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Traditional genetic studies have concentrated on dichotomous traits such as the 

presence or absence of a disease. Such traits are often the result of a mutation at a 

single gene. However, many interesting traits, like blood pressure or survival time 

after an infection, are quantitative in nature, and are affected by many genes and 

environmental factors. There are several reviews of the statistical methods for 

mapping quantitative trait loci (QTLs, the genes responsible for variation in quan­

titative traits) in experimental crosses!·3. Here, the attempt is to describe these 

methods to the reader who may have little detailed knowledge of statistics. This 

paper will sidestep most of the mathematical details, but the hope is to impart the 

important statistical concepts and issues, 

Experimental Crosses 
Repeated sibling matings of various experimental organisms-including mice, 

on which this review focuses-have led to the establishment of panels of well­

defined strains. The process of inbreeding has fixed a large number of biomed­

ically relevant traits in these strains. If two strains show consistent phenotypic dif­

ferences, despite being raised in a common environment, the investigator may be 

confident that the strain difference 

has a genetic basis. The identity of 

the genes underlying such pheno­

typic differences may be revealed 

by performing a series of crosses, 

the simplest of which is the back­

cross (Fig. 1). The statistical meth­

ods used, and the statistical issues 

that arise, are largely the same for 

the different types of crosses; how­

ever, the backcross has the advan­

tage of simplicity: at each locus in 

the genome, the backcross progeny 

have one of only two possible geno­

types (genetic composition). 

In a backcross, the investigator 

chooses two inbred strains, referred 

to here as the A and B parental 

strains, that differ in the trait of 

interest. The parental strains are 

crossed to obtain the first filial (FI) 

generation. FI individuals receive a 

copy of each chromosome from 

each of the two parental strains; 

wherever the parental strains differ, 

the F, generation is heterozygous. 

The FI individuals are crossed to 

one of the two parental strains. For 

x 

� 

FIGURE 1. A backcross experiment begins 
with two inbred strains that differ in the trait 
of interest (e.g., the response to an invasive 
procedure; the numbers on the mice indi­
cate phenotype values). The two strains are 
c rossed to produce the Fl generation, 
which is then crossed back tQ one of the 
parental strains to obtain the backcross 
generation. The backcross generation 
exhibits genetic variation. The objective of 
the experiment is to identify genomic 
regions for which genotype predicts phe­
notype. 
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FIGURE 2. Histograms of the pheno­
type distributions in the parental 
strains, the F1 generation, and the 
backcross generation. 

example, if an FI individ­

ual is crossed with its A 

strain parent, the back­

cross progeny receive one 

chromosome from the A 

strain, and one from the 

Fl. Thus, at each locus, 

they have genotype AA 

or AB. The chromosome 

received from the Fi par­

ent is a mosaic of the two 

parental chromosomes, 

as a result of recombina­

tion during meiosis. 

The investigator pro­

duces a number of back­

cross progeny (generally 

around 100 individuals) 

and determines the phe­

notype (the trait value) 

for each individual. Since 

this review considers 
quantitative phenotypes, 

rather than dichotomous 

ones, the phenotype will 

be a number, such as blood pressure, tumor mass, or survival time. 

Each individual is genotyped at a number of genetic markers, gen­

erally 10-20 centiMorgans (eM) apart, chosen to cover the genome 

uniformly. (The eM is the unit of genetic distance, and is equivalent 

to 1 % recombination.) For each marker and each individual, it is 

observed whether the FI parent transmitted the A or the B allele. A 

genetic map specifying the order of the markers and the inter­

marker distances will be known or estimated based on the data. The 

objective is to identify genomic regions for which there is an asso­

ciation between the phenotype of a backcross individual and 

whether it received the A or B allele from the FI parent. 

Fig. 2 contains histograms of the phenotype distributions for the 

parental strains, the Fj generation, and the backcross generation for 

an imaginary backcross experiment. The parental strains were cho­

sen to have markedly different phenotype distributions; the A and B 

strains have average phenotypes of 80 and 20, respectively. (To make 

this more concrete, think of the phenotype as time-to-death, in 

hours.) \\'bile individuals within each strain are genetically identi­

cal, there is some variation in the phenotypes due to environmental 

(nonheritable) differences and measurement error. Here, the phe­

notype distribution for the FI generation is intermediate between 

the two parental strains, but shows approximately the same degree 

of variation, with a standard deviation (SD) of about S. (The SD 

may be interpreted as the typical difference from the average. 
Individuals in the FI generation have an average phenotype of about 

40, but they typically deviate from that by about 5, having a pheno­

type between 35 and 45.) The Fi generation need not be intermedi· 

ate; for many traits, 

one observes heterosis 

(also known as hybrid 

vigor), wherein the Fi 

hybrid exhibits greater 

fitness than either of 

the parental strains. 

It is often assumed, 

though not always 

observed, that the 

degree of environ­

mental variation will 

be independent of 

genotype, as is seen in 

Fig. 2-the SDs in the 

parental strains and 

in the Fi generation 

are all about 5. The 

backcross generation, 
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FIGURE 3. Ootplots of phenotypes of 
backcross progeny, split according to the 
genotypes (A) at a marker that appears to 
be linked to a aTl (01 M30) and (8) at a 
marker that appears not to be linked to 
any aTls (02M99). Horizontal line seg­
ments indicate the group averages. 

however, shows greater variation in phenotype because of genetic 

variation. 

