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ABSTRACT

In the case of selective genotyping, the usual permutation test to establish statistical significance for
quantitative trait locus (QTL) mapping can give inappropriate significance thresholds, especially when
the phenotype distribution is skewed. A stratified permutation test should be used, with phenotypes
shuffled separately within the genotyped and ungenotyped individuals.

IN the mapping of quantitative trait loci (QTL) in an
experimental cross, selective genotyping (in which

only the individuals at the extremes of the phenotype
distribution are genotyped) can provide nearly equiv-
alent power to complete genotyping at a reduced cost
(Lander and Botstein 1989; Darvasi and Soller

1992).
Interval mapping with selectively genotyped data is

best performed with consideration of all individuals, even
those that were not genotyped (Lander and Botstein

1989). Consideration of only the genotyped individuals
results in a biased estimate of the QTL effect. Haley–
Knott regression (Haley and Knott 1992) generally pro-
vides a good approximation to standard interval mapping,
but should be avoided in the case of selective genotyp-
ing, as it tends to produce inflated evidence for linkage
(Feenstra et al. 2006).

Despite the common use of selective genotyping for
QTL mapping and the extensive literature on signifi-
cance thresholds for QTL mapping, we are not aware of
any discussion of the derivation of appropriate thresh-
olds for statistical significance in the case of selective
genotyping. In the usual approach for establishing sta-
tistical significance in QTL mapping experiments, one
considers the distribution of the genomewide maxi-
mum LOD score under the global null hypothesis that
there are no segregating QTL. This distribution is best

derived via a permutation test (Churchill and Doerge

1994).
The permutation test is attractive because of its ap-

plicability to a wide range of settings. It provides the cor-
rect genomewide P-value regardless of the phenotype
distribution, marker density, and statistical test. The usual
permutation test makes an important assumption that
all individuals in the cross are exchangeable, under the
null hypothesis of no QTL. In other words, validity of the
standard permutation procedure requires that all or-
derings of phenotypes relative to genotypes are equally
likely, under the null hypothesis (that is, that there is no
association between the phenotypes and the pattern of
missing genotypes).

When selective genotyping is used, the exchangability
condition is violated, and application of the usual per-
mutation test may give rise to inappropriate significance
thresholds, as we show below. When using standard
interval mapping (Lander and Botstein 1989), signif-
icance thresholds tend to be too large, especially in the
case that the phenotype distribution is skewed, and so
are overly conservative. In contrast, with the multiple-
imputation approach (Sen and Churchill 2001), the
usual permutation test yields thresholds that are too
small, making them excessively liberal in declaring evi-
dence for a QTL.

The usual permutation test is not justified in the
presence of selective genotyping because individuals with
different genotyping patterns are not exchangeable un-
der the null hypothesis (Welch 1990). Under selective
genotyping, the genotype data for all individuals at a
particular marker can be represented by a vector of
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actual genotypes, g ¼ (g1, . . . , gn), combined with a
vector of response indicators, r ¼ (r1, . . . , rn), denoting
whether or not each particular individual was genotyped.
When employing selective genotyping, the genotype data,
represented by the pair (g, r), are associated with the
phenotypes, y ¼ (y1, . . . , yn), by design. Specifically, the
response indicator, r, is equal to 1 for extreme individ-
uals only and 0 for everyone else. Thus, even under the
null hypothesis, we cannot permute phenotypes com-
pletely at random relative to genotypes. Rather, we must
permute in a way that maintains the relationship be-
tween the phenotypes, y, and the missing data pattern,
r, in which genotypes are available only for the pheno-
typic extremes.

We propose the use of a stratified permutation test:
shuffle the phenotype data within similarly genotyped
individuals. One thus conditions on the genotyping pat-
tern. When selective genotyping is used, we need permute
the phenotype data only within genotyped individuals.
If the ungenotyped individuals were subsequently gen-
otyped at markers in regions exhibiting initial evidence
for a QTL, separate individuals into strata according
to the amount of genotyping performed and permute
phenotypes relative to genotypes separately within the
different strata. The estimated significance thresholds
obtained by a stratified permutation test do not suffer
from the problems seen with the unstratified permuta-
tion test.

