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Gut metagenomes reveal interactions 
between dietary restriction, ageing and the 
microbiome in genetically diverse mice

The gut microbiome changes with age and has been proposed to mediate 
the benefit of lifespan-extending interventions such as dietary restriction. 
However, the causes and consequences of microbiome ageing and the 
potential of such interventions remain unclear. Here we analysed 2,997 
metagenomes collected longitudinally from 913 deeply phenotyped, 
genetically diverse mice to investigate interactions between the microbiome, 
ageing, dietary restriction (caloric restriction and fasting), host genetics 
and a range of health parameters. Among the numerous age-associated 
microbiome changes that we find in this cohort, increased microbiome 
uniqueness is the most consistent parameter across a second longitudinal 
mouse experiment that we performed on inbred mice and a compendium 
of 4,101 human metagenomes. Furthermore, cohousing experiments show 
that age-associated microbiome changes may be caused by an accumulation 
of stochastic environmental exposures (neutral theory) rather than by the 
influence of an ageing host (selection theory). Unexpectedly, the majority of 
taxonomic and functional microbiome features show small but significant 
heritability, and the amount of variation explained by host genetics is similar 
to ageing and dietary restriction. We also find that more intense dietary 
interventions lead to larger microbiome changes and that dietary restriction 
does not rejuvenate the microbiome. Lastly, we find that the microbiome is 
associated with multiple health parameters, including body composition, 
immune components and frailty, but not lifespan. Overall, this study sheds 
light on the factors influencing microbiome ageing and aspects of host 
physiology modulated by the microbiome.

Dietary restriction (DR) improves health and extends the lifespan in 
diverse organisms1,2. However, its efficacy is variable and influenced by 
numerous factors, including the type of DR and the organism’s genetic 
background3–7. To determine whether different types of DR extend the 
lifespan in a genetically heterogeneous population, we randomized 
960 diversity outbred (DO) mice to fasting and caloric restriction (CR) 
regimes and tracked their health and lifespan with extensive phenotyp-
ing. The design of this Dietary Restriction in Diversity Outbred mice 
(DRiDO) study was described previously8.

A major goal of the DRiDO study was to identify predictors of 
longevity. One candidate for such a predictor is the gastrointesti-
nal microbiome, which has recently been suggested to modulate 
ageing9–11 as well as responses to dietary restriction12–15. To investi-
gate the relationship between the gut microbiome and lifespan, we 
performed shotgun metagenomic sequencing on longitudinally 
collected stool samples, resulting in 2,997 metagenomic profiles 
from 913 DO mice. Using this large dataset, we were able to address 
several fundamental questions.
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Samples were also discarded if they had inconsistent metadata, 
insufficient reads or an unusually high proportion of host reads, or 
if they appeared to be outliers (Extended Data Fig. 3a and Methods). 
Our final quality-controlled cohort consisted of 2,997 metagenomic 
profiles from 913 mice, with a median of three samples per mouse, 
five timepoints with at least 360 samples and at least 550 samples per 
dietary group.

We performed taxonomic classification using Kraken2 (ref. 40) 
and the Mouse Gastrointestinal Bacterial Catalogue41 (MGBC) as ref-
erence, and we performed functional classification with HUMAnN3 
(ref. 42). We used the taxonomic results from Kraken2 and MGBC 
instead of those available from HUMAnN3 (MetaPhlAn) for two rea-
sons: (1) Kraken2 with MGBC classified more reads (Extended Data 
Fig. 3b) and (2) the fraction of characterized (that is, named) taxa 
was higher (55% versus 14% for genera, 12% versus 9% for species). The 
two methods showed good concordance (Extended Data Fig. 3c). We 
primarily present Kraken2 taxonomic results, except when verifying 
key findings and in cross-dataset comparisons. For functional results, 
we present MetaCyc43 pathways and further distinguish between 
‘community-wide’ and ‘specialized’ pathways, with specialized 
pathways defined as being highly correlated with just a few genera 
(Extended Data Fig. 3d).

The microbiome changes with age
First, we assessed the effect of ageing on the microbiome. Two- 
dimensional ordination plots of both genera (Fig. 1d) and pathways 
(Extended Data Fig. 3e) suggested that host age influences overall 
microbiome composition and function (permutational multivariate 
analysis of variance (PERMANOVA) pseudo-F = 67.0, P ≤ 0.001, df = 1 for 
genera; pseudo-F = 44.7, P ≤ 0.001, df = 1 for pathways). To assess the 
association between age and individual microbiome features, we fit a 
linear mixed model separately for each feature (Methods). This model 
accounted for age, dietary group, host genetics (via a kinship matrix), 
mouse identity and technical factors including date of stool collection, 
cohort, cage and DNA extraction batch. Notably, as different cohorts 
of DO mice were enroled into the study sequentially (Extended Data 
Fig. 4a), we were able to disentangle the effects of age and sampling 
timepoint (Extended Data Fig. 4b,c and Supplementary Note 2).

The majority of genera (61 of 100 tested) were associated 
(conditional Wald test, adjusted P < 0.01) with host age (Fig. 2a and 
Supplementary Table 5). Genera that increased with age include  
Bifidobacterium  (Fig. 2b), Turicibacter,  Ligilactobacillus, 
Enterococcus_D and Escherichia, while genera that decreased with 
age include poorly characterized microorganisms such as ASF356 
(family Anaerotignaceae), CAG-475 (phylum Bacillota) and CAG-273 
(family Clostridiaceae).

The only community feature (of 7 tested) associated with host 
age was uniqueness—defined as a microbiome sample’s β-diversity (or 
distance) to its nearest neighbour27 (Fig. 2c; adjusted P = 5.4 × 10−6). We 
confirmed that this trend was not due to the number of mice per cage 
decreasing with age (Extended Data Fig. 5a). We found that ɑ-diversity 
(as measured by the Shannon and Simpson indexes) appeared to 
increase with age, but the trend was not significant (Extended Data 
Fig. 5b).

Repeating our analysis with species-level data produced a similar 
fraction of age-associated features (Extended Data Fig. 5c and Supple-
mentary Table 6; 61% of genus-level features versus 63% of species-level 
features) and reproduced the association of uniqueness with age 
(Extended Data Fig. 5d). In addition, repeating our analysis with Met-
aPhlAn taxonomic results produced similar age coefficients (Extended 
Data Fig. 5e and Supplementary Table 7; ρ = 0.70, P = 1.97 × 10−4).

Many microbial pathways (139 of 272 tested) were affected 
by host age (Extended Data Fig. 5f and Supplementary Table 8), 
including glycolysis (PWY-1042), a community-wide pathway that 
decreased with age (Extended Data Fig. 5g,h) and l-lysine biosynthesis 

First, how does the microbiome age? Numerous studies in mice16–18 
and humans19–22 have reported age-associated microbiome changes, 
but these changes are inconsistent across cohorts23. Two commu-
nity features reported to increase with age are ɑ-diversity19,23–25 and 
uniqueness26,27. Whether these are universal properties of an ageing 
microbiome remains unknown. Furthermore, it remains unclear to 
what degree age-associated microbiome changes are caused by the 
ageing host.

Second, to what extent does host genetics influence the microbi-
ome? The prevailing notion is that the environment, especially diet, 
has a much greater contribution to the gut microbiome than host 
genetics28,29. At the same time, human studies have identified sig-
nificant microbiome heritability and quantitative trait loci (QTL) for 
microbiome features30–34. Moreover, a recent study in baboons found 
that nearly all microbiome features were heritable but that identifying 
this heritability required large sample sizes and the use of longitudinal 
data35. Therefore, it remains unclear whether the influence of genetics 
on the microbiome is perhaps larger than previously appreciated.

Third, what aspects of host ageing are modulated by the micro-
biome? Mice in the DRiDO study were deeply phenotyped, allowing 
us to ask whether the microbiome influences aspects of host physiol-
ogy over the lifespan. The relationship between the microbiome and 
body composition is well established36–38, but the DRiDO study was 
uniquely suited to discovering other host phenotypes influenced by 
the microbiome.

In addition to generating the metagenomic dataset in DO mice, 
we generated a second longitudinal microbiome dataset in genetically 
homogeneous mice, performed two validation experiments to inves-
tigate the mechanism by which host age influences the microbiome, 
integrated our dataset with thousands of human metagenomic samples 
and analysed hundreds of longitudinal host phenotypes collected as 
part of the DRiDO study. We begin by describing the generation of the 
DRiDO microbiome dataset.

Results
Metagenomic sequencing of DO mice
We enroled 960 female DO mice (corresponding to 6 breeding gen-
erations) into the DRiDO study8 (Methods). Mice were enroled in 12 
sequential cohorts (n = 80 mice per cohort, two cohorts per breeding 
generation). At 6 months of age (n = 937 mice survived to 6 months), 
mice were randomized to one of five dietary interventions (Fig. 1a and 
Methods): ad libitum food consumption (AL, control group), fasting 
1 day week−1 (1D), fasting two consecutive days per week (2D), consum-
ing 20% fewer calories every day (20) or consuming 40% fewer calories 
every day (40). Mice were extensively phenotyped over their lifespans 
(Supplementary Table 1). All dietary restriction interventions extended 
their lifespan (log-rank test, P < 2.2 × 10−16), but there was substantial 
interindividual variability (Fig. 1b). The largest extension in lifespan 
was achieved by the 40% CR group (36% increase in median lifespan 
versus AL).

To characterize the gut microbiome, we collected stool samples 
approximately every 6 months and performed metagenomic sequenc-
ing on extracted DNA (Fig. 1c). We sequenced 3,586 stool samples, 62 
positive controls and 71 negative controls (Extended Data Fig. 1a–c). 
Different library preparations of the same DNA and repeat sequencing 
of the same libraries produced highly similar microbiome profiles 
(Extended Data Fig. 1d,e).

In addition, we leveraged39 the fact that every mouse in our study 
was genetically unique and that each stool sample contained some 
host DNA (~9% of reads) to exclude samples in which the genotype of 
the host and stool sample did not definitively match (Extended Data 
Fig. 2a–d, Supplementary Note 1 and Supplementary Tables 3 and 4). 
Our pipeline for identifying sample mix-ups allowed us to detect and 
remedy errors that occurred during data generation (Extended Data 
Fig. 2e), including an animal swap (Extended Data Fig. 2f,g).
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(DAPLYSINESYN-PWY), a specialized pathway that increased with age 
and was strongly correlated with Bifidobacterium (Extended Data 
Fig. 5i,j). Uniqueness based on functional profiles also increased with 
age (Extended Data Fig. 5k).

As an alternative way to assess the impact of host age on the micro-
biome, we asked whether microbiome information could be used to 
predict host age17,22,44–46 (Methods). We found that a random forest 
regressor could predict host age—considering just AL mice (Fig. 2d; 
mean absolute error (MAE) = 16.3 weeks), all mice (Extended Data 
Fig. 5l; MAE = 17.4 weeks), species-level data (Fig. 5m; MAE = 13.8 weeks) 
or functional data (Extended Data Fig. 5n; MAE = 21.9 weeks). The 
features most important for age prediction—such as the genus  
Ligilactobacillus and the glycolysis pathway (PWY-1042)—overlap 
with the features most strongly associated with age (Fig. 2e and  
Extended Data Fig. 5o). However, the MAE of age prediction was rela-
tively high, indicating that additional factors influence microbiome 
composition and function.

Universality of age-associated microbiome changes
Next, we asked whether any of the age-associated changes that we 
identified constituted a conserved microbiome signature of ageing. To 
this end, we compared our dataset with two other ageing microbiome 
datasets: a longitudinal mouse microbiome study that we conducted 
in male C57BL/6 mice and a publicly available human metagenomic 
sequencing database47 (Fig. 3a). To enable more direct comparisons, 
we processed the mouse datasets with HUMAnN (because the human 
samples had been processed with HUMAnN), and we considered only 
AL mice from the DO dataset to avoid the confounding variable of  

dietary restriction. We fit linear mixed models separately for each 
dataset to identify age-associated taxonomic and functional features 
(Supplementary Tables 9–14 and Methods).