The aim of QTL mapping is to identify regions of the genome 

that are contributing to variation in the trait of interest. In agricul­

tural experiments, this knowledge may be used to design crosses 

leading to improved products. In biomedical experiments, the goal 

is to enhance understanding of the biochemical basis of the trait 

and to identify new drug targets. 

Methods for Mapping QTls 
Analysis of Variance 

The simplest method for QTL mapping is analysis of variance 

(ANOVA, sometimes called "marker regression") at the marker 

loci4• At each typed marker, one splits the backcross progeny into 

two groups, according to their genotypes at the marker, and com­

pares the phenotype distributions of the two groups. For example, 

in Fig. 3A, we see that the individuals with genotype AA. at marker 

DIM30 have somewhat higher phenotype values than those with 

genotype AB at that marker, indicating that the marker is linked to 

a QTL. In contrast, when the individuals are split according to their 

genotype at marker D2M99 (Fig. 3B), the phenotype distributions 

are approximately the same; this marker does not appear to be 

linked to a QTL. 

The assessment of the strength of evidence for the presence of a 

QTL will be described in detail below. Briefly, in a backcross, one 

may calculate a t-statisticS to compare the averages of the two 

marker genotype groups. For other types of crosses (such as the 

intercross), where there are more than two possible genotypes, one 

uses a more general form of ANOVA, which provides a so-called F­

statistic. These are both equivalent to the LaD score statistic 

(described below). 

The chief advantage of ANOVA at the marker loci is its simplic­

ity. In addition, a genetic map for the markers is not required, and 
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the method may be easily extended to account for multiple loci. A 

further advantage is the easy inclusion of covariates, such as sex, 

treatment, or an environment effect. Many phenotypes show 

marked sex differences, and these must be accounted for in QTt 

mapping. In addition, one may apply a treatment to some individ­

uals but not others, or raise some individuals in one environment 

and others in a different environment. 

The ANOVA approach for QTt mapping has three important 

weaknesses. First, we do not receive separate estimates of QTL loca­

tion and QTt effect. QTt location is indicated only by looking at 

which markers give the greatest differences between genotype 

mouse that has genotype AA at both markers will also have geno­

type AA at the QTt, with a probability of �99% . A mouse that has 

genotypes AA and AB at the left and right markers, respectively, 

will have genotype AA at the QTt with a probability of -65% 

(and so will have genotype AB at the QTL with a probability of 
�35%). 

In interval mapping, we assume that, given the QTt genotype, 

the phenotype follows a normal distribution (a "bell curve"), with 

mean phenotype ;.tA or ;.tH, according to whether the QTL genotype 

is AA or AB, respectively, and common SD, (J. Given the genotypes 

at the markers flanking the QTt, the conditional phenotype distri-

bution is then a mixture of the group averages, and the apparent 

QTt effect at a marker will be 

smaller than the true QTt effect as 

a result of recombination between 

the marker and the QTL Second, 

we must discard individuals whose 

genotypes are missing at the mark­

er. Third, when the markers are 

widely spaced, the QTt may be 

quite far from all markers, and so 

the power for QTt detection will 

TABLE 1. Conditional probabilities for the QTL genotypes, 
given the genotypes at two flanking markers. 

two normal distributions. For 

the example described above, 

the conditional phenotype dis­

tributions are displayed in Fig. 

4. Consider mice with genotype 

AB at both markers: they will 

very likely have genotype AB at 

the QTt as well, and so their 

phenotypes will approximately 

follow a normal distribution 

Marker Genotype aT� Genotype 
AA 

AA AA (1-rd(1·rR)/(1-r) rLrel(1·1') 

AA AB (1-rdr,,!(1-r) rL(1-rRJ/(1-1') 

AS AA rL(1·rR)/(1-1') (1·rdr,,!(1-r) 

AB AB v,,!(1-r) (1-rd(1·rRJ/(1-r) 

rL recombination fraction between the left marker and the QTl 

decrease. r" recombination fraction between the QTL and the right marker with mean ;.tE' Of the mice with 

genotype AB at the left marker r,= recombination fraction between the two markers 

Interval Mapping 
tander and Botstein6 developed interval mapping, which over­

comes the three disadvantages of analysis of variance at marker 

loci. Interval mapping is currently the most popular approach for 

QTL mapping in experimental crosses. The method makes use of a 

genetic map of the typed markers, and, like analysis of variance, 

assumes the presence of a single QTL. Each location in the genome 

is posited, one at a time, as the location of the putative QTL. 

Given the marker genotype data (and assuming that the 

recombination process in meiosis exhibits no interference), one 

may calculate the probability that an individual has genotype l>..A 

(or AB) at a putative QTL (recall that we are considering a back­

cross to parental strain A). These QTt probabilities depend only 

on the genotypes at the nearest flanking typed markers, and are 

displayed in Table 1. As an example, consider two markers 20 cM 

apart, and suppose there is a QTL 7 cM from the left marker. A 

The Case of a Single aTl 

and AA at the right marker, 

approximately 65% will have genotype AB at the QTt, while the 

other 35% will have QTL genotype AA. The distribution of pheno­

types will then be as shown in Fig. 4, with 65% coming from a nor­

mal distribution with mean ;.tll and 35% coming from a normal 

distribution with mean ;.tA' The dashed curves in Fig. 4 correspond 

to the components of this mixture. 

