions on the pattern of missing genotype data,
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with the conditional multipoint marker probabilities identically equal to one for all ungenotyped individuals. Using
Equation B2 above, we see that

LODY,, = log,, {maxdm,; [[i% Pr(O. | Di; bp, dp) } « {maxw_ [T, Pr(Ds; ) }

maxg, [ [/ Pr(O.; ) max, Hll Pr(D;;w.)
10 Pr(0.; $.)

} = LODg,

where the estimated parameters (i)D and $ﬁ are the MLEs specified in the METHODS section.

Constrained full likelihood vs. modified reverse approach: Itis difficult to work with the constrained full likelihood
analytically. However, we can derive the following inequality to put an upper bound on LOD]F\;]LSCg. First note that
constrained likelihood must be bounded above by the unconstrained likelihood so

max lik(dbp, b, ™) = max lik(db,), by, .
ooy B0 05y ) = s Tk (6p, b, )

= 1ik(bp, bp) - lik(4r.),

where &)D, (I)D, and 7. are the unconstrained MLEs.

Plugging into LODIF\;H’SQ, we find
N maxg,, ¢, [6.<1/2 lik(dp, bp, )
LODFVull,seg = logl(){ Hlla; lik(d) —_ 1/2 1T.)

1o, { lik(dps bp) - k()

lik(d. = 1/2) - lik(.) } = LODRoeg-

Hence, the LOD score obtained by constrained full likelihood is bounded above by the LOD score from the modified
reverse approach.
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