Within each dataset, many genera and pathways were associ-
ated with age (Fig. 3b and Extended Data Fig. 6a; 60%, 61% and 57% of 
genera tested in DO AL mice, C57BL/6 mice and humans, respectively; 
52%, 70% and 62% of pathways), but among taxonomic features that 
could be compared across datasets, there was little concordance in 
age-associated changes (Fig. 3c; ρ = 0.02, −0.18 and 0.16; P = 0.76, 
0.42 and 0.45 for pairwise comparisons). Just one taxonomic feature 
increased with age in all three datasets: uniqueness (Fig. 3d). We veri-
fied that uniqueness tended to increase with age in most of the studies 
comprising our human cohort (Extended Data Fig. 6b). Blautia was 
negatively associated with age across all datasets, but upon closer 
inspection, the association in humans was inconsistent (Extended 
Data Fig. 6c). Some genera—such as Paramuribaculum, Muribaculum 
and Adlercreutzia—increased with age in both mouse cohorts but not 
in humans. No ɑ-diversity metrics were associated with age in all three 
datasets, and in humans, the relationship between ɑ-diversity and age 
was highly variable by study (Extended Data Fig. 6d). Taken together, 
the most consistent taxonomic signature of ageing that we could iden-
tify was an increase in uniqueness.

As with genera, there was poor overall concordance of age- 
associated pathway changes across datasets (Extended Data Fig. 6e; 
ρ = −0.13, −0.01 and 0.03; P = 0.06, 0.88 and 0.68 for pairwise com-
parisons), but several individual pathways showed consistent changes: 
inosine-5′-phosphate (IMP) biosynthesis (PWY-7234) increased with 
age, while thiamine diphosphate formation (PWY-7357), thiamine 
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Fig. 1 | Overview of DRiDO study and microbiome dataset. a, At 6 months of 
age, genetically diverse mice started one of five dietary interventions. They were 
extensively phenotyped and stool was collected for microbiome profiling.  
b, Lifespan per dietary group. This analysis includes n = 924 mice: n = 937 mice 
were alive at the start of dietary restriction at 6 months, and n = 13 mice were 
omitted from analysis owing to accidental death during technician handling. 
P values were calculated with pairwise log-rank tests against the AL group and 
adjusted with the Benjamini–Hochberg procedure. P value symbols are defined 
as follows: *P < 0.05; ***P < 0.001; ****P < 0.0001. c, Microbiome data generation 
consisted of extracting DNA from stool samples, preparing libraries, performing 
shotgun metagenomic sequencing, performing quality control, and finally, 

taxonomic and functional classification. After all quality control procedures, 
the cohort consisted of 2,997 stool samples. d, PCoA plot of n = 2,997 quality-
controlled metagenomes. Ordination based on Bray–Curtis distances of genus-
level relative abundances. The colours denote the dietary groups, and the sizes 
of the circles denote the mouse ages at the time of stool collection. Box plots 
along the sides show PCoA1 (top) and PCoA2 (left) coordinates per dietary group. 
Bar plots along the sides show the mean age of stool samples within each bin of 
PCoA1 (bottom) and PCoA2 (right) coordinates. PCoA1 and PCoA2 explain 35% 
and 8% of overall variance, respectively. For box plots in b and d, boxes extend 
from the 25th to 75th percentiles, whiskers extend to 1.5 times the interquartile 
range and the centre line is the median.
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diphosphate salvage (PWY-6897), inositol degradation (PWY-7237) 
and flavin biosynthesis (RIBOSYN2-PWY; Extended Data Fig. 6f) 
decreased with age. With the exception of IMP biosynthesis, these are 
all community-wide pathways (Extended Data Fig. 6g). These results 
suggest that a functional signature of microbiome ageing may be 
characterized by decreased production of cofactors such as thiamine 
(vitamin B1) and riboflavin (vitamin B2) and increased production of 
IMP, a precursor for de novo purine biosynthesis.

Microbiome ageing may be explained by neutral theory
What causes the microbiome to change with age? We investigated this 
question through the lens of selection theory and neutral theory48–50. 
We hypothesized that the apparent ‘age’ of the microbiome is dictated 
by selective pressure related to host age (selection theory) or expo-
sure to stochastic events that accumulate with time (neutral theory). 
To test these hypotheses, we needed to disentangle host age from 
microbiome age. We achieved this by cohousing young (8 weeks) and 
old (19–20 months) C57BL/6 mice for 1 month and monitoring their 
microbiomes (with 16S sequencing) after 2, 4, 6 and 8 weeks of sepa-
ration (Fig. 3e). Cohousing caused the microbiomes of young mice to 
resemble those of old mice (Fig. 3f). In other words, it had decoupled 
host age and microbiome age in young mice.

After separation, the microbiomes of young mice never reverted 
to a young state: they remained different from the microbiomes of 
non-cohoused young mice (Fig. 3g). Furthermore, a classifier trained 
on baseline microbiome samples always incorrectly identified both 
cohoused and previously cohoused young mice as old (Fig. 3h). These 
results indicate that a young host does not dictate the apparent age of 
the microbiome. The effect of cohousing was much less pronounced in 
old mice (Fig. 3f,g), and the classifier almost always correctly identified 
old mice, even during cohousing (Fig. 3h).

We observed again that uniqueness was higher in old compared 
with young mice (Fig. 3i; t-test, t = −7.8, df = 138.9, P = 1.7 × 10−12). Nota-
bly, young mice cohoused with old mice acquired higher microbiome 
uniqueness compared with non-cohoused young mice (t-test, t = −5.0, 
df = 89.9, P = 2.7 × 10−6), and this was not reversed upon separation from 
old mice (t-test, t = −5.6, df = 99.0, P = 2.0 × 10−7), showing that unique-
ness is not strictly determined by host age.

We next investigated why the old microbiome appeared to be 
dominantly transferred upon cohousing. We reasoned that this was 
due to either microbiome-intrinsic properties or differences in host 
properties, for example, if old mice were less coprophagic or if their 
intestinal colonization niches were less permissive of new microorgan-
isms. We controlled for host differences by repeating the cohousing 
experiment with young (3–5 months) germ-free mice that received 
faecal microbiome transplants (FMTs) from young (3 months) or old 
(17 months) mice (Extended Data Fig. 6h). Two weeks after the FMT, 
young and old recipients had distinct microbiomes (Extended Data 
Fig. 6i). Notably, the old FMT recipients were again affected by cohous-
ing less than the young recipients (Extended Data Fig. 6i), indicating 
that resistance to cohousing is caused by the old microbiome, rather 
than by host differences between young and old mice.

Taken together, our observation that a young host does not trans-
form an old microbiome into a young one argues against selection the-
ory, which would predict that the age of the host dictates the apparent 
age of the microbiome. An alternative explanation for why the micro-
biome changes with age is thus that it accumulates stochastic events 
over time (neutral theory), consistent with increasing uniqueness.

Host genetics shape the gut microbiome
Next, we examined how other experimental variables affect the microbi-
ome. The DRiDO study’s use of genetically diverse and genotyped mice 
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enabled us to evaluate the contribution of host genetics to microbiome 
composition and function. The first indication that host genetics might 
have a substantial influence on the microbiome was the observation 
that (genetically diverse) DO mice had higher uniqueness than (geneti-
cally homogeneous) C57BL/6 mice (Fig. 3d; t-test, t = 23.2, df = 174.2, 

P < 2.2 × 10−16), suggesting that genetic diversity led to more interindi-
vidual microbiome variation.

We found that the majority of genera (65%, mean heritability of 
heritable features = 0.11) and pathways (52%, mean = 0.08) had sig-
nificant, though modest, heritability (Fig. 4a, Extended Data Fig. 7a, 
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correlation and corresponding P value are shown above each plot. Features 
associated with age and with the same sign in the pairwise comparison are shown 
in green. d, Taxonomic uniqueness increases with age in all three datasets. Each 
panel includes the line of best fit and 95% confidence interval. e, Schematic of 
the cohousing and separation experiments. Y, young always housed with young; 

O, old always housed with old; CY, young housed with old; CO, old housed with 
young; exCY, formerly CY that were separated from old; exCO, formerly CO 
that were separated from young. f, PCoA (genus-level Bray–Curtis distances) of 
samples at baseline and 1 month of cohousing. The plus sign denotes the group 
centroid. g, Bray–Curtis distances (n = 863) between previously cohoused mice 
(exCY, exCO) and non-cohoused controls (Y, O). h, Random forest classifier 
trained on baseline samples and evaluated on cohousing and separation samples. 
Accuracy is the percentage of samples within each group correctly classified as 
young or old. i, Uniqueness split by age and cohousing status (n = 264 samples). B, 
baseline; C, cohousing; S2, 2 weeks of separation; S4, 4 weeks of separation; and so 
on. In g and i, the significance of group differences was evaluated with a t-test, and 
P value symbols are defined as follows: NS, P ≥ 0.05; ***P < 0.001; ****P < 0.0001.
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Supplementary Tables 3 and 6, and Methods). The most heritable taxa 
were Lactobacillus, Ileibacterium and a previously undescribed genus 
in the Erysipelatoclostridiaceae family. The most heritable microbial 
pathway was lactose and galactose degradation (LACTOSECAT-PWY), a 
specialized pathway strongly correlated with Lactobacillus (Extended 
Data Fig. 7b). Heritable community-wide pathways include de novo 
queuosine biosynthesis (PWY-6700) and fatty acid biosynthesis initia-
tion (PWY66-429). The percentage of heritable species-level features 
(49%) was similar to the percentage of heritable genus-level features 
(64%; Extended Data Fig. 7c), and using MetaPhlAn taxonomic results 
produced generally concordant heritability estimates (Extended Data 
Fig. 7d; ρ = 0.58, P = 3.28 × 10−3).

As human studies often report a minor role of genetics in shaping 
the gut microbiome28,32, we confirmed our surprising result with several 

additional approaches. First, we made sure that this was not a peculi-
arity of the software we used for calculating heritability, by exactly 
reproducing our heritability estimates with an alternative software 
package (Extended Data Fig. 7e). Second, we compared our results 
with an independent dataset of DO mice51 and found that, of genera 
that could be compared across studies, the most heritable genus in 
both datasets was Lactobacillus (Extended Data Fig. 7f and Methods). 
Third, we calculated heritability separately per age (Methods) to deter-
mine whether our widespread heritability was a consequence of using 
longitudinal data, as previously suggested35. Many more features were 
heritable when using longitudinal data (n = 66 genera) compared with 
cross-sectional data (n = 10, 4, 4, 10 and 1 genera for 5-, 10-, 16-, 22- and 
28-month-old samples, respectively), but downsampling to a similar 
number of samples (n = 516) as in cross-sectional data completely 
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Fig. 4 | Genetic influence on the microbiome. a, Heritability of n = 107 genus-
level features as calculated by a linear mixed model (model 1). P values were 
calculated with a likelihood ratio test and adjusted with the Benjamini–Hochberg 
procedure. The yellow vertical dashed line shows mean heritability for heritable 
features. b, Percentage of heritable taxa (as reported by the authors) in other 
studies30,33,51,82,84. The number of samples per study is indicated. The colour of 
each bar indicates whether the study was performed in DO mice, agricultural 

animals or humans. c, Proportion of variance explained (PVE) by all experimental 
variables for 107 genus-level features (model 10). P values were calculated using 
a likelihood ratio test and adjusted with the Benjamini–Hochberg procedure. 
The horizontal lines show the mean PVE. d, Genome-wide results for the six 
age-specific significant QTL with Benjamini–Hochberg-adjusted P < 0.1 (P values 
calculated by permutation). Markers with LOD greater than 7.5 are coloured red.
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erased heritability (Extended Data Fig. 7g; zero heritable genera). 
In other words, a large number of samples was critical for detecting 
heritability, not the use of longitudinal data per se.