Fig. 5A displays the tOD ("logarithm of the odds favoring link­

age," a score that measures the strength of evidence for the presence 

of a QTL) curve for a chromosome of length 100 cM, for an imag­

inary backcross of 100 individuals typed at markers every 10 cM. 
The LOD curve achieves its maximum at position 35 cM, indicat­

ing the presence of a QTL at this position. Note that the dots corre­

spond to the typed marker loci. In the case of complete genotype 

data, the analysis of variance approach, described previously, pro­

vides exactly these dots. Interval mapping links these points togeth-

Suppose that the mice with QTl genotype AA have average phenotype MA, while the mice with QTL genotype AS hilve average phenotype /-LB. The QTL thus 
has effect 8 /-Ls - MA' Consider a marker locus that is a recombination fraction r away from the QTL. Of the individuals with marker genotype AA, a fraction (1 
I') of them wilt have QTl genotype AA, while the remainder win have QTL genotype AS, and so these individuals have average phenotype (1 t) MA + r /-LB '" MA 
+ r 8. Similarly, the individuals with marker genotype AS have average phenotype (1 t) ME + r MA Me - r Ll. Thus. the difference betwe!)n the phenotype ilver­
ages for the two marker genotype groups is (Me - r Al (MA + r 8) A (1 - 21'). 

Note thilt when r", 1/2, the market and QTL are unlinked, A (1 21') '" 0, and the Mo marker genotype groups will have the same phenotype average. When 
« 1/2, the marker and QTL are linked, A (1 - 21) ,.. 0 (provided that that the QTL really does have an effect, Ll,.. 0). Thus, a nonzero difference between the mark­
er genotype groups indicates linkage between the marker and a QTL. Note that the difference between the phenotype averages for the two mfirker genotype 
groups will always be smaller (in absolute value) than the true QTL effect, fl., unless there is complete linkage between the marker and the QTL(r",·O). 

GenetiCists often measyre the effect of a QTL as the proportion of the phEmotypic variance that is attributable to the QTL. The variance induced by a QTl is 
the variance in the trait that would be observed if there were no environmental variation nor measurement error, and no other QTLs. For a backcross and a QTl 
with an effect A (the difference in the phenotype averages, described above), this variance is AZI4, and so the proportion of the phenotypic variance attributable 
to the QTl is A2J(4�2), where '(' is the total phenotypic variance in the backcross generation. 
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er, and indicates that the best estimate for the 

QTL position is at a location between the markers 

at 30 and 40 cM. The 1.5-LOD support interval 

(the region where the LaD score is within 1.5 of 

its maximum) indicates the most plausible loca­

tion for the QTL. A plot of the LaD score, re-cen­

tered so that its maximum is at 0 (see Fig. 58), 
assists in identifying the evidence for QTL loca­

tion. 

20 40 60 �A 

Phenolype 

0·[ 

B 
0.0 

80 10e 

Interval mapping has several advantages over 

analysis of variance at the marker loci. First, it 

provides a curve, such as that in Fig. SA, which 

indicates the evidence for QTL location. Second, 

it allows for the inference of QTLs to positions 

between markers. Third, it provides improved 

estimates of QTL effects. (The apparent effect at a 

marker locus is attenuated as a result of recombi­

nation between the marker and the QTL). Fourth, 

and perhaps most important, appropriately per­

formed interval mapping makes proper allowance 

for incomplete marker genotype data. In the cal­

culation of an individual's QTL genotype proba­

bilities, conditional on its marker genotype data, 

one considers the closest flanking typed markers 

FIGURE 4. Conditional phenotype distrib­
utions given marker genotypes at posi­
tions flanking a QTL. Markers are 
assumed to be 20 cM apart, with the QTL 
located 7 cM from the left marker. For the 
recombinant genotypes, dashed curves 
indicate the components of the pheno­
type distributions. 

FIGURE 5. (A) LOD curve for an imaginary 
backcross composed of 100 mice geno­
typed at markers every10 cM; the 1.5-LOD 
support interval is indicated. (8) The LOD 
curve re-centered so that the maximum is 
at 0 to better Indicate the evidence for 
QTL location. 

for that individual. If an individual is missing the marker genotype 

for a flanking marker, one moves to the next flanking marker for 

which genotype data are available. Allowance may even be made for 

the presence of genotyping errors7• 

The key disadvantage to interval mapping, in comparison to 

analysis of variance, is that it requires some increase in computa­

tion time, and the use of specially designed software. Haley and 

KnottS described a method that approximates interval mapping 

quite well, but requires much less computation and can be carried 

out with standard statistical software. When possible, one should 

use the exact interval mapping method, but the Haley-Knott 

LPD Scores 

Given a putative OTL at location z, if we knew the three OTL parame­
ters, /kA, /ke, and 0', we could write down (although we won't do so here) the 
probability of the observed data, Pr(data I OTL at z, /kA, /ke, 01, (The verlj­
ci,ll bar is to be rei,ld as "given.") Consid.ered as a function of the three 
unknown parameters, this is called the fikefihooci. In interval mapping, we 
obtain maximum likliJlihood estimates of the three parameters, defined to be 
the values for which this probability i,lchieves its maximum; we denote these 
estimates p. A, P.B, a. (Note that these estimates will be ·different for different 
putative OTL locations, z.) We then form the LOD score: 

LOD(z) = tot:) '{pr(dataIOTl at z. flr.,,!la, oj} 
10 Pr(datalno OTl) 

The LOD score measures th.e strength of the evidence for the presence 
of a OTL at the location z, compared to there being no segregating OTL in 
the backcross. Larger LOD scores correspond to greater evidence for the 
presence of a OTL The LOD score is calculated at each position of the 
genome (or, in practice, just every 0,5 cM or so). 

approach gives a remarkably good approximation that provides a 

reasonable first look at the linkage results. (The LaD curves dis­

played in this paper were actually calculated using the Haley-Knott 

approximation to interval mapping.) 

Statistical Significance 
vv'hen confronted with a 1,00 curve (or, for the mouse, with 19 

or 20 such curves, one for each chromosome), a natural question 

arises: is an observed peak actually a QTL? As mentioned above, the 

LaD score indicates the strength of evidence for the presence of a 

QTL, with larger LODs corresponding to greater evidence. The 

question is, how large is large? The standard approach to answering 

this question has been to formulate the problem as one of hypoth­

esis testing. 

Consider the null hypothesis, that there are no QTLs segregating 

in the backcross. We determine the distribution of the 1,00 score in 

this situation. The probability of obtaining a LaD score as large or 

larger than that which was observed, if there were no QTLs, is called 

the P value. Large LaD scores give small P values; very small P val­

ues indicate that either the null hypothesis is false (there really is a 

QTL) or a very rare event occurred. 

The solid curve in Fig. 6 corresponds to the approximate distri­

bution of the LaD score for a particular genomic position, given 

that there are no QTLs segregating in the backcross. LaD scores 

above 1 appear to be rare (giving a P value of about 3%), and so 

provide reasonably strong evidence for the presence of a QTL 

Unfortunately, our story is not yet complete. When one performs a 

genome scan to identify QTLs, one examines the LaD score at 100 
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or more marker loci (and, 
using interval mapping, at all 
locations between markers). 
Thus, the null distribution of 
the LOD score at a single 
location is not appropriate 
for forming an overall 
threshold. Some adjustment 
must be made for our exam­
ination of multiple putative 
QTL locations over the 

LOD score 
whole genome. What we are 

FIGURE 6. Null distribution of the after is the distribution, 
LaD score at a particular genomic 
position (solid curve) and of the 

assuming that there are no 
maximum LaD score from a QTLs segregating in the 
genome scan (dashed curve). cross, of the maximum LOD 

score across the entire 
genome. Stated another way, we seek the chance of obtaining this 
large a LOD score somewhere in the genome, if there were no QTLs 
anywhere. 

The approximate distribution of the maximum LOD score, 
given no QTLs, is shown as the dashed curve in Fig. 6. Even if there 
are no QTLs, one will typically see a LOD score of 2 or more some­
where in the genome. LOD scores must be closer to 3 before they 
will generally be deemed interesting. (A LOD score of 3 indicates 
that the chance of obtaining the observed data, given that there is a 
QTL at the specified position, is 1,000 times more likely than if 
there are no QTLs.) The efforts of many statisticians have been 
expended in estimating this dashed curve (or the LOD threshold, 
which corresponds to a P value of 5%). This curve, the null distri­
bution of the maximum LOD score, depends on the type of cross 
(backcross or intercross), the size of the genome, the number and 
spacing of genetic markers, the amount and pattern of missing 
genotype information, and the true phenotype distribution. 

Lander and Botstein6 performed extensive computer simula­
tions to estimate the appropriate LOD threshold for various 
genome sizes and marker densities, and gave analytical calculations 
for the case of a very dense marker map. These guidelines should 
suffice for most uses. Another approach (which requires somewhat 
hefty computation, but provides an estimate of the null distribu­
tion of the maximum LOD score, given the observed phenotype 
distribution, marker spacing, and pattern of missing genotype 
data) is to perform a permutation test9. One permutes (random­
izes) the phenotype data, keeping the genotype data intact; per­
forms interval mapping; and identifies the maximum LOD score, 
across the genome. This process is repeated 1,000 times. The 
observed LOD score (with the phenotypes in the correct order) is 
compared to the 1,000 LOD scores obtained from permuted ver­
sions of the data. The proportion of these 1,000 LOD scores that 
exceed the actual, observed LOD score, is reported as an approxi­
mate P value. This provides a customized threshold, tailor-made for 
the individual experiment. 
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How Many Markers? How Many Mice? 
In considering how many mice to obtain and how many mark­

ers to type, one thinks about both the chance of detecting QTLs and 
the resolution of localization of QTLs. (For further discussion of 
these issues, see van Ooijen1o.) The chance of detecting a QTL is 
called the "power:' Suppose that under the null hypothesis of no 
segregating QTLs, one obtains a maximum LOD score, 
genomewide, of at least 3 only 5% of the time, so the threshold of 
3.0 may be used to define significant evidence for the presence of a 
QTL. In this case, the power to detect a QTL is the chance that one 
will obtain a LOD score above 3 in the region of the QTL. 

Power depends on the type of cross, the size of the effect of the 
QTL, the number of mice obtained, the density of typed markers in 
the region of the QTL, and the stringency of the chosen LOD 
threshold (i.e., the significance level). Fig. 7 provides an illustration 
of the power to detect a QTL in a backcross with phenotypic SD 
11.5, as a function of the size of the QTL's effect and the number of 
mice. The dashed curve corresponds to the null distribution of the 
uaximum LOD score, genomewide (see Fig. 6); a LOD score of 3 

corresponds to a P value of approximately 5% because the area 
under the dashed curve, to the right of 3, is approximately 5% of 
the total area. The solid curves correspond to the distribution of the 
LOD score at the QTL, for QTLs with different sizes of effect, for a 
backcross with 100 mice. 
(Note that the propor­
tion of the phenotypic 
variance attributable to 
the QTL is 5, 12, and 
22%, respectively, for the 
three examples in Fig. 
7.) The shaded area 
under this curve, to the 
right of 3, is the power to 
detect the QTL. As the 
size of the QTL effect 
increases, the distribu­
tion of the LOD score 
shifts to the right, and 
the power to detect the 
QTL increases. The dot-
ted curves correspond to 
the distribution of the 
LOD score with 200 
mice, rather than 100; 
the curves shift appre­
ciably to the right as the 
power to detect the QTL 
increases. 

Fig. 7 illustrates the 
power to detect a specif­
ic QTL. When a QTL has 
an effect of only moder-

LOD SCOre' 

Lon score 

�OD score 

aT;" effe:::1 '" 5 
Power ::::2% 

FIGURE 7. Distribution of LaD score in 
the presence of a QTL. The dashed 
curve corresponds to the null distribu­
tion of the maximum LaD score, 
genomewide. The solid and dotted 
curves correspond to the distributions 
of the LaD score for a QTL with vari­
ous sizes of effects for crosses with 
100 and 200 mice, respectively. The 
shaded regions correspond to the 
cases where significant genomewide 
evidence for the presence of a QTL 
would be obtained. 
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ate size, this power can be extremely low. It is possibly more inter­

esting to consider the power to detect at least one QTL If there are 

10 unlinked QTLs segregating in a cross, and for each of them, the 

power is only 20%, one will still have approximately 90% power to 

detect at least one of them. This has implications for the replication 

of experiments; if there are many moderate-sized QTLs segregating 

in a particular cross, then from one group of mice to the next, the 

set of QTLs for which one will obtain strong evidence may be quite 

different. Of course, QTLs with quite strong effect will be detected 

with high power, and so will be seen with each group of mice. 

Fig. 8A presents the LaD curves (re-centered to have a maxi­

mum at 0) obtained for 100 mice typed at markers every 10 cM 

(solid curve) and every 1 cM (dashed curve). In this example, the 

additional typed markers provided no assistance in localizing the 

QTL In Fig. 8B, we have increased the number of mice to 200. 

\\Then typed at a 10 cM spacing, the additional mice do little to 

improve the localization of the QTL (The evidence for a QTL in 

the region, as  reflected in  the maximum LaD score, increased 

tremendously, although that is not shown in the figure.) However, 

with 200 mice typed at a 1 cM spacing (Fig. 8B, dashed curve), the 

precision of localization of the QTL is greatly improved. But these 

results are not necessarily typicaL The author recommends that ini­

tial genotyping in an experimental cross be performed with mark­

ers at a 10-15 cM spacing. Typing additional markers in the region 

of an inferred QTL may improve the resolution of its localization, 

but such improvement will likely only occur if one has typed many 

mice or the QTL has a relatively large effect. 

Selection Bias 
An important, yet often ignored, issue in QTL mapping con­

cerns selection bias in 
'00 mi.. the apparent (estimated) 

- «--- < -

effects of QTLs. Such 

0.5 

1 U 

,<, 

ChromcwJ!lc-] pos1lion (eM) 

20 25 30 

200 mice 

40 45 50 

Chromosome poslllOll {eM, 

FIGURE 8. Effect of increasing marker 
density and increasing the-number of 
mice-from (A) 100 to (8) 200-on the 
precision of localization of a OTl. Solid 
and dashed curves correspond to 10 
and 1 cM marker spaCings, respectively. 

estimated effects are 

often too large. Consider 

a single QTL with an 

effect of moderate size, 

and imagine there is a 

marker very near the 

QTL In a particular 

experiment, the estimat­

ed effect of the QTL will 

be somewhat different 

from its true effect-the 

observed difference 

between the phenotype 

averages for the two QTL 

genotype groups will not 

be the same as the true 

difference. Nevertheless, 

to produce a LaD score 

sufficiently large for us 

to declare the presence of a QTL, the estimated effect must be large. 

This introduces bias in the estimated effect. (Bias is also introduced 

in the maximization over possible QTL locations; the inferred loca­

tion for a QTL is the one that gives the largest estimated QTL 

effect.) Because this bias is the result of the selection of only those 

loci for which there is sufficient evidence for the presence of a QTL, 

we call it "selection bias." 

Fig. 9 displays the distribution of the estimated effect of a QTL, 

given its true effect, for a backcross with 100 mice, where the phe­

notype SD is 11.5. To produce a LOD score above 3.0, the estimat­

ed effect of the QTL must be at least 8.3. In the case that the true 

effect of a QTL is 5, the power to detect the QTL will be only -2%, 

and in the cases where it is detected, its estimated effect will be 

nearly twice too large. (For this case, the average estimated effect, 

given that significant evidence for a QTL is obtained, is 8.93, and so 

the bias is 8.93 - 5 = 3.93. Viewed as a proportion of the true effect , 

the bias is 

The power to detect QTLs with a larger effect is higher, and the 

bias in their estimated effects will be lower, but may still be sub­

stantiaL QTLs with very large effect are always detected, and so the 

bias in their estimated effects will be minimaL 

For a particular inferred QTL with an estimated effect of mod­

erate size, we will not know whether it is a weak QTL that we were 

extremely lucky to detect, and whose true effect is really rather 

small, or a QTL of truly large effect that happened to appear to be 

not so strong in this particu­

lar set of mice; the estimated 

effects of QTLs can often be 

overly optimistic. 

Multiple QTLs 
Interval mapping assumes 

the presence of a single QTL. 

One may use interval map­

ping to identify multiple 

QTLs, especially when they 

are on separate chromo­

somes, but there are several 

advantages to using methods 

that model multiple QTLs 

simultaneously. First, by con­

trolling for the presence of a 

QTL, one may reduce the 

residual variation and obtain 

greater power to detect addi­

tional QTLs. Second, one 

may better separate linked 

QTLs. Third, the identifica­

tion of interactions between 

QTLs (called epistasisll'13) 

requires the joint modeling 

of multiple QTLs. 

1Q 

Estimate<:! OTl elloct 

Estimated OTL effect 

is 

10 15 

Eslimaied OTL effect 

FIGURE 9. Illustration of selection 
bias in the estimated QTL effect. 
The curves correspond to the dis­
tribution of the estimated OTL 
effect for different values of the 
true effect (indicated by the dotted 
lines). The shaded regions corre­
spond to the cases where signifi­
cant genomewide evidence for the 
presence of a OTL would be 
obtained. The dashed vertical lines 
indicate the average estimated 
OTL effect, conditional on the 
detection of the OTL 
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Before describing the major approaches for mapping multiple 
QTLs , let us examine the phenomenon of epistasis. (Strickberger14 
provides an interesting discussion of epistasis.) Fig. IDA displays 
the phenotype averages when splitting mice into fouf groups 
according to their joint genotypes at two QTLs, that are acting 
additively. For example, the average phenotype for mice with geno­
type j\A at both QTLs is 40, while that for mice that are AB at QTL 
1 and AA at QTL 2 is 60. The effect of a QTL is the change in the 
phenotype average when the QTL genotype is changed from AA to 
AB. If we consider only those mice whose genotype at QTL 2 is AA 

(the circles in Fig. IDA), the effect of QTL 1 is 20. Similarly, for 
those mice whose genotype at QTL 2 is AB (the triangles in Fig. 
IDA), the effect of QTL 1 is again 20. The QTLs are acting additive­
Iy if the effect of QTL 1 is the same, irrespective of 
the genotype at QTL 2. (The two lines in Fig. IDA 
are parallel.) Similarly, the effect of QTL 2 is the 
same, irrespective of the genotype at QTL 1. 

Fig. lOB displays the phenotype averages for 
two QTLs that are not additive. QTL 1 has effect 
10 when the genotype at QTL 2 is ,A,A, but has 
effect 30 when the genotype at QTL 2 is AB. 
Similarly, QTL 2 has no effect when the genotype 
at QTL I is AA, but has an effect of 20 when the 

I 
70 � 
60 -l 

J 

B 
80 

models additive models or models including pairwise interac­
tions between QTLs); 2) search through the space of models (there 
may be more possible models than may be inspected individually); 
3) compare models; and 4) assess the performance of a model selec­
tion procedure. 

Consider the class of models composed of a finite number of 
QTLs, acting additively, where QTLs may occur only at the marker 
loci. If there are 100 markers, then there are 2100 "" 1030 such mod­
els. There are approximately 10 13 models that include 1 0 or fewer 
markers. If one allows only three or fewer QTLs, one may perform 
a simultaneous search to consider each such model. But if one 
wishes to consider the possibility of many more QTLs, it is impos­
sible to inspect each possible model individually, so one must form 

Additive QTLs 

OTL 1 

EpistatIc aTt..s 

some procedure for searching through this space 
of models to pick out the best ones without look­
ing at all of them. 

The simplest approach for searching through 
models is forward selection. First, look at all 
models with one marker and pick the best one. 
Next, search through all two-marker models, 
which include the first selected one. Continue 

genotype at QTL 1 is AB. In this case, we say that 
the QTLs exhibit epistasis. Such an interaction 
may arise when two genes are part of a common 
biochemical pathway, with gene 1 upstream of 
gene 2, so that in individuals homozygous for a 
null mutation at gene 1, mutations in gene 2 have 
no effect. This is the origin of the term epistasis15, 
which means literally "to stop:' Statistical geneti­
cists now apply the term more widely, to indicate 
any deviation from additivity between QTLs:2. 

70 1 
60-

I 5C'1 /'" AA 

adding additional markers, one at a time, to 
obtain a nested sequence of increasingly larger 
models. Alternatively, one may use backward 
deletion: consider the model induding all mark­
ers, drop the worst of them, and repeat to create 
a decreasing, nested sequence of models. 
Stepwise selection (alternating between addition 
and deletion of markers) and randomized 
searches may improve on these simple searches 
by looking at a larger portion of the space of 
models, but we have shown that, in the case of 
QTLs acting additively, the simplest approach, 
forward selection , behaves as well as the more 
complex search methodsl8• However, for more 

40 

AS 
QTL i 

Model Selection 

FIGURE 10. Phenotype averages, 
conditional on the joint genotypes 
at two additive QTLs (A) and two 
epistatic QTLs (8). 

Consider the case of dense markers and rela-
tively complete genotype data. In this situation, it is appropriate to 
use the immediate extension of analysis of variance, multiple 
regression16• For the moment, imagine that the QTLs are acting 
additively. Lety denote the phenotype for a mouse, and let Xi 1 or 
0, according to whether the mouse has genotype AB or A.A.. at mark­
er i. VVe assume 

y "" fL l:ifl.jXj + e 

where fL is the average phenotype for mice with genotype AA at all 
loci, fl.;, is the effect of marker i, and e follows a normal distribution 
with mean 0 and SD (Y. We are left with the question: which of the 
markers should be included in the model (as proxies for 
QTLs)? Vvbereas for interval mapping and analysis of variance we 
discussed hypothesis testing, here we are confronted with the prob­
lem of model selection17• the model is the set of inferred QTLs and, 
possibly, their interactions. 

Model selection entails four distinct steps: 1) select a class of 
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complex classes of models, such as the indusion 
of pairwise interactions, more-extensive searches may be necessary. 

The more difficult problem is that of comparing models. For 
models of the same size (i.e., including the same number of mark­
ers), one may look at the residual sum of squares (RSS, see Box). For 
models of different sizes, however, one must place a penalty on the 
size of the model: the inclusion of an additional marker is allowed 
only if it gives an appreciable increase in the explanatory ability of 
the model. 

Finally, it is important to consider how one may assess the per­
formance of a model selection procedure. In making decisions 
about the appropriate criteria for comparing models (and of 
searching through the space of models), it is important to consider 
the performance characteristics of different possible procedures: 
What proportion of QTLs will be detected and how often will 
extraneous loci be included? Decisions should be guided by the 
aims of the study. In a study seeking to use marker-assisted selec-
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RSS: Residual Sum of Squares 
Let YJ denote the phenotype of mouse j, and let Yj de00te the fitted phe­

notype value under some model. Then RSS = kj (YJ-Yi)', which measures 
the amount of variation in the phenotype that has not been "explained" by 
the model. A model that explains a greater proportion of the variation in the 
phenotype (i.e .• has a smaller RSS) is preferred. For models of different 
sizes, however, one finds that the inclusion of additional markers always 
reduces the RSS. Thus one must place a penalty on the size of the model: 
the inclusion of an additional marker is allowed only if it results in a 
decrease in the RSS above some specified amount. This approach is equiv­
alent to considering a conditional LOD score; we compare the probability of 
the data under a model including a set of markers, M, plus an additional 
marker, x, to the probability of the data given just the set, M: 

{ Pr(datalM + xl } LOD(xIM) = log10 Pr(dataIM) . 

In deciding whether to allow the inclusion of x as an inferred QTL, one 
may require that the condition,,1 LOD score be above some threshold, How 
to choose such thresholds is a m"tter of research; statistici"ns h"ve not yet 
"dequately solved this problem. 

tion to improve an agricultural product, one may be willing to 
allow a few extraneous loci in an effort to identify a reasonably large 
number of QTLs. A scientist wishing to positionally clone a QTL 
may be satisfied only with a small number of strongly supported 
QTLs-this avoids wasting expensive and time-consuming efforts 
on extraneous loci. These sorts of aims should guide the researcher 
in framing the desired performance characteristics for a procedure, 
which may then be used in choosing an appropriate mapping 
method. One will need to rely on experience, educated guesses, and 
large computer simulation studies, because, unfortunately, the 
appropriate mapping method will vary with the context. 

Multiple QTL Methods 
We now turn to a description of the major statistical approach­

es for QTL mapping that makes use of multiple QTL models. We 
have just described the simplest such method, multiple regression. 
The aim was principally to frame the problem as one of model 
selection and to describe the key issues in model selection (the most 
important of which was the choice of criteria for comparing mod­
els). \A/hile this simple approach should be more widely used, it 
shares many of the disadvantages of analysis of variance at marker 
loci; most important, it requires complete marker genotype data. 