To illustrate the problems, we performed simulations
to study the behavior of (1) permutation with complete

genotyping, (2) unstratified permutation in the case of
selective genotyping, and (3) stratified permutation with
selective genotyping. With this comparison in mind, one
possible simulation strategy would be to generate many
data sets and perform permutations using each of the
three scenarios described. For each simulation repli-
cate, permutation would give the null distribution of the
LOD score under a particular genotyping strategy, con-
ditional on the observed distributions of genotypes and
phenotypes. Rather than performing permutation re-
peatedly for many unique data sets, we investigated the
null distributions by direct simulation. The key idea is
that, if a complete permutation is applied to selectively
genotyped data, one obtains data in which a random
subset of individuals has been genotyped. Thus the be-
havior of the usual permutation test, when applied to
selectively genotyped data, may be determined via the
simulation of data with genotypes on a random subset of
individuals. Similarly, behavior of a stratified permuta-
tion is seen by examining data simulated with genotypes
on the phenotypic extremes only.

We simulated an intercross of 250 individuals having a
skewed phenotype distribution, with phenotypes follow-
ing a x2-distribution with 7 d.f. (The need for the strat-
ified permutation test was most apparent in the case of a
skewed phenotype distribution; this particular distribu-
tion is skewed but not extremely so.) We considered three
scenarios: (1) complete genotype data on all individuals,
(2) genotype data on a random 100 individuals and no
genotype data on the remaining 150 individuals (as would

Figure 1.—Estimated null distribution of the
genomewide maximum LOD score for the EM al-
gorithm (A–C), multiple imputation (D–F), and
the extended Haley–Knott (eHK) method (G–I),
for an intercross with 250 individuals and with
the phenotypes following a x2-distribution with
7 d.f. A, D, and G correspond to the case of com-
plete genotype data; B, E, and H correspond to
the case that a random 100 individuals were geno-
typed; and C, F, and I correspond to the case that
100 individuals with extreme phenotypes (the top
and bottom 50 individuals) were genotyped. Sim-
ulations were conducted in R/qtl (Broman et al.
2003), an add-on package to the general statistical
softwareR(IhakaandGentleman1996).Weused
10,000 simulation replicates for the EM and eHK
methods and 2000 replicates for the multiple-
imputation method. The dashed vertical lines in-
dicate the 95th percentiles of the distributions.
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occur after an unstratified permutation test was applied
to selectively genotyped data), and (3) genotype data on
the top 50 and bottom 50 individuals (phenotypically)
and no genotype data on the remaining 150 individuals.
In all scenarios, the available phenotype data for all in-
dividuals were considered in the analysis, regardless of
whether or not those individuals were genotyped. The
null distribution of the genomewide maximum LOD
score was estimated for each scenario for each of three
methods: standard interval mapping via the EM algo-
rithm (Dempster et al. 1977), multiple imputation (Sen

and Churchill 2001), and the extended Haley–Knott
method (Feenstra et al. 2006). (We omitted the orig-
inal Haley–Knott regression method, as it is inappropri-
ate in the context of selective genotyping.) We used
10,000 simulation replicates for standard interval map-
ping and the extended Haley–Knott method and 2000
replicates for the imputation method.

The results are displayed in Figure 1. For standard in-
terval mapping (via the EM algorithm), the null distri-
bution in the case of selective genotyping (Figure 1C)
was similar to that for complete genotyping (Figure 1A),
but in the case that a random 100 individuals were
genotyped but all individuals were included in the anal-
ysis (Figure 1B), greater LOD scores often resulted, and
the 95th percentile of the distribution was 4.5 rather than
the expected 3.7. For the multiple-imputation method,
the null distribution in the case of selective genotyping
(Figure 1F) closely matched that from complete geno-
typing (Figure 1D), but smaller LOD values were often
seen with random genotyping (Figure 1E). The result-
ing 95th percentile was 2.5 rather than 3.7. Finally, for
the extended Haley–Knott method, the null distribu-
tion was very similar for the three genotyping schemes
(Figure 1, G–I), with 95th percentiles of 3.7, 3.7, and 3.6
for complete, random, and selective genotyping.

Our results demonstrate that a stratified permutation
test yields an appropriate threshold value regardless of
whether standard interval mapping, multiple imputa-
tion, or extended Haley–Knott was used for analysis. In
contrast, an unstratified permutation test in the pres-
ence of selective genotyping gives excessively large thresh-
olds under standard interval mapping, making the test
too conservative. With multiple imputation, the thresh-
olds from an unstratified permutation test are too small,
making the procedure too liberal in declaring evidence
for QTL.