Another potential explanation for why we observed higher herit-
ability than typically reported in human studies relates to differences 
in environmental variability. Heritability is a relative measure; it is 
defined as VG/(VG + VE), where VG is the amount of variance explained 
by additive genetic effects, and VE is all other sources of variance. 
Therefore, a larger VE will decrease heritability even if VG is unchanged. 
If we assume that human observational studies have a higher VE  
(that is, more unexplained environmental variability) than studies 
involving agricultural animals and an even higher VE than studies in 
laboratory animals, then differences in VE may explain why heritability 
estimates are generally lower in humans than in agricultural animals 
and lower still than in DO mice (Fig. 4b).

How does the magnitude of this genetic effect compare with the 
effects of other experimental variables? To answer this question, we 
fit a linear mixed model in which all variables were treated as random 
effects (Supplementary Tables 15 and 16 and Methods). We found that 
the proportion of variance explained by genetics (mean 7.5% for gen-
era, 5.5% for pathways) was similar to that of dietary restriction (mean 
6.5% and 3.6%) and ageing (mean 4.7% and 3.3%; Fig. 4c and Extended 
Data Fig. 7h). The majority of variance remained unexplained (mean 
63% for genera, 76% for pathways), emphasizing that the microbiome 
is strongly influenced by factors that are yet unaccounted for. Techni-
cal factors such as sampling timepoint, cage, cohort of DO breeding 
and DNA extraction batch explained smaller, but notable, amounts 
of variance, emphasizing the importance of retaining these technical 
factors in our linear modelling.

Lastly, because many microbiome features showed heritability, 
we performed genome-wide QTL mapping to find loci that influence 
microbiome composition (Methods). We tested 107 features at five 
different ages and identified just six significant QTL (Fig. 4d and Sup-
plementary Table 2). The disconnect between widespread microbi-
ome heritability but few significant QTL probably reflects the fact 
that microbial abundance is a complex, polygenic trait. Furthermore, 
these six QTL were significant at only one age (Extended Data Fig. 7i), 
suggesting that the genetic influence on the microbiome may be tem-
porally variable.

Effects of dietary restriction
In addition to host age and genetics, dietary restriction also had a strong 
influence on the microbiome (Fig. 1d and Fig. 4c). Indeed, we found that 
nearly all microbiome features (100 of 107 genus-level features tested, 
244 of 273 pathway-level features tested) were affected by DR (Fig. 5a, 
Extended Data Fig. 8a and Supplementary Tables 5 and 8). The genus 
most increased by DR was UMGS1815 (order Oscillospirales; Fig. 5b), 
and we recovered the commonly observed phenomenon18,52–54 of DR 
increasing the abundance of Lactobacillus and closely related genera 
(Fig. 5c). Microbial functions strongly increased by DR include the 
specialized pathway lysine biosynthesis II (PWY-2941, highly correlated 
with Ligilactobacillus; Extended Data Fig. 8b,c) and the specialized 
pathway O-antigen building block biosynthesis (OANTIGEN-PWY, 
highly correlated with Lactobacillus), while functions decreased by 
DR include the community-wide pathways of urea cycle (PWY-4984; 
Extended Data Fig. 8d,e) and citrulline biosynthesis.

We observed that 40% CR had the strongest overall effect on the 
microbiome, followed by 2D fasting and 20% CR, and finally by 1D fast-
ing (Fig. 5d and Extended Data Fig. 8f), suggesting that the intensity of 
dietary restriction parallels the extent of microbiome changes. Fasting 
and CR had similar effects on the microbiome, as evidenced by high cor-
relations between dietary restriction coefficients calculated by the lin-
ear mixed model (Fig. 5e and Extended Data Fig. 8g). Furthermore, few 
genera were affected only by CR or fasting (Extended Data Fig. 8f). Two 
exceptions are Emergencia, which was decreased only by CR (Fig. 5g), 

and Roseburia, which was decreased by fasting and increased by CR 
(Fig. 5h). We were unable to find pathways differentially affected by 
CR or fasting (Extended Data Fig. 8h). These findings suggest that CR 
and fasting have similar overall effects on the microbiome, and that 
more intense dietary interventions cause greater microbiome shifts.

As an orthogonal way to investigate how the gut microbiome is 
influenced by DR, we asked whether a machine-learning algorithm 
would be able to predict whether a mouse was on DR based on its 
microbiome profile. We trained a random forest classifier (separately at 
each age) to predict binary DR status (Methods). As expected, the clas-
sifier had no predictive accuracy at 5 months (that is, before the start 
of DR; Fig. 5i and Extended Data Fig. 8i; mean area under the ROC curve 
(AUC) = 0.47 for genera, 0.50 for pathways). After DR initiation, the clas-
sifier could predict whether a mouse was on DR (mean AUC = 0.81–0.92 
for genera, 0.71–0.80 for pathways). The features most important for 
prediction include those strongly associated with DR, such as the gen-
era UMGS1815 and Ligilactobacillus and the lysine biosynthesis II and 
urea cycle pathways (Extended Data Fig. 8j,k). We also asked whether 
a random forest classifier could perform the more difficult task of 
predicting which dietary intervention a mouse was assigned to. Again, 
accuracy was no better than chance (20%, or randomly guessing one 
of the five dietary groups) at 5 months and better than chance at later 
ages (Fig. 5j and Extended Data Fig. 8l). Furthermore, accuracy was 
highest for the AL, 2D and 40% dietary groups (Fig. 5k and Extended 
Data Fig. 8m), consistent with more intense dietary interventions 
creating more distinct microbiome states.

We also assessed the impact of DR using species-level data and 
MetaPhlAn taxonomic results. The fraction of species affected by 
DR (89%) was similar to that of genera (93%; Extended Data Fig. 8n). 
DR coefficients based on MetaPhlAn data were generally concordant 
(Extended Data Fig. 8o; ρ = 0.50–0.70), with more intense dietary 
interventions (2D, 40% CR) having higher correlations.

Finally, we investigated the hypothesis suggested by previous work 
that DR induces a more youthful-appearing microbiome52,55,56. To test 
this notion, we trained a random forest regressor on AL samples and 
predicted the host age of DR samples. If DR produced a more youthful 
microbiome state, the predicted age of DR samples would be lower 
than that of AL samples. Surprisingly, we found that DR samples had 
higher (t-test, P < 0.01) predicted ages than AL samples (Fig. 5l and 
Extended Data Fig. 9a). Consistently, a regressor trained on 40% CR 
samples predicted lower ages for AL samples than for the other DR sam-
ples (Extended Data Fig. 9b). Furthermore, we identified genera that 
were affected by age and DR in the same direction, such as UBA11957 
(Fig. 5m) and Ligilactobacillus (Fig. 5n), and two-dimensional ordina-
tion showed that ageing and DR shifted the microbiome in the same 
direction (Extended Data Fig. 9c). In summary, our data do not suggest 
that DR ‘rejuvenates’ the microbiome to a more youthful state.

The microbiome associates with host health, not lifespan
Having characterized the factors that influence the microbiome, we 
next asked whether the microbiome modulates any of the host pheno-
types measured in the DRiDO study. We tested genera and pathways for 
association with 197 phenotypic traits across 13 assays, while controlling 
for age, dietary group and mouse (Fig. 6a, Supplementary Tables 17 and 
18, and Methods). The proportion of associations (adjusted P < 0.01) 
was similar for genera (0.9%) and pathways (0.7%; Extended Data 
Fig. 10). We observed associations with phenotypes measured in the 
body weight, body composition (dual-energy X-ray absorptiometry, 
DEXA), metabolic cage, frailty and flow cytometry assays (Fig. 6b). No 
associations were observed with phenotypes measured in the echocar-
diogram, glucose, grip strength, void (bladder function), rotarod or 
wheel running assays.

Focusing on phenotypes related to body mass and composi-
tion, we identified that genera positively associated with body mass 
included Alistipes, COE1 (Lachnospiraceae family), Lachnospira and 
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Fig. 5 | Effects of dietary restriction on the microbiome. a, Effect of DR on 107 
genus-level features. DR coefficients and standard errors were calculated with a 
linear mixed model (model 1). P values were calculated with a conditional Wald 
test and adjusted with the Benjamini–Hochberg procedure. The horizontal 
dashed grey lines are visual aids to help compare dietary groups. b, UMGS1815 
was increased by DR (n = 2,988 metagenomes). c, Ligilactobacillus was increased 
by DR (n = 2,988 metagenomes). d, Absolute magnitude of DR coefficients 
(n = 107 genus-level features). The grey lines connect the same genus in different 
dietary groups. The horizontal bars show the mean. Statistical significance 
was evaluated by a paired t-test. e, Comparison of DR coefficients. The Pearson 
correlation and P value are indicated above each scatter plot. Lines of best fit and 
95% confidence intervals (linear regression) are shown in purple. f, Mean CR (red) 
versus mean fasting (blue) coefficients are connected by vertical lines. Genera 
with opposite signs are opaque, while genera with the same sign are transparent. 
Dashed horizontal line at 0. g, Emergencia is decreased only by CR (n = 2,988 
metagenomes). The AL group median is designated by a horizontal dashed 
grey line. h, Roseburia is decreased by fasting and increased by CR (n = 2,988 
metagenomes). i, Receiver operating characteristic (ROC) curves for binary DR 
prediction. Each grey line is the ROC curve for one of five cross-validation folds.  

The purple line is the mean ROC curve. The diagonal dashed line represents 
no predictive accuracy. j, Predicting the dietary group before (grey) and after 
(purple) DR initiation. Each dot represents the prediction accuracy in 1 of 10 
cross-validation folds. The horizontal dashed line at 20% represents expected 
accuracy by chance. Statistical significance was evaluated by a one-sided 
t-test (testing whether the mean accuracy is greater than 20%). k, Prediction 
accuracy stratified by dietary group. Only predictions after the start of DR were 
considered. l, Age prediction with a random forest regressor trained on AL 
samples (n = 2,618 metagenomes from 5, 10, 16, 22 and 28 months). The vertical 
dashed line at 6 months represents DR initiation; the diagonal dashed line 
represents perfect prediction. Statistical significance was evaluated by a t-test 
between AL and DR predictions at each age. m, UBA11957 decreases with both 
age and DR (n = 2,988 metagenomes). n, Ligilactobacillus increases with both 
age and DR (n = 2,988 metagenomes). In b, c, g and h, statistical significance 
was evaluated by a t-test against the AL group. For box plots in b, c, g and h, 
boxes extend from the 25th to 75th percentiles, whiskers extend to 1.5 times 
the interquartile range and the centre line is the median. In m and n, data are 
presented as mean ± s.e.m. In b–e, g,h, j and l, P value symbols are defined as 
follows: NS, P ≥ 0.05; *P < 0.05; ****P < 0.0001.
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Pentose phosphate pathway (... (PWY−8178)
Purine ribonucleosides degr... (PWY0−1296)

Starch biosynthesis (PWY−622)
Sucrose biosynthesis II (PWY−7238)

Superpathway of aromatic ... (COMPLETE−ARO−PWY)
Superpathway of L−lysine ... (PWY−724)

Superpathway of L−threonine... (THRESYN−PWY)
Superpathway of pyrimidine ... (PWY0−162)

Superpathway of sulfur amin... (PWY−821)
Tetrapyrrole biosynthesis ... (PWY−5189)

Fig. 6 | Microbiome–phenotype associations. a, Association and mediation 
analyses were used to identify host phenotypes influenced by the microbiome. 
For association analysis, a linear mixed model was fit for every microbiome 
feature–phenotype pair, with age, DR and mouse as covariates (model 11).  
For mediation analysis, we tested each microbiome feature–phenotype pair to 
see which effects of DR are mediated by the microbiome (models 13 and 14).  
b, Percentage of significant (Benjamini–Hochberg-adjusted P < 0.01) 
microbiome–phenotype associations per phenotypic assay. P values were 
calculated using a likelihood ratio test in which the null model omitted the 
microbiome term. The denominator for the percentage is the number of 
microbiome–phenotype pairs tested within each assay. c, Select associations 
(calculated as in b) between genera and body-mass-related phenotypes.  
Positive associations are red; negative associations are blue. *Adjusted P < 0.01.  
d, Paramuriculum is associated with percentage fat, as measured by DEXA.  
e, Overlap of microbiome–phenotype pairs with significant (adjusted P < 0.01) 
association (model 11) and mediation (models 13 and 14) results. f, Heatmap of 

select microbiome–phenotype pairs significant by just association analysis or 
by both association and 40% CR mediation analysis. Phenotypes are grouped 
by phenotypic domain. Positive associations are red; negative associations are 
blue. Pathways in red are specialized pathways, and their most similar genus is 
shown on the right side of the heatmap. Lymph.PercViable, percentage of viable 
cells that are lymphocytes; Myeloid.PercViable, percentage of viable cells that 
are myeloid; VCO2, volume of carbon dioxide produced; VO2, volume of oxygen 
produced; EE, energy expenditure; Delta, change in body weight; TTM, total 
tissue mass; PercFat, percentage fat; BWTest, body weight (metabolic cage);  
BW, body weight. g, Akkermansia is associated with energy expenditure.  
h, Methionine biosynthesis (PWY-7977) is associated with the volume of carbon 
dioxide produced. i, Percentage of significant (adjusted P < 0.01) cross-sectional 
microbiome–phenotype associations (model 12) per phenotypic assay. P values 
were calculated using a likelihood ratio test. The denominator for the percentage 
includes associations across all five ages tested. In d, g and h, the blue lines 
represent the line of best fit and 95% confidence interval (linear regression).
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Ligilactobacillus, while genera negatively associated with body mass 
included Angelakisella, Bifidobacterium, Dubosiella and Paramurib-
aculum (Fig. 6c,d).

To investigate whether the microbiome was involved in the impact 
of DR on host phenotypes, we used mediation analysis (Fig. 6a, Sup-
plementary Tables 19 and 20, and Methods). Several hundred micro-
biome–phenotype pairs were significant (mediation effect adjusted 
P < 0.01), and a subset of these overlapped with significant associ-
ations (Fig. 6e). The mediation effect was small (mean proportion 
mediated = 19% for both genera and pathways), consistent with the 
microbiome modulating, rather than driving, the effects of DR on 
host physiology.

We focused on our highest-confidence microbiome–phenotype 
pairs, those having both an association and 40% CR mediation result 
(Fig. 6f). For example, Muribaculum and Akkermansia (Fig. 6g) are 
positively associated with energy expenditure. Indeed, the association 
between Akkermansia and increased energy expenditure has been 
reported previously57. Furthermore, pathway–phenotype associations 
propose mechanisms for the taxonomic associations. For example, 
the methionine biosynthesis pathway (PWY-7977) is associated with 
increased carbon dioxide production suggesting that methionine may 
be involved in the associations with energy expenditure.

Lastly, we asked whether the microbiome is associated with lifes-
pan. Because lifespan is not a longitudinal measurement, we performed 
association analysis separately per age (Supplementary Tables 21 and 
22, and Methods). Consistent with the longitudinal analysis (Fig. 6b), 
we identified numerous associations with frailty and body composi-
tion (Fig. 6i) but no associations with lifespan, indicating that several 
parameters of host health are affected by the microbiome, but that 
lifespan may not be a microbiome-associated trait.

Discussion
We generated nearly 3,000 metagenomic profiles from more than 900 
genetically diverse mice. The metagenomics data are longitudinal; 
have passed thorough and conservative quality control, including a 
pipeline to confirm that stool samples unambiguously matched their 
corresponding host genomes (Extended Data Fig. 2 and Supplementary 
Note 1); and are paired with host genomes and hundreds of longitudi-
nally collected host phenotypes. In addition to the raw sequencing files, 
we have made available summarized data tables, code and an example 
analysis tutorial (https://github.com/levlitichev/DRiDO_microbiome) 
to facilitate use of this dataset by the community. Our work generated 
four major insights.

First, we find that the most consistent age-associated microbiome 
change was an increase in uniqueness, that is, accumulated interindi-
vidual distance in taxonomic space, rather than changes in specific 
taxa. Together with our finding that young mice do not exert control 
over the ‘age’ of the microbiome (arguing against selection theory), we 
speculate that age-associated microbiome changes are caused by an 
accumulation of stochastic changes (in support of neutral theory). This 
model of microbiome ageing bears resemblance to the recent sugges-
tion that increased stochasticity may be the signal used by methylation 
clocks to successfully predict an animal’s age58.

Second, we find that host genetics explain similar amounts of 
microbiome variation as ageing and dietary restriction, and that most 
microbiome features show significant but modest heritability. We dem-
onstrate that detecting this genetic influence requires not only large 
sample sizes but also a controlled laboratory environment, such that 
the effect of host genetics is not obscured by unexplained environmen-
tal variability. Notably, even in a controlled study such as DRiDO, the 
overall effect of unexplained environmental variability is larger than 
the effect of all other measured variables combined (Fig. 4c).

Third, we make several noteworthy observations about how DR 
affects the microbiome: namely, that fasting and CR do not induce nota-
bly different microbiome changes, more intense dietary interventions 

lead to more distinct microbiome changes, and dietary restriction 
does not appear to produce a more youthful-appearing microbiome.

Fourth, the microbiome is associated with many aspects of 
host health—in particular, body composition, immune function and 
frailty—but it is not associated with longevity. As DR extends the lifes-
pan without rejuvenating the microbiome, the microbiome appears to 
contribute to the impact of DR on health but not on longevity.

In summary, this work advances our understanding of the factors 
shaping the microbiome over the lifespan and elucidates which aspects 
of host physiology and ageing are influenced by the microbiome.

Methods
Mouse experiments were approved by the Institutional Animal Care and 
Use Committees at The Jackson Laboratory (protocol number 06005) 
and the Perelman School of Medicine at the University of Pennsylvania 
(protocol number 806361).

DRiDO study
The DRiDO study was previously described in depth8. Briefly, we 
enroled 960 female DO mice (corresponding to breeding generations 
22–24 and 26–28) into the study from March 2016 until November 2017. 
All DO mice are genetically unique, and the parents of a given genera-
tion were from the previous generation59. Just one female mouse was 
used from each litter, so no mice in the study were siblings. Mice were 
enroled in 12 sequential cohorts (n = 80 mice per cohort, two cohorts 
per generation). Only female mice were used to prevent aggressive 
competition for limited food resources60. The sample size of 960 was 
chosen to detect a 10% change in lifespan based on historical lifespan 
data from DO mice.

At 6 months of age, the surviving n = 937 mice began one of five 
dietary interventions: ad libitum, 20% CR, 40% CR, 1 day week−1 fast-
ing or two consecutive days per week fasting. All mice were fed the 
same standard mouse chow diet (5K0G, LabDiet), but the timing and 
amount varied by dietary intervention. Dietary restriction was initiated 
at 6 months to evaluate the consequences of adult-onset, rather than 
lifelong, DR. Mice were housed up to eight animals per cage, with all 
cage-mates assigned to the same dietary intervention. The 20% CR mice 
received 2.75 g of food per day, the 40% CR mice received 2.06 g d−1, the 
1D mice were fasted from Wednesday 3 p.m. until Thursday 3 p.m. and 
the 2D mice were fasted from Wednesday 3 p.m. until Friday 3 p.m. The 
CR mice received a triple feeding on Friday afternoon. They consumed 
this food quickly, causing the 20% CR and 40% CR mice to undergo 
approximately 1 day or 2 days of fasting, respectively, over the weekend.

Body weight was measured weekly, while a variety of other phe-
notypes were collected every 6 months or yearly8 (Supplementary 
Table 1). The experiment was conducted at The Jackson Laboratory, 
and animal procedures were approved by the Animal Care and Use 
Committee at The Jackson Laboratory (protocol number 06005). Data 
collection and analysis were not performed blind to the conditions of 
the experiments.

Stool collection
Mice were scruffed, and one stool pellet was collected fresh. The pellet 
was added to RNAlater and stored at −80 °C.

DNA extraction
Stool pellets were removed from RNAlater with clean tweezers. 
DNA was extracted with the QIAGEN DNeasy PowerSoil Pro Kit 
(catalogue number 47016) following manufacturer instructions 
with one modification: pellets were homogenized for 1 min using 
the MP Biomedicals FastPrep-24 Classic Bead Beating Grinder and 
Lysis System, rather than using a vortex adaptor. DNA was eluted 
in 50 µl of C6. DNA concentration was measured using a NanoDrop 
spectrophotometer. DNA samples with concentrations <10 ng µl−1 
were excluded from further data generation. DNA was extracted 
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across 124 batches of 24 or 48 samples. We included at least one 
negative control (nothing added to the lysis tube at the start of the 
protocol) and one positive control every ~100 samples. We used 
two different positive controls: ATCC 10 Strain Even Mix Whole 
Cell Material (catalogue number MSA-2003) or ZymoBIOMICS Gut 
Microbiome Standard (catalogue number D6331). These controls 
contain cells from 10 and 21 microorganisms, respectively, with a 
variety of relative abundances.

Library preparation
Extracted DNA was prepared for sequencing using the Illumina DNA 
Prep Kit (catalogue number 20060059). We added 7.5 µl of input DNA 
diluted to 3–22 ng µl−1. We modified the protocol to use one-fourth 
of the manufacturer-recommended reagent volumes. Samples were 
barcoded using IDT for Illumina DNA/RNA UD Indexes Sets A and B 
(catalogue numbers 20027213 and 20027214), except for a handful of 
samples that were barcoded with Nextera DNA CD Indexes (catalogue 
number 20018708). Samples were eluted in 35 µl of elution buffer. DNA 
concentration was measured using the Qubit dsDNA High Sensitivity 
Assay Kit (catalogue number Q32851). If the library preparation was 
unsuccessful (that is, concentration <1 ng µl−1), we attempted to redo 
the library starting from the input DNA. We examined a random subset 
of samples from each batch on a TapeStation 4200 instrument using a 
High Sensitivity D1000 ScreenTape (catalogue number 5067-5584). The 
library preparation was performed in 96-well plates across 70 batches 
of 48 or 96 samples each. We included at least one negative control 
(7.5 µl of dilution buffer added to a well at the start of the protocol) 
and one positive control every ~100 samples. The positive control 
was the ATCC 10 Strain Staggered Mix Genomic Material (catalogue 
number MSA-1001), which contains DNA from 10 bacteria at a variety 
of relative abundances.

Pooling and sequencing
Libraries were pooled and sequenced on a NovaSeq 6000 with paired 
ends (2 × 150 bp). Sequencing was performed across eight sequencing 
runs and two NovaSeq 6000 machines: one at Calico Life Sciences LLC 
and one at the University of Pennsylvania.

Data preprocessing
We performed quality control of our sequencing reads using 
the Snakemake pipeline Sunbeam61 (v2.1.1). More specifically, 
we removed adaptors with cutadapt62 (v3.1, forward and reverse 
adaptors = CTGTCTCTTATACACATCT), trimmed low-quality 
bases and discarded low-quality reads with trimmomatic63 (v0.39, 
ILLUMINACLIP:trimmomatic/adapters/NexteraPE-PE.fa:2:30:10:8:true 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36), discarded 
reads with many repetitive sequences with komplexity (https://github.
com/eclarke/komplexity) and removed host reads (mean 9% of input 
reads) using bwa64 (v0.7.17) against the mm10 genome.

Quality control
We collected 4,214 stool samples from 944 DO mice (16 mice died before 
the first collection). Of these 4,214 stool samples, 3,586 stool samples 
(85%) were sequenced. The mean sequencing depth was 14.1 M read pairs 
per sample. We were unable to sequence 628 stool samples because 
either we could not successfully extract DNA (the DNA concentration 
had to be >10 ng µl−1) or we could not prepare a library from the DNA (the 
library concentration had to be >1 ng µl−1) despite multiple attempts. 
After accounting for positive and negative controls and some stool 
samples being sequenced more than once, we sequenced 4,352 samples.

Samples were discarded for any of the following reasons (in this 
order):

	(1)	 The sample did not definitively come from the expected mouse 
('Identifying sample mix-ups), n = 775

	(2)	 We discovered that the date of sample collection was after the 
animal’s date of death, so we could not be certain that the stool 
sample was correctly identified, n = 6

	(3)	 The sample received too few reads (<750,000 read pairs for 
stool samples, <100,000 read pairs for positive controls), n = 29

	(4)	 The proportion of reads assigned to the mouse genome was 
suspiciously high (>50%), n = 53

	(5)	 The sample was very different from all other samples ('Discard-
ing outliers'), n = 13

After these quality-control steps, we were left with 3,473 samples, 
corresponding to 2,997 stool samples (71% of the original 4,214) from 
913 DO mice.

Identifying sample mix-ups
Because every DO mouse was genotyped, we could compare the small 
fraction (~9%) of host reads in each stool sample to each mouse genome 
to confirm that every stool sample came from the expected mouse. 
We did this by adapting a previously published pipeline5. The idea is to 
count the number of times that host reads are discordant with the host 
genotype. After running this pipeline on all samples, we discarded 775 
samples and renamed 111 samples. Notably, 136 of the discarded sam-
ples were due to one mistake (an index collision between two library 
batches), and 225 of the discarded samples may not have been mix-ups 
but the result of coprophagy. The small number of renamed samples 
involved situations in which we could confidently identify the cause of 
the mistake. For complete details, please see Supplementary Note 1.

Discarding outliers
We calculated all pairwise sample distances to identify potential outli-
ers (Extended Data Fig. 3a). The largest distances were enriched for 13 
samples: the 45,348 pairwise distances greater than 0.9 involved 3,310 
samples, but just 13 samples were involved in 48.3% of these distances. 
These 13 samples were considered outliers and omitted from analysis.

Taxonomic and functional classification
After quality control, we performed taxonomic and functional clas-
sification with two distinct approaches. First, we used HUMAnN3  
(ref. 42) for taxonomic (MetaPhlAn4, ref. 65) and functional profiling 
with the following databases: mpa_vOct22_CHOCOPhlAnSGB_202212, 
full_chocophlan.v201901_v31 and uniref90_annotated_v201901b. We 
used all default parameters and added ‘--unclassified-estimation’ to 
estimate the proportion of unclassified reads. We also performed 
taxonomic profiling with a second approach: Kraken2 (ref. 40, v2.1.2) 
with the MGBC41 and default parameters. Because the Kraken2 plus 
MGBC approach classified more reads (Extended Data Fig. 3b) and 
returned fewer uncharacterized taxa, we present Kraken taxonomic 
results except in three places: positive control stacked bar plots 
(because MGBC does not contain all microorganisms present in the 
positive controls; Extended Data Fig. 1c), when verifying key findings 
and in comparisons to the other datasets ('Comparison to B6 and 
human datasets').

We identified 376 genera and 482 species using MetaPhlAn, 252 
genera and 1,093 species with Kraken and 422 MetaCyc43 pathways 
with HUMAnN3. Because so many microorganisms in the mouse gut 
microbiome are uncharacterized, we focused on genera rather than 
species for better interpretability. We verify certain key findings using 
species-level taxonomic results.

To account for differences in sequencing depth, we calculated 
genus-level relative abundances (exclusive of unclassified reads), and 
we divided pathway reads-per-kilobase (RPK) abundances by the sam-
ple sum (excluding UNMAPPED and UNINTEGRATED) and multiplied 
by 1 million. This is equivalent to the transcripts-per-million (TPM) 
normalization used in RNA sequencing66, so we adopt this nomencla-
ture even though we are not referring to transcripts.
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Samples produced from the same stool sample were aggregated 
together. For Kraken taxonomic results, we aggregated by summing 
absolute counts. For HUMAnN results, we aggregated by taking 
the mean genus-level relative abundance and mean pathway TPM 
abundance.

We distinguished between ‘community-wide’ and ‘specialized’ 
pathways on the basis of their similarity to taxonomic features. Special-
ized pathways were defined as having a small number (1–4) of Pearson 
correlations with genera above 0.5. Correlations were calculated using 
centred log ratio-transformed abundances for genera and log2(TPM) 
abundances for pathways.

Data normalization before linear modelling
For downstream linear modelling, we used centred log 
ratio-transformed, genus-level abundances and pathway log2(TPM) 
abundances after replacing zeroes. Zeroes were replaced with each 
feature’s minimum non-zero value divided by two.

We excluded low prevalence features. For Kraken taxonomic 
results, we considered the 100 most abundant genera (based on total 
counts across all samples), which accounted for >99% of all genus-level 
counts. For HUMAnN, we retained pathways with at least 100 TPM in at 
least 10% of samples (273 of 422 pathways).

We included several community features in our linear model-
ling: three genus-level measures of ɑ-diversity (Shannon index, 
Simpson index and Chao1 index), the first three principal coor-
dinates (based on Bray–Curtis distance of genus-level relative 
abundances), taxonomic uniqueness (also based on genus-level 
Bray–Curtis distance) and functional uniqueness (based on Euclid-
ean distance of log2(TPM) pathway abundances). Uniqueness is 
defined as the distance (or β-diversity) of a microbiome sample to 
its nearest neighbour27.

Finally, before use in a linear model, features were scaled so that 
estimated coefficients were comparable across features.

PCoA and PCA
Principal coordinate analysis (PCoA) plots were based on Bray–Curtis 
distances of genus-level relative abundances. The principal component 
(PCA) plot was based on Euclidean distance of pathway log2(TPM) 
abundances.

PERMANOVA
We performed PERMANOVA using the adonis2 function from the 
vegan67 R package with the following parameters: formula = dist ~ 
age + DR, by = “margin”, permutations = 999. Age is a continuous 
variable encoding age in months; DR is a categorical variable encod-
ing each of the five dietary interventions (samples collected before 
dietary randomization are considered AL). We ran PERMANOVA on all 
2,997 samples. For genera, we used Bray–Curtis distance on relative 
abundances. For pathways, we used Euclidean distance on log2(TPM) 
abundances.

Linear mixed model per microbiome feature
To assess the influence of age, DR and genetics on each microbiome 
feature (y_mb), we fit the following linear mixed model:

	(1)	 y_mb ~ age + DR + (1|quarter) + (1|mouse) + (1|cohort) + (1|batch) 
+ (1|cage) + (1|genetics)

where y_mb is defined above ('Data normalization before linear model-
ling'), age (in weeks, scaled) is a fixed effect, DR is a fixed effect with 
five levels (AL, 1D, 2D, 20, 40), (1|quarter) is a random intercept cor-
responding to the yearly quarter of stool collection (for example, 1 
January 2019 to 31 March 2019; n = 18 quarters), (1|mouse) is a random 
intercept, (1|cohort) is a random intercept corresponding to n = 12 
DO breeding cohorts, (1|batch) is a random intercept corresponding 
to n = 124 microbiome DNA extraction batches, (1|cage) is a random 

intercept corresponding to the cage in which a mouse was housed for 
the entirety of its life (n = 120), and (1|genetics) is a random effect cor-
responding to additive genetic effects, which we encode by providing 
the kinship matrix. In ecology, this model is referred to as the repeated 
measures animal model68. The (1|mouse) random effect accounts for 
‘repeatability’ or ‘permanent environment effects’, while (1|genetics) 
accounts strictly for additive genetic effects.

We used the previously published69 kinship matrix for this cohort 
of DO mice. Importantly, we multiplied the kinship matrix (in which the 
diagonal was approximately 0.5) by 2 before using it in the linear mixed 
model. This step is necessary because the genetic covariance matrix in 
a linear mixed model must contain coefficients of relationships, which 
are twice the kinship coefficients70.

The significance of each fixed effect was evaluated using a condi-
tional Wald test. The significance of each random effect was evaluated 
using a likelihood ratio test where the null model omitted the random 
effect. P values were adjusted with the Benjamini–Hochberg procedure, 
separately for taxonomic and functional features. Adjusted P < 0.01 
was considered significant.

Model 1 was fit using ASReml-R71 (v4.1.0.716).

Effect of sampling timepoint
Besides implicitly accounting for temporal batch effects in the DNA 
extraction batch and DO mouse breeding cohort, we also assessed 
the importance of explicitly accounting for sampling timepoint in 
our model (Extended Data Fig. 4) by running three additional models. 
We used a longitudinal model that accounted for sampling timepoint 
(‘time’) as a fixed effect, rather than a random intercept:

	(2)	 y_mb ~ age + DR + time + (1|mouse) + (1|cohort) + (1|batch) + 
(1|cage) + (1|genetics)

where time is a fixed effect corresponding to the date of stool collection, 
encoded as the number of days (scaled) from the first stool collection 
on 31 October 2016.

We ran a longitudinal model that did not include sampling 
timepoint:

	(3)	 y_mb ~ age + DR + (1|mouse) + (1|cohort) + (1|batch) + (1|cage) + 
(1|genetics)

And we used cross-sectional models in which all samples were 
collected around the same time:

	(4)	 y_mb ~ age + DR + (1|cohort) + (1|batch) + (1|cage) + (1|genetics)

Model 4 omitted the random intercept for mouse identity because 
the data were no longer longitudinal. We ran this cross-sectional model 
on three data slices:

•	 Slice 1 = 573 samples collected from 20 November 2017 
to 5 March 2018 (mean age = 11.1 months, 25th percen-
tile = 4.8 months, 75th percentile = 15.9 months)

•	 Slice 2 = 424 samples collected from 30 April 2018 to 13 August 
2018 (mean age = 17.2 months, 25th percentile = 10.1 months, 
75th percentile = 22.1 months)

•	 Slice 3 = 381 samples collected from 22 October 2018 to 
11 February 2019 (mean age = 20.5 months, 25th percen-
tile = 15.9 months, 75th percentile = 22.1 months)

Models 2–4 were fit using ASReml-R71 (v4.1.0.716).

Age prediction
We used a random forest regressor (randomForest R package v4.7–1.1 
with default parameters) to predict the age of a mouse based on its 
microbiome profile. We performed age prediction in three different 
contexts: (1) predicting the age of DO mice, (2) predicting the age of 
DR mice using a regressor trained on AL mice and vice versa, and (3) 
predicting age in the cohousing experiment.
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To predict the age of DO mice (Fig. 2 and Extended Data Fig. 5), 
we performed 10-fold cross-validation, that is, 90% of samples were 
used for training, and predictions were made on the remaining 
10% of samples. Age was treated as a continuous variable. We per-
formed age prediction considering just AL mice (n = 573, in which 
we avoid the confounding variable of dietary restriction) or all sam-
ples (n = 2,997). We used relative abundances for the top 100 most 
abundant genera, relative abundances for the top 200 most abundant 
species or log2(TPM) abundances for the 272 pathways that passed  
prevalence filtration.

To evaluate whether DR rejuvenates the microbiome (Fig. 5 and 
Extended Data Fig. 9), we trained a random forest regressor on all AL 
samples and predicted age for all DR samples. We used out-of-bag 
predictions when reporting AL accuracy. Conversely, we trained a 
regressor on all 40% CR samples and evaluated it on all other samples, 
including the other DR groups. Age was treated as a continuous vari-
able, and we again considered 100 genera or 272 pathways.

To predict the age of mice in the cohousing experiment, a random 
forest classifier was trained on all baseline samples and tested on all 
other samples. Age was treated as a binary variable (young or old). 
We considered relative abundances for all 125 genera ('Cohousing 
experiment').

We evaluated feature importance using the ‘importance’ function 
from the randomForest package. For regression, we quantified impor-
tance using the percentage increase in mean squared error (MSE) and, 
for classification, we used the mean decrease in accuracy.

Longitudinal B6 mouse cohort
A total of 15 4-week-old male C57BL/6 (‘B6’) mice were ordered from 
The Jackson Laboratory. The mice were housed five per cage across 
three cages. Stool pellets were collected upon arrival and then every 
3 months. The pellets were collected fresh into empty 1.7-ml tubes and 
frozen at −80 °C. Animal procedures were approved by the Institutional 
Animal Care and Use Committee at the Perelman School of Medicine, 
University of Pennsylvania (protocol number 806361).

DNA was extracted with the Qiagen DNeasy PowerSoil Kit (cata-
logue number 12888-100), libraries were prepared with the Nextera 
DNA Flex Library Prep Kit (catalogue number 20018705) and librar-
ies were sequenced on a NextSeq 550 machine with 75-bp single-end 
sequencing. Data were analysed the same way as the DO samples: 
pre-processed with Sunbeam and then taxonomically and functionally 
classified with HUMAnN.

Human metagenomic data
Human metagenomic sequencing data were obtained using the curat-
edMetagenomicData47 package (v3.6.2). We filtered for stool sam-
ples from individuals meeting the following criteria: age ≥18 years, 
‘healthy’ or ‘control’, and no current antibiotic use. Furthermore, we 
included only studies with ≥50 individuals meeting these criteria and 
an age interquartile range ≥5 (to make sure each study had a diversity 
of ages). This resulted in 4,101 individuals from 20 studies. We obtained 
genus-level relative abundances and pathway RPK abundances, which 
we normalized to log2(relative abundances) and log2(TPM) values after 
replacing zeros, as described above.

Comparison to B6 and human datasets
We considered only samples from AL mice when comparing the DO 
cohort with the B6 cohort and human samples. We fit the following 
linear models to identify age-associated microbiome features in each 
dataset:

	(5)	 DO AL mice: y_mb ~ age + (1|mouse) + (1|cohort) + (1|batch) + 
(1|cage)

	(6)	 B6 mice: y_mb ~ age + (1|cage)

	(7)	 Humans: y_mb ~ age + (1|study)

where (1|study) is a random intercept corresponding to one of 20 
studies comprising the human cohort. See 'Linear mixed model per 
microbiome feature' for details about the other terms. Models 5, 6 and 
7 were fit with MaAsLin2 (ref. 72, v1.12.0).

Because the human dataset had been processed with HUMAnN, 
we used MetaPhlAn taxonomic results for the DO AL mice, instead 
of the Kraken taxonomic results. We used log2-transformed 
genus-level relative abundances after zero replacement. For preva-
lence filtration, we retained genera with at least 0.001% relative 
abundance in at least 10% of samples (DO AL: 248 of 311, B6: 262 of 
310, humans: 90 of 331) and pathways with at least 100 TPM in at 
least 10% of samples (DO AL: 262 of 399, B6: 233 of 329, humans:  
358 of 573).

We also tested several measures of ɑ-diversity (Shannon index, 
Simpson index, inverse Simpson index and richness) and uniqueness. 
For DO AL mice, uniqueness was recalculated considering just AL 
mice. For humans, uniqueness was calculated separately within each 
of 20 studies.

P values for each age coefficient were calculated with MaAsLin2 
(based on a t-statistic using Satterthwaite’s method for denominator 
degrees of freedom73). P values were adjusted with the Benjamini–
Hochberg procedure, separately per dataset and separately for taxo-
nomic and functional features. Due to the additional burden of needing 
to be consistent across datasets, the adjusted P value threshold was 
increased to 0.1 for this analysis.

For select microbiome features, we also fit the following basic 
linear model separately within each human study to assess consistency 
across studies (Extended Data Fig. 6b–d):
	(8)	 Within each human study: y_mb ~ age

The 20 P values (one from each human study) were adjusted with 
the Benjamini–Hochberg procedure.

Cohousing experiment
We obtained n = 25 8-week-old female C57BL/6 mice from The Jackson 
Laboratory and n = 20 19- and 20-month-old female C57BL/6 mice 
from the National Institute on Aging. Before the start of the experi-
ment, the mice were housed five per cage with other mice of the same 
age. The mice were allowed to acclimate for at least 1 week before the 
start of the experiment. During cohousing, three young mice were 
housed with two old mice for 1 month. Control young and old mice 
remained housed with other mice of the same age. After 1 month, 
two of the cohousing cages were separated by age and two cohousing 
cages remained cohoused. Stool pellets were collected at baseline, 
after 1 month of cohousing, and after 2, 4, 6 and 8 weeks of separation. 
Animal procedures were approved by the Institutional Animal Care 
and Use Committee at the Perelman School of Medicine, University of 
Pennsylvania (protocol number 806361).

We performed 16S sequencing of these stool samples. DNA was 
extracted using the Qiagen DNeasy PowerSoil Pro Kit (catalogue 
number 47016). We amplified the V1/V2 variable region using KAPA 
HiFi HotStart ReadyMix (Roche, catalogue number KK2602) and 
the F27/R338 primer pair (F27: 5′-AGAGTTTGATCCTGGCTCAG-3′, 
R338: 5′-TGCTGCCTCCCGTAGGAGT-3′). We performed a bead-based 
clean-up of the pooled libraries using AMPure XP SPRI beads (cat-
alogue number A63881). Libraries were paired-end (2 × 250 bp) 
sequenced across two MiSeq runs. The first run contained samples 
collected at baseline, at 4 weeks of cohousing and at 4 weeks of 
separation. The second run contained samples collected at 2, 6 and 
8 weeks of separation. Data were processed using QIIME2 (ref. 74, 
v2023.2.0). Reads were demultiplexed75 and denoised with DADA2 
(ref. 76). The following parameters were supplied to DADA2 for 
trimming demultiplexed reads: ‘--p-trunc-len-f 240 --p-trunc-len-r 
220’ for the first run and ‘--p-trunc-len-f 250 --p-trunc-len- 165’ for 
the second run. Reads from the two runs were then merged and 
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taxonomically classified against the SILVA 138 database77,78 using a naive  
Bayes classifier79,80.

Cohousing experiment in germ-free mice
We collected stool pellets from n = 24 young (3 months) and n = 18 
old (17 months) female C57BL/6 mice. These donor mice had been 
housed four to five per cage. Pellets from mice in the same cage were 
combined in a single 5-ml tube with 5–10 pellets per tube. Pellets 
were resuspended in 2 ml of PBS and vortexed, and then 200 μl of 
this faecal slurry was gavaged into recipient germ-free (GF) mice. 
The recipients were n = 44 young (3–5 months) GF female C57BL/6 
mice from the Penn Gnotobiotic Mouse Facility. Recipients were 
housed five per cage for 2 weeks in isocages to allow the FMT to 
engraft. Recipients in the same isocage received input from the 
same donor cage.

Two weeks after the FMT, we cohoused recipients of young micro-
biomes (CYGF) with recipients of old microbiomes (COGF). Cohoused 
cages contained three CYGF and two COGF mice. Non-cohoused control 
cages contained five young FMT recipients (YGF) or four to five old FMT 
recipients (OGF). After 2 weeks and 1 month of cohousing, we collected 
stool pellets from all recipients.

We performed 16S sequencing of these stool samples as above. 
DNA was extracted using the Qiagen DNeasy PowerSoil Pro Kit, we 
amplified the V1/V2 variable region using the F27/R338 primer pair, 
we performed a bead-based clean-up of the pooled libraries using 
AMPure XP SPRI beads, and we sequenced libraries (2 × 250 bp) 
across two MiSeq runs. The first run contained samples collected 
at baseline (2 weeks after the FMT) and at 1 month of cohousing. 
The second run contained samples collected at 2 weeks of cohous-
ing. Again, data were processed with QIIME2. The following param-
eters were supplied to DADA2 for trimming demultiplexed reads: 
‘--p-trim-left-f 14 --p-trunc-len-f 249 --p-trunc-len-r 231’ for the first run 
and ‘--p-trunc-len-f 249 --p-trunc-len-r 231’ for the second run. Reads 
from the two runs were then merged and taxonomically classified 
against the SILVA 138 database.

Heritability
Using model 1, heritability was calculated as the variance assigned to 
the (1|genetics) random effect divided by total variance. The stand-
ard error of heritability was estimated using the vpredict function 
from ASReml. A feature was considered heritable if it had an adjusted 
P < 0.01 (likelihood ratio test, followed by Benjamini–Hochberg for 
P value adjustment). We also calculated heritability (model 1) using 
lme4qtl81(v0.2.2) to confirm identical results with a different software 
package (Extended Data Fig. 7e).

We also calculated heritability with the following cross-sectional 
model, separately at each of 5, 10, 16, 22 and 28 months (Extended 
Data Fig. 7g):

	(9)	 y_mb ~ DR + (1|cohort) + (1|batch) + (1|cage) + (1|genetics)

The DR term was omitted from the 5-month analysis because 
this was before dietary randomization. Model 9 was fit with ASReml. 
For this cross-sectional analysis, heritability was computed using all 
samples at a given age. We also fit model 1 after downsampling to 110 
mice to obtain a similar number of samples as in cross-sectional data 
(Extended Data Fig. 7g).

Comparison to heritability estimates from other studies
For Extended Data Fig. 7f, we compared our heritability estimates to 
those reported in Supplementary Table 3A (ref. 51). This table con-
tained 27 operational taxonomic units (OTUs) that could be classified 
to the level of genus. Of these 27, only 8 overlapped with the genera 
that we tested for heritability. For Fig. 4b, we plotted the proportion 
of significantly heritable taxa (based on the authors’ definitions) from 
eight other studies30–33,51,82–84.

Comparing all experimental variables
To compare the effects of all experimental variables to each other, 
we used a modified version of model 1 in which age, DR and sampling 
timepoint (‘quarter’) were encoded as random intercepts:

	(10)	y_mb ~ (1|age) + (1|DR) + (1|quarter) + (1|mouse) + (1|cohort) + 
(1|batch) + (1|cage) + (1|genetics)

This allowed us to compare the variance explained by each vari-
able. Age was provided as a categorical variable (nine levels). P values 
were adjusted separately for each experimental variable. Model 10 
was fit with ASReml.

QTL mapping
We performed QTL mapping as described previously85. Briefly, we 
tested the association between each SNP marker against each of 107 
microbiome features (top 100 genera plus 7 community features) at 
each of 5 ages: 5, 10, 16, 22 and 28 months. Dietary group and DO mouse 
cohort were included as covariates, except at 5 months (before the 
start of DR) when only cohort was included as a covariate. QTL map-
ping was performed with R/qtl2 (ref. 86) using previously published 
leave-one-chromosome-out kinship matrices and genotype prob-
abilities85. P values were calculated based on permutation and adjusted 
using the Benjamini–Hochberg procedure.