The simplest multiple QTL method that makes allowance for 
missing genotype data is the use of forward selection in interval 
mapping. One identifies a putative QTL in a genome scan using 
interval mapping, and then obtains the residuals, y -y, where y is the 
observed phenotype and y is the predicted phenotype, given the 
individual's marker genotypes. These residuals are then used as new 
phenotypes, and interval mapping is performed again. This proce­
dure is appropriate when QTLs may be assumed to act additively. 
Its advantages are in increasing the power to detect additional QTLs 
and in separately linked QTI:s. Recall the LOD curve in Fig. SA, 
where the maximum LOD occurred at position 35 cM. If we per­
form interval mapping on this chromosome a second time using 
the residuals obtained assuming a QTL at 35 cM, we obtain the 

conditional LOD curve shown in Fig. 11. The maximum condi­
tional LOD slightly exceeds 3.0, with a 1.5-LOD support interval 
covering the latter half of the chromosome. There is evidence for 
the presence of a second QTL on this chromosome, although the 
location of this second QTL is not well resolved. 

An approach that has received much attention and has been 
widely applied in practice is composite interval mapping (CIM)19 
22. In this method, one performs interval mapping using a subset of 
marker loci as covariates. These markers serve as proxies for other 
QTLs to increase the resolution of interval mapping, by accounting 
for linked QTLs and reducing the residual variation. The key prob­
lem with CIM concerns the choice of suitable marker loci to serve 
as covariates; once these have been chosen, CIM turns the model 
selection problem into a single-dimensional scan. The choice of 
marker covariates has not been solved, however. Not surprisingly, 
the appropriate markers are those closest to the true QTLs, and so 
if one could find these, the QTL mapping problem would be com­
plete ,myway. The author recommends against the use of ClM. 

An interesting development is multiple interval mapping 
(MIM)23,24. MlM is the extension of interval mapping to multiple 
QTLs, just as multiple regression extends analysis of variance. MIM 
allows one to infer the location of QTLs to positions between mark­
ers, makes proper allowance for missing genotype data, and can 
allow interactions between QTLs. This is not the final solution to 
the QTL mapping problem; one is still confronted with comparing 
models and searching through models. Statistical researchers have 
much work to do in this area. 

We have described the major approaches to QTL mapping in 
experimental crosses. Several other approaches are available, 
including Bayesian methods25-28 and the use of a genetic algo­
rithm29• These new methods may become important in the future, 
but are beyond the scope of this elementary description of statisti­
cal methods for QTL mapping. 

Summary 
The simplest statistical method for QTL mapping is analysis of 

variance at marker loci. This approach suffers when there is appre­
ciable missing marker genotype data and when the markers are 
widely spaced. Interval mapping, though more complicated and 
more computationally 
intensive, allows for 
missing genotype data. 
LOD scores are used to 
measure the strength of 
evidence for the pres­
ence of a QTL; the LOD 
curve for a chromosome 
indicates whether a QTL 
may be present and 
where it is likely to be 
located. The region 
where the LOD score is 

20 

Chromosome Position (eM} 

FIGURE 11. Conditional LOD curve, 
obtained by performing interval map­
ping using the residuals after fitting a 
model with a QTL at 35 cM. The 1.5-
LOD support interval is indicated. 
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within 1.5 of its maximum may be taken as the plausible region for 
the location of the QTL (A plot of the LOD curve, reo-centered so 
that its maximum is at 0, is a valuable tool for depicting the evi­
dence for QTL location.) 

In determining whether a LOD score is sufficiently large for one 
to be confident of the presence of a QTL, consider the distribution 
of the LOD score under the null hypothesis of no segregating QTL 
Adjustment must be made for the genomewide search for QTLs, so 
consider the distribution of the maximum LOD score genomewide. 
Permutation tests are valuable for determining significance land­
marks for the LOD score; although computationally intensive, per­
mutation tests allow for the observed phenotype distribution, 
marker density, and pattern of missing genotype data. 

In determining how many animals to obtain and what density of 
markers to genotype, consider the power to detect a particular QTL 
and the precision with which QTLs may be localized. Typing addi­
tional markers in the region of an inferred QTL to improve its 
localization may not be successful unless there are many individu­
als or the QTL has a relatively strong effect. 

Selection bias is an important issue that has been largely ignored 
in considering the estimated effects of inferred QTLs. The estimat­
ed effects of QTLs are generally optimistically large. 

Interval mapping and analysis of variance make use of a single­
QTL model. Methods that consider multiple QTLs simultaneously 
have three advantages: greater power to detect QTLs, greater ability 
to separate linked QTLs, and the ability to estimate interactions 
between QTLs. These more complex methods may facilitate the 
identification of additional QTLs and assist in elucidating the com­
plex genetic architecture underlying many quantitative traits. 

Model selection is the principal problem in multiple QTL meth­
ods; the chief concern is the formation of appropriate criteria for 
comparing models. The simplest multiple QTL method, multiple 
regression, should be used more widely, although, like analysis of 
variance, it suffers in the presence of appreciable missing marker 
genotype data. A forward selection procedure using interval map­
ping (i.e" the calculation of conditional LOD curves) is appropriate 
in cases of QTLs that act additively, and makes proper allowance for 
missing genotype data. MIM is an improved method, that, 
although computationally intensive, can, in principle, map multiple 
QTLs and identify interactions between QTLs. The important 
aspects of the model selection problem require much further study, 
and will not have general solutions. 
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