While theoretical considerations support the need for
the stratified permutation test, the inflation in LOD
scores in the unstratified permutation test for standard
interval mapping and the deflation in LOD scores for
the multiple-imputation method were not anticipated
and deserve explanation. In the application of an un-
stratified permutation test to selectively genotyped data,
the genotypes are attached to a random subset of the
phenotypes, rather than remaining with the extreme
phenotypes. When a random portion of the phenotyped

individuals have been genotyped but all individuals are
included in the analysis, the use of standard interval
mapping (Lander and Botstein 1989) can inflate evi-
dence for a QTL through improved fit in the tails of the
phenotype distribution. Consider, for example, Figure
2A: under random genotyping (solid curve), the mix-
ture modeling performed in standard interval mapping
provides a moderately improved fit to the right tail of
the phenotype distribution. Since the null model is con-
strained to be normal, phenotypically extreme individ-
uals with no genotype data have a large contribution to
the LOD score (Figure 2B) and so can inflate the evi-
dence for a QTL. If the extremes are genotyped and the
ungenotyped individuals come only from the center of
the phenotype distribution, this inflation of evidence
for a QTL does not occur.

Phenotypically extreme observations also play a role
in shaping the null distributions of LOD values obtained

Figure 2.—The fitted phenotype distributions (A) and the
individual contributions to the LOD score for individuals with
no genotype data (B), from maximum-likelihood estimation
via the EM algorithm (Dempster et al. 1977) under the usual
normal mixture model, for simulated intercross data with 250
individuals, phenotype following a x2-distribution with 7 d.f.,
markers at a 10-cM spacing, and under the null hypothesis of
no QTL. The solid curves correspond to the case that a random
100 individuals were genotyped; the dashed curves correspond
to the case that 100 individuals with extreme phenotypes were
genotyped. Tick marks indicate the observed phenotypes,
with longer tick marks corresponding to individuals with no
genotype data. The top tick marks are for the case that a ran-
dom 100 individuals were genotyped; the bottom tick markers
are for the case that 100 individuals with extreme phenotypes
were genotyped.

Note 1965
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/177/3/1963/6064485 by G
enetics Society of Am

erica M
em

ber Access user on 07 M
arch 2025



by multiple imputation (Sen and Churchill 2001). In
the case of random genotyping (Figure 3A), the distri-
bution of LOD scores across imputations at the position
of maximum LOD has a large spread, reflecting the var-
iability seen in attaching different sets of imputed geno-
types to phenotypically extreme individuals with more
influence on the LOD score. When the extremes are
genotyped (Figure 3B), only individuals in the center of
the phenotype distribution lack genotype information,
and so the LOD scores across imputations are less vari-
able. The distribution is symmetric, with a higher median
that is derived principally from the genotyped extreme
observations. Since the imputation method performs an
averaging operation over genetic model parameters, the
LOD under random genotyping, in which there is lower
information, is smaller than the LOD under complete
genotyping. On the other hand, the LOD under selec-
tive genotyping is close to the LOD under complete geno-
typing, since they have approximately equal information.

The null distribution of the genomewide maximum
LOD score from the extended Haley–Knott method was
seen to be largely unchanged by the presence of random

ungenotyped individuals (Figure 1H). This is due to the
fact that individuals are weighted by the inverse of the
variance of their phenotype given the available marker
data, and so the ungenotyped individuals, having high
variance, are given low weight and are essentially ignored
in the analysis.

The problem with the unstratified permutation test is
similar to the phenomenon of spuriously large LOD
scores in regions of low genotype information (Broman

2003). In standard interval mapping, the problem with
the unstratified permutation test is more pronounced
in the case of a skewed or multimodal phenotype distri-
bution, which is better approximated by a normal mix-
ture model than by a single normal distribution. Further,
the problem is more pronounced in an intercross than
in a backcross, because the two homozygotes have smaller
frequencies and allow asymmetry in the mixture model-
ing of the phenotype distribution.

In summary, selective genotyping can be an efficient
method for mapping QTL. In the analysis of selectively
genotyped data, all phenotyped individuals should be
included, Haley–Knott regression should be avoided, and
a stratified permutation test should be used to establish
the statistical significance of the results. The proposed
procedures have been implemented in R/qtl (Broman

et al. 2003).
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Figure 3.—The distribution of LOD scores from the mul-
tiple imputations obtained at the position of the maximum
overall LOD score, for simulated intercross data with 250 in-
dividuals, phenotype following a x2-distribution with 7 d.f.,
markers at a 10-cM spacing, and under the null hypothesis
of no QTL, analyzed by the multiple-imputation approach
(Sen and Churchill 2001), in the case that a random 100
individuals were genotyped (A) or that 100 individuals with
extreme phenotypes were genotyped (B).
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