Prediction of dietary group
We used random forest classifiers (randomForest R package v4.7–1.1 
with default parameters) to predict binary dietary restriction status 
(AL or DR) or dietary restriction group (AL, 1D, 2D, 20% or 40%). We 
performed prediction separately per age. Within each age, we per-
formed 5-fold (for predicting binary dietary restriction) or 10-fold 
(for predicting dietary group) cross-validation while stratifying by 
cage so that no samples from the same cage were present in both 
the training and testing sets. We used the same 100 genera and 272 
pathways as above.

Microbiome–phenotype associations
To identity associations between microbiome features and host phe-
notypes, we tested all microbiome–phenotype pairs with the following 
model:

	(11)	 y_pheno ~ y_mb + age + DR + (1|mouse)

where y_pheno is a phenotypic trait such as body weight, age and DR are 
fixed effects, and (1|mouse) is a random intercept. For each phenotype, 
we selected the measurement closest in time to each microbiome sam-
ple and included only microbiome–phenotype pairs obtained within 
100 days of each other. The significance of each microbiome–phe-
notype association was calculated using a likelihood ratio test where 
the null model omitted y_mb. We tested 100 genera and 252 pathways 
against 197 phenotypic traits measured across 13 assays.

Model 11 could not be used to test for association for lifespan 
(a non-longitudinal measurement), so we fit the following cross- 
sectional model at each of 5, 10, 16, 22 and 28 months:
	(12)	 y_pheno ~ y_mb + DR

The DR term was omitted from the 5-month analysis because this 
was before dietary randomization. The significance of each associa-
tion was calculated using a likelihood ratio test where the null model 
omitted y_mb. Model 11 was fit with lme4 (ref. 87, v1.1-33) and model 12 
was fit with the lm function in R.

Mediation
Mediation analysis estimates the proportion of treatment T’s effect 
on outcome Y that is mediated by mediator M (see Supplementary 
Discussion for limitations of this approach). In our study, treatment T 
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is dietary restriction, outcome Y is a phenotypic trait and mediator M 
is a microbiome feature. We performed mediation analysis using the 
model-based approach within the mediate R package88 (v4.5.0). We fit 
the following two models:

	(13)	 Mediator model: y_mb ~ DR_X + age + (1|mouse)

	(14)	Outcome model: y_pheno ~ y_mb + DR_X + age + (1|mouse)

where DR_X corresponds to one of the four dietary interventions. Medi-
ation analysis was performed separately for each of the DR groups. 
We report the average causal mediation effect (ACME) estimate and P 
value. P values were adjusted with Benjamini–Hochberg separately per 
dietary group. Microbiome–phenotype pairs with an ACME-adjusted 
P < 0.01 were considered significant. We tested the same features as for 
association analysis. When reporting the mean proportion mediated, 
we consider only significant mediation results where the direct effect 
and mediation effect estimates have the same sign.

Statistics
P values were adjusted using the Benjamini–Hochberg procedure, 
separately for taxonomic and functional features and for each model 
specification. For example, 107 P values were adjusted after running 
model 1 on genus-level taxonomic features. Significance was defined 
as an adjusted P < 0.01, unless explicitly stated otherwise. For pairwise 
comparisons, t-tests were used. All statistical tests were two sided 
except for one-sided t-tests in Fig. 5j and Extended Data Fig. 8l. Tests 
were unpaired except in Fig. 5d and Extended Data Fig. 8f. For box plots, 
boxes extend from the 25th to 75th percentiles, whiskers extend to 1.5 
times the interquartile range and the centre line is the median. Error 
bars show one standard error, except in Extended Data Fig. 3c where 
error bars show one standard deviation. P value symbols are defined as 
follows: NS, P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
P values below 2.2 × 10−16 (the epsilon of a double-precision float) are 
reported as ‘<2.2 × 10−16’. Downstream analysis and plotting was per-
formed in RStudio (R v4.2) using the tidyverse89 (v2.0.0), phyloseq90 
(v1.42.0) and vegan67 (v2.6.4) packages. Final figures were created with 
Adobe Illustrator.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We generated the following fastq files, which are available in Sequence 
Read Archive: DRiDO metagenomic sequencing, PRJNA1054518; longi-
tudinal B6 metagenomic sequencing, PRJNA1073968; 16S sequencing 
of the cohousing experiment, PRJNA1072097; and 16S sequencing of 
cohousing in the germ-free mice experiment, PRJNA1128683. Pro-
cessed data are available via GitHub at https://github.com/levlit-
ichev/DRiDO_microbiome. Host phenotypes collected as part of the 
DRiDO study are available via Figshare at https://doi.org/10.6084/
m9.figshare.24600255.v1. The genetic kinship matrix and genotype 
probabilities are available via Figshare at https://doi.org/10.6084/
m9.figshare.13190735. Other databases used in this study include the 
mm10 genome (http://igenomes.illumina.com.s3-website-us-east-1.
amazonaws.com/Mus_musculus/UCSC/mm10/Mus_musculus_UCSC_
mm10.tar.gz), MetaPhlan (http://cmprod1.cibio.unitn.it/biobakery4/
metaphlan_databases/) and HUMAnN databases (http://huttenhower.
sph.harvard.edu/humann_data/chocophlan/full_chocophlan.v201901_
v31.tar.gz, http://huttenhower.sph.harvard.edu/humann_data/uni-
prot/uniref_annotated/uniref90_annotated_v201901b_full.tar.gz), 
MGBC Kraken2 database (https://github.com/BenBeresfordJones/
MGBC), curatedMetagenomicData (https://doi.org/10.18129/B9.bioc.
curatedMetagenomicData) and SILVA 138 (https://www.arb-silva.de/
documentation/release-138/).

Code availability
All figures in this paper may be reproduced using code (and processed 
data) available via GitHub at https://github.com/levlitichev/DRiDO_
microbiome. This GitHub repository also contains an example analysis 
tutorial.
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Extended Data Fig. 1 | Positive and negative controls. a, Number of read pairs 
per sample (prior to aggregation), grouped by sample type (n = 3577 samples 
prior to aggregation by stool ID). Boxes extend from the 25th to 75th percentiles, 
whiskers extend to 1.5 times the interquartile range, and the center line is the 
median. b, PCoA of all samples prior to aggregation. Two positive controls 
(BZIZNTZA and JVOMNOOB, highlighted in red) clustered separately from 
the other positive controls. PCoA1 and PCoA2 explain 30% and 10% of overall 

variance, respectively. c, Species-level relative abundances (MetaPhlAn4) for 
positive controls. Two positive controls (BZIZNTZA and JVOMNOOB, highlighted 
in red) did not display the expected community composition. d, PCoA of 
non-control samples prior to aggregation. e, Same ordination as d, with lines 
connecting samples originating from the same DNA. f, Same ordination as d, with 
lines connecting samples in which a library was sequenced multiple times.
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Extended Data Fig. 2 | Identifying sample mix-ups. a, Sample mix-ups were 
identified by comparing host reads from each microbiome sample against 
all host genotypes (we term this pipeline “mbmix”). For more details, see 
Supplementary Note 1. b, Example of concordance between a microbiome 
sample and the expected host genotype. The x-axis is each host genotype, the 
y-axis is the proportion of single nucleotide polymorphisms (SNPs) that were 
discordant between the microbiome sample and the host genome. c, Example of 
discordance. Microbiome sample DO_20_1188_021w was supposed to originate 
from mouse DO-20-1188, but it appears to have come from DO-2D-4188. d, Best 
proportion discordant SNPs versus proportion of discordant SNPs against the 
expected genotype. The fate of each sample is indicated by its color: kept (green), 
discarded (red), or renamed (blue). e, Plate view of mbmix categorization. Each 

sub-panel is a “final plate”, a 96-well plate of libraries prior to pooling. White 
regions either didn’t contain a sample, contained a sample that obtained no 
reads (for example, left half of final plate 31), contained a sample whose mouse 
did not have a genotype, or contained a control sample. f, Proportion discordant 
SNPs for stool samples from mice DO-AL-0097 and DO-AL-0105. Samples from 
44 weeks were concordant with the expected mouse genotype. All other samples 
from mouse DO-AL-0097 appeared to come from mouse DO-AL-0105, except 
DO_AL_0097_148w, which was inconclusive. The two other samples from mouse 
DO-AL-0105 appeared to come from DO-AL-0097. For discordant results, the 
mouse with the lowest proportion of discordant SNPs is colored red. g, Body 
weight for mice DO-AL-0097 and DO-AL-0105. The vertical dashed line at 56 
weeks represents the likely time that these mice were swapped in their cages.
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Extended Data Fig. 3 | Quality-control and details related to taxonomic and 
functional classification. a, Histogram of all pairwise sample distances (Bray-
Curtis on relative abundances). Distances involving any of 13 outlier samples 
are shown in red. b, Percentage of reads that could be classified for non-control 
samples using either Kraken2+MGBC or MetaPhlAn4. Mean percent classified 
indicated in black text. c, Difference between Kraken2+MGBC and MetaPhlAn4 
genus-level relative abundances for the 41 genera present in both taxonomic 
databases. Each horizontal line shows the mean ± standard deviation across 

all 2997 non-control samples. d, Examples of community-wide and specialized 
pathways. The largest correlations for the specialized pathway (PWY-8004) 
were with Lactobacillus and Limosilactobacillus. e, PCA plot based on microbial 
pathways (n = 2997 metagenomes). PC1 and PC2 explain 21% and 8% of overall 
variance, respectively. For the boxplots, boxes extend from the 25th to 75th 
percentiles, whiskers extend to 1.5 times the interquartile range, and the center 
line is the median. For more details, see Fig. 1 legend.
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Extended Data Fig. 4 | Effect of sampling timepoint. a, Timeline of stool 
collection. X-axis shows the day of stool collection, with the first day of the overall 
experiment as day 1. Y-axis indicates the age of a mouse when a stool sample was 
collected. The color of each circle corresponds to one of 12 DO breeding cohorts 
that were sequentially entered into the study. The size of each circle corresponds 
the number of samples collected for each cohort-age combination. Gray 
rectangles correspond to three cross-sectional data slices used in later analyses. 
b, Number of genera associated (conditional Wald test, Benjamini-Hochberg 

adjusted p-value < 0.01) with age using linear mixed models that included 
sampling timepoint as a fixed effect (Model 2), random effect (Model 1), or not 
at all (Model 3). c, Correlations between age coefficients calculated using cross-
sectional (columns) and longitudinal (rows) models. Blue line represents the line 
of best fit and 95% confidence interval (linear regression). Spearman correlation 
(ρ) indicated above each scatterplot. Black dashed line at y = x represents perfect 
agreement between two models.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Additional details related to age-associated microbiome 
changes. a, Uniqueness increases with age even when the number of mice 
per cage is kept fixed. For various n, cages with at least n mice at that age were 
considered. If the number of mice was greater than n, then n mice were  
randomly chosen. Uniqueness was then recomputed on this subset of samples.  
b, ɑ-diversity (as measured by Shannon and Simpson indexes) appears to increase 
with host age (n = 2988 metagenomes with age ≤ 40 months), but this trend is 
not significant (Model 1, conditional Wald test, Benjamini-Hochberg adjusted 
p-value > 0.01). c, Fraction of features associated (Model 1, conditional Wald test, 
Benjamini-Hochberg adjusted p-value < 0.01) with age when using genus-level 
or species-level data. d, Uniqueness increases with age when using species-level 
relative abundances (n = 2988 metagenomes). e, Comparison of age coefficients 
calculated using Kraken2 or MetaPhlAn taxonomic results. Diagonal dashed line 
at y = x represents perfect agreement. Spearman correlation (ρ) and p-value are 
indicated above the plot. f, Effect of age on microbial pathways. Age coefficients 
and standard errors were calculated with Model 1. p-values were calculated with a 
conditional Wald test and adjusted with the Benjamini-Hochberg procedure.  

g, Glycolysis IV (PWY − 1042) decreases with age (n = 2988 metagenomes).  
h, Correlations between PWY − 1042 and all genera. PWY − 1042 is a community-
wide pathway because it has no correlations above 0.5. i, L-lysine biosynthesis II 
(DAPLYSINESYN-PWY) increases with age (n = 2988 metagenomes).  
j, DAPLYSINESYN-PWY is a specialized pathway because it is highly correlated 
with Bifidobacterium. k, Functional uniqueness increases with age (n = 2988 
metagenomes). l-n, Age prediction based on 10-fold cross validation. Green line 
represents the line of best fit and 95% confidence intervals (linear regression). 
Black dashed line at y = x represents perfect accuracy. MAE = mean absolute 
error. l, Prediction considering all mice, rather than just AL mice. m, Prediction 
using species-level relative abundances in AL mice. n, Prediction using pathway 
log2(TPM) abundances in AL mice. o, Top 10 most important pathways for age 
prediction ( just AL mice, n = 573 metagenomes). Each dot is one of 10 cross-
validation folds. X-axis shows the percent increase in mean squared error (MSE) 
when that particular pathway is excluded from a tree within the random forest 
regressor. In a, b, d, g, i, and k, data are presented as mean ± SEM.
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Extended Data Fig. 6 | Additional details related to universal age-associated 
microbiome changes. a, Percentage of pathways associated with age  
(Models 5-7, Benjamini-Hochberg adjusted p-value < 0.1) within each dataset. 
b-d, Associations with age within human studies. Coefficients, standard errors, 
and p-values were calculated with Model 8, and p-values were adjusted with the 
Benjamini-Hochberg procedure. Adjusted p-values < 0.1 are shown in green. 
The number of individuals per study indicated in b is the same as in c and d. 
b, Uniqueness tends to increase with age in most human studies, including 
the largest (LifeLinesDeep_2016). c, Blautia appears to increase with age in 
some studies and decrease with age in others, and when regressing against age 
separately per study, no studies have an adjusted p-value < 0.1. d, ɑ-diversity 
versus age, separately per human study. p-values were adjusted separately per 
metric. e, Comparison of age-associated functional changes across datasets. 
Each pairwise comparison shows all features that passed prevalence filtration 
in both datasets. Line of best fit and 95% confidence interval shown in gray. 
Spearman correlation and corresponding p-value shown above each plot. 

Features associated with age and with the same sign in the pairwise comparison 
are shown in green. f, Flavin biosynthesis I (RIBOSYN2-PWY) decreases with age 
in all three datasets. Each panel includes the line of best fit and 95% confidence 
interval (linear regression). g, Histograms of pathway-genus correlations. 
For the specialized pathway (PWY-7234), the largest genus correlation is to 
Ligilactobacillus. h, Schematic of cohousing experiment in germ-free mice. 
Young germ-free mice (gray) received fecal microbiome transplants (FMTs) 
from young donors (Y FMT) or old donors (O FMT). Mice that received Y FMT are 
shown in blue, mice that received O FMT are shown in red. YGF = Y FMT recipients 
housed with other Y FMT recipients, OGF = O FMT recipients housed with other 
O FMT recipients, CYGF = Y FMT recipients cohoused with O FMT recipients, 
COGF = O FMT recipients cohoused with Y FMT recipients. i, PCoA (based on 
genus-level Bray-Curtis distances) of samples at baseline, after two weeks of 
cohousing, and after one month of cohousing. Ordination based on all samples 
shown in this plot. + denotes group centroid. In b, c, and d, data are presented as 
mean ± SEM.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Additional details related to microbiome heritability. 
a, Heritability of pathways. Heritability was calculated with Model 1. p-values 
were calculated using a likelihood ratio test and adjusted with the Benjamini-
Hochberg procedure. Yellow vertical dashed line shows mean heritability 
for heritable features. b, Histograms of pathway-genus correlations. For the 
specialized pathway (LACTOSECAT-PWY), the largest genus correlation is to 
Lactobacillus. c, Fraction of heritable (Model 1, likelihood ratio test, Benjamini-
Hochberg adjusted p-value < 0.01) features when using genus-level or species-
level data. d, Comparison of heritability calculated using Kraken2 or MetaPhlAn 
taxonomic results. Diagonal dashed line at y = x represents perfect agreement. 
Spearman correlation (ρ) and p-value are indicated above the plot. e, Heritability 
computed with lme4qtl or ASReml using the same model and data. f, Comparison 
of heritability estimates from a different DO mouse study (Schlamp et al. 2021). 
Plot shows the eight genera for which heritability was assessed in both datasets. 
Of these eight, the most heritable taxon in both studies was Lactobacillus 

(highlighted in yellow). g, Cross-sectional (Model 9) versus longitudinal (Model 
1) versus downsampled longitudinal (Model 9, downsampled to 110 mice) 
heritability. Heritable genera (Benjamini-Hochberg adjusted p-value < 0.01) 
are shown in blue. The longitudinal results are the primary heritability results 
presented throughout the manuscript. h, Proportion of variance explained (PVE) 
by all experimental variables for n = 273 pathways (Model 10, p-values calculated 
with likelihood ratio test, adjusted with Benjamini-Hochberg). Horizontal lines 
show the mean PVE. i, Allele effects across ages for the top six age-specific QTL 
(permutation test, adjusted p-value < 0.01). QTL mapping was performed using 
n = 569, 513, 646, 522, and 368 samples respectively at 5, 10, 16, 22, and 28 months. 
Data are presented as mean ± SEM. The title above each sub-panel indicates 
the genus, chromosome, and genotyping marker for the QTL result. Color of 
each line represents the allele effect for each of eight founders comprising the 
Diversity Outbred genetic pool.
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Extended Data Fig. 8 | Additional details related to the effects of dietary 
restriction. a, Effect of dietary restriction (DR) on 273 pathways. DR coefficients 
and standard errors were calculated with a linear mixed model (Model 1). p-values 
were calculated using a conditional Wald test and adjusted with the Benjamini-
Hochberg procedure. b, The L-lysine biosynthesis II pathway (PWY-2941) is 
increased by DR (n = 2988 metagenomes with age ≤ 40 months). c, PWY-2941 
is a specialized pathway, most highly correlated with Ligilactobacillus. d, The 
urea cycle pathway (PWY-4984) is decreased by DR (n = 2988 metagenomes). 
e, PWY-4984 is a community-wide pathway with no correlations with genera 
above 0.5. f, Absolute magnitude of DR coefficients for 273 pathways. Gray lines 
connect the same pathway in different dietary groups. Horizontal bars show the 
mean. Statistical significance evaluated by a paired t-test. g, Comparison of DR 
coefficients for pathways. Pearson correlation and p-value is indicated above 
each scatterplot. Lines of best fit and 95% confidence intervals (linear regression) 
are shown in purple. h, Mean CR versus mean fasting coefficients for pathways. 
Vertical lines highlight the difference in mean CR coefficients (red) versus mean 
fasting coefficients (blue). Pathways with opposite signs are opaque, while 
pathways with the same sign are transparent. Dashed horizontal line at 0.  
i, Receiver operating characteristic (ROC) curves for the prediction of binary DR 
using pathways, separately at each age. Each gray line is the ROC curve for one of 
5 cross-validation folds. The purple line is the mean ROC curve. The diagonal  

dashed line at y = x represents no predictive accuracy. AUC = area under the 
curve. j-k. Top 10 most important genera (j) and pathways (k) for prediction 
of binary DR status. Each dot is one of 20 cross-validation folds (4 post-
randomization ages x 5 folds per age). X-axis shows the mean decrease in 
accuracy, that is between trees in the random forest that do include the feature of 
interest and trees that do not. l, Predicting dietary group using pathways before 
(gray) and after (purple) initiation of DR. Each dot represents prediction accuracy 
in one of 10 cross-validation folds. Horizontal dashed line at 20% represents 
expected accuracy by chance. Statistical significance evaluated by a one-sided 
t-test (testing whether the mean accuracy is greater than 20%). m, Prediction 
accuracy stratified by dietary group using pathways. Only predictions after the 
start of dietary restriction were considered. n, Fraction of features associated 
(Model 1, conditional Wald test, Benjamini-Hochberg adjusted p-value < 0.01) 
with DR when using genus-level or species-level data. o, Comparison of DR 
coefficients calculated using Kraken2 or MetaPhlAn taxonomic results. Diagonal 
dashed line at y = x represents perfect agreement. Spearman correlation (ρ) and 
p-value are indicated above the plot. For the boxplots in b and d, boxes extend 
from the 25th to 75th percentiles, whiskers extend to 1.5 times the interquartile 
range, and the center line is the median. In b, d, f, g, and l, p-value symbols  
are defined as follows: ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001,  
****: p < 0.0001.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Resource https://doi.org/10.1038/s41564-025-01963-3

a b Predicting age, trained on 40% CR

c

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.3 0.0 0.3 0.6
PCoA1 (39%)

PC
oA

2 
(8

%
)

AL and 40% CR, 10 and 28 months

AL, 10 months
40% CR, 10 months

40% CR, 28 months
AL, 28 months

Effect of age 
Effect of CR

Pr
ed

ic
te

d 
ag

e 
(m

on
th

s)
Pr

ed
ic

te
d 

ag
e 

(m
on

th
s)

Genera

Pathways

5 months 10 months 16 months 22 months 28 months

ns nsns **** ******** **** ******** * **** ns *****

AL 1D 2D 20 AL 1D 2D 20 AL 1D 2D 20 AL 1D 2D 20 AL 1D 2D 20

10

20

30

5 months 10 months 16 months 22 months 28 months

ns nsns **** ******** **** ******** * ******* ns ******

AL 1D 2D 20 AL 1D 2D 20 AL 1D 2D 20 AL 1D 2D 20 AL 1D 2D 20

10

20

30

10

15

20

25

10 20 30
Actual age (months)

Predicting age, trained on AL, pathways
ns **** **** **** **

Pr
ed

ic
te

d 
ag

e 
(m

on
th

s)

DR
AL

Extended Data Fig. 9 | Dietary restriction does not rejuvenate the microbiome. 
a, Age prediction with a random forest regressor trained on pathway data from 
n = 573 AL samples. Vertical dashed line at six months represents start of dietary 
restriction, diagonal dashed line represents perfect prediction. Statistical 
significance evaluated by a t-test between AL (gray) and DR (purple) predictions 
at each age. b, Age prediction of a regressor trained on n = 623 40% CR samples 
and evaluated on all other samples (n = 2374), using genera (top) or pathways 
(bottom). Horizontal dashed line shows the actual age of samples collected at 
that timepoint. Boxes extend from the 25th to 75th percentiles, whiskers extend 

to 1.5 times the interquartile range, and the center line is the median. Statistical 
significance evaluated with a t-test against the AL group. c, PCoA of AL and 
40% CR samples from middle-aged (10 months) and old (28 months) samples. 
Ordination based on just these samples. Group centroids are depicted by the 
four large points, along with 95% data ellipses. Arrows connect group centroids 
to depict the effect of age (gray) and the effect of caloric restriction (red). PCoA1 
and PCoA2 explain 39% and 8% of overall variance, respectively. In a and b, 
p-value symbols are defined as follows: ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: 
p < 0.001, ****: p < 0.0001.
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Extended Data Fig. 10 | Additional details related to microbiome-phenotype 
associations. Histogram of p-values for associations between phenotypes and 
genera (left) or pathways (right). Associations were performed using a linear 

mixed model (Model 11), and p-values were calculated using a likelihood ratio 
test in which the null model omitted the microbiome term. Associations with a 
Benjamini-Hochberg adjusted p-value < 0.01 are shown in blue.
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