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ABSTRACT The majority of gene loci that have been associated with type 2 diabetes play a role in pancreatic islet function. To evaluate
the role of islet gene expression in the etiology of diabetes, we sensitized a genetically diverse mouse population with a Western diet
high in fat (45% kcal) and sucrose (34%) and carried out genome-wide association mapping of diabetes-related phenotypes. We
quantified mRNA abundance in the islets and identified 18,820 expression QTL. We applied mediation analysis to identify candidate
causal driver genes at loci that affect the abundance of numerous transcripts. These include two genes previously associated with
monogenic diabetes (PDX1 and HNF4A), as well as three genes with nominal association with diabetes-related traits in humans
(FAM83E, IL6ST, and SAT2). We grouped transcripts into gene modules and mapped regulatory loci for modules enriched with
transcripts specific for a-cells, and another specific for d-cells. However, no single module enriched for b-cell-specific transcripts,
suggesting heterogeneity of gene expression patterns within the b-cell population. A module enriched in transcripts associated with
branched-chain amino acid metabolism was the most strongly correlated with physiological traits that reflect insulin resistance.
Although the mice in this study were not overtly diabetic, the analysis of pancreatic islet gene expression under dietary-induced stress
enabled us to identify correlated variation in groups of genes that are functionally linked to diabetes-associated physiological traits. Our
analysis suggests an expected degree of concordance between diabetes-associated loci in the mouse and those found in human
populations, and demonstrates how the mouse can provide evidence to support nominal associations found in human genome-wide
association mapping.
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TYPE2diabetes (T2D) is ahighlyheritabledisease (h2�0.5)
(Sanghera and Blackett 2012). More than 100 gene loci

associated with diabetes or diabetes-related phenotypes have
been identified through genome-wide association studies
(GWAS) (Morris et al. 2012; DIAbetes Genetics Replication
And Meta-analysis (DIAGRAM) Consortium et al. 2014; Ng
et al. 2014; Flannick and Florez 2016; Fuchsberger et al.
2016; Jason et al. 2017). However, the effect size of each

locus is small; their odds ratios are typically �1.05–1.10,
and most of the heritability of T2D in human populations
remains to be elucidated. In addition, much remains to be
discovered about the regulatory mechanisms responsible for
the wide range in susceptibility to diabetes.

TheriskofT2D isquite lowin theabsenceofobesity. Prior to
the start of the obesity epidemic,�60 years ago, the incidence
of T2D was , 1%. Today, the incidence is . 9%. Thus, the
gene loci responsible for the susceptibility to T2D act primar-
ily in the context of obesity. Obesity usually leads to insulin
resistance, resulting in an increased demand for insulin pro-
duction to maintain normal glucose levels. Although the eti-
ology of T2D involves interactions among multiple organ
systems, one concept that has emerged from GWAS is that,
for the most part, the causal genetic factors leading to T2D
exert their effect by limiting the capacity of pancreatic b-cells
to secrete sufficient insulin tomaintain normal glucose levels.
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A substantial proportion of the candidate genes that have
emerged from genetic studies in humans and model organ-
isms affect b-cell function or b-cell mass (Billings and Florez
2010; Mohlke and Boehnke 2015; Prasad and Groop 2015).
In the case of monogenic diabetes syndromes, essentially all
the causal genes are expressed in b-cells (Fajans et al. 2001;
Shih and Stoffel 2001; Taneera et al. 2014).

For purposes of genetic analysis, treating T2D as a binary
disease is clearly inadequate. Thus, human and model organ-
ism studies focus on quantitative diabetes-related traits, in-
cluding plasma glucose and insulin levels. However, normal
blood glucose levels could equally reflect a healthy, or com-
pensatory, state that is near the breakpoint. One way to
confront this complexity is to examine the compensatory
mechanisms in genetically diverse individuals that display a
wide range of compensatory responses to an environmental
stressor.

Wehypothesized that thebiochemical reactions andcellular
signaling pathways that constitute the range of stress-induced
responses across individuals would be observed as correlated
changes in thepatternsofgeneexpression inkeyorgansystems.
By summarizing expression patterns within groups of mRNAs
as meta-traits, we can achieve a large dimension reduction,
enabling a clearer understanding of the molecular functions
involved in the disease process. To translate findings from
mouse to human, an understanding of the processes involved
in thedisease isperhapsmore relevant thanthe identificationof
causal variants.

In the context of a genetic study, mRNA abundance can be
mapped in much the same way as a physiological trait. The
relationship between genotype and mRNA abundance in-
volves a unidirectional line of causality (Schadt et al. 2005;
Millstein et al. 2009; Neto et al. 2010, 2013). Anchoring
mRNA abundance and other phenotypes to genetic variation
provides a powerful means to reveal causal drivers: genes
that harbor genetic variants that influence disease-associated
phenotypes. Often, multiple mRNA abundance traits map to
the same locus and are influenced by common genetic drivers
(Albert and Kruglyak 2015; Yao et al. 2017). When these
comapping mRNAs encode proteins that are associated
with common physiological functions this can shed light
on potential biological functions of the driver gene(s).
These connections evoke testable hypotheses whereby var-
iation in the expression of a driver gene, rather than a ge-
netic variant, can be established as a more proximal cause
for a disease-related phenotype. The association between
driver genes and their downstream effects can unveil novel
pathways as well as the tissue sites of their action (Franzen
et al. 2016).

T2D is a disorder of relative insulin deficiency. Pancreatic
b-cells are challenged by an increased demand for insulin
resulting from insulin resistance. A deficiency of b-cell mass
or b-cell function usually does not result in diabetes; how-
ever, in the context of insulin resistance, it can lead to an
insulin shortfall and diabetes. Because pancreatic islets are
not accessible for detailed experimental study in humans, it is

not feasible to directly interrogate b-cell function in the con-
text of a properly-powered human GWAS. The repertoire of
available mouse strains, harboring the same degree of genet-
ic variability in human populations, displays a wide range in
b-cell function. This range can be interrogated in nondiabetic
mice where diet treatment is used to challenge the b-cells to
increase their insulin secretion.

We conducted a study to map diabetes-related traits in
Diversity Outbred (DO) mice. The DO is an outbred mouse
population derived from eight inbred strains, including three
wild-derived strains.TheDOcaptures abroad rangeofgenetic
variation comparable to that found in human populations
(Svenson et al. 2012) and presents a similarly broad range
of individual susceptibility to T2D. We metabolically chal-
lenged 500 DO mice with a high-fat/high-sucrose (HF/HS)
Western-style diet, measured diabetes-related physiological
phenotypes (e.g., plasma glucose and insulin), and isolated
their pancreatic islets for molecular characterization using
RNA sequencing (RNA-seq) to reveal variation in patterns
of gene expression in islets. Previously, this diet was used as
a metabolic challenge to evoke broad phenotypic responses
in 43 inbred mouse strains and to genetically map several
metabolic phenotypes, including obesity, gut microbial com-
position, glucose homeostasis, dyslipidemia, hepatic steato-
sis, atherosclerosis, and energy balance (Svenson et al. 2007;
Parks et al. 2013; Spiezio et al. 2014; Sinasac et al. 2016). A
recent study by Threadgill and colleagues compared the met-
abolic effects of the Western-style diet to a control diet, and
three additional diets (Mediterranean, Japanese, and Maa-
sai/ketogenic) in four mouse strains; A/J, C57BL/6J, FVB/
NJ, and NOD/ShiltJ (Barrington et al. 2018). The Western-
style diet, compared to a control diet, had detrimental health
effects, such as increased body fat, low-density lipoprotein
cholesterol, and liver triglyceride (TG) in all strains, but the
effect size varied across stains. In response to the other diets,
improvements in these metabolic effects was also strain-de-
pendent. These strain-dependent effects underscore the im-
portance of studying the metabolic impact of diet on diverse
genetic backgrounds, making the DO panel a particularly
relevant population for this study.

Previous studies that used human islets have identified cis-
regulatory maps of gene regulation and overlaid these maps
with marks of chromatin accessibility and association with
diabetes-related traits from human GWAS (van de Bunt
et al. 2015; Varshney et al. 2017). Herein, we present a com-
prehensive picture of the genetically driven variation of .
21,000 transcripts expressed in mouse islets. We show how
these transcripts are coregulated and associated with local
and distal expression QTL (eQTL). We demonstrate that the
genetic drivers behind this variability in the DO mice corre-
spond to genetic effects at human GWAS loci. Thus, in addi-
tion to the conservation of the physiological and biochemical
pathways involved in diabetes, genetically variable driver
genes appear to be conserved across mammals. Our data pro-
vide a resource that can be integrated with other molecu-
lar and genetic data, both human and model organism, to
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identify causal genes and explore themechanisms involved in
the initial stages of T2D pathogenesis.

Materials and Methods

Animal husbandry and measurement of
physiological phenotypes

DOmice were obtained from the Jackson Laboratories (stock
no. 009376) at 4 weeks of age and maintained within the
Department ofBiochemistry animal vivariumat theUniversity
of Wisconsin. Waves of 100 DO mice, half for each sex, were
obtained three times per year, until 500 DO mice were sur-
veyed. DO generations 18, 19, and 21 were included in the
cohort.Uponarrival, allDOmiceweremaintainedonaHF/HS
diet (44.6% kcal fat, 34% carbohydrate, and 17.3% protein)
from Envigo Teklad (catalog number TD.08811). We main-
tained all DO mice on the HF/HS diet to provide an environ-
mental stressor, sensitizing the mice to the development of
diabetes. Our study does not provide information about spe-
cific dietary effects, as a control diet was not included in the
study design. Tomeasure food intake, all DOmicewere singly
housed. Although there is no biological replication of genet-
ically identical animals in an outcross population, there is
replication of genotypes at specific loci. This local genetic
replication enables one to link phenotypewith genotype, as in
a human GWAS or QTL mapping studies in DO mice.

Body weight was measured biweekly, and 4-hr fasting
plasma samples were collected for insulin, glucose, and TG
measurements. At �18 weeks of age, an oral glucose toler-
ance test (oGTT) was performed on 4-hr fasted mice to eval-
uate dynamic changes in plasma insulin and glucose. Glucose
(2 g/kg) was administered via oral gavage. Blood was col-
lected from a retro-orbital bleed before glucose administra-
tion, and at 5, 15, 30, 60, and 120 min. Area under the curve
(AUC) was determined from these time points for glucose
and insulin. Glucose was measured by the glucose oxidase
method using a commercially available kit (TR15221; Thermo
Scientific). Insulin was measured by radioimmunoassay (SRI-
13K; Millipore, Bedford, MA). Pancreas weight was not
recorded, as it was inflated in situ with collagenase as the
first step to islet isolation.

HOMA-IR and HOMA-B, homeostatic model assessment
(HOMA) of insulin resistance (IR) and pancreatic islet func-
tion (B), were determined using fasting plasma values of
glucose and insulin at the time the oGTT was administered
(time = 0 values). HOMA-IR is equal to (glucose3 insulin) /
405 and HOMA-B = (360 3 insulin) / (glucose – 63). Units
for plasma glucose and insulin are milligram/deciliter and
milliunits/liter, respectively.

Islet RNA profiling

Whole-islet RNA was isolated and evaluated for quality. The
average RNA-integrity number for all DO islet samples was
9.24 6 0.04. RNA samples from 96 animals from each of the
first four waves of mice (384 in total) were submitted to the

Jackson Laboratory high-throughput sequencing core facility.
RNAs were sheared using the E220 Focused-ultrasonicator
(Covaris). The Jackson Laboratory core generated whole ge-
nome islet mRNA libraries using the KAPA Hyper Prep Kit for
Illumina Sequencing (KAPA Biosystems), targeting an insert
size of 300 bp using magnetic bead-based size selection.
Libraries from waves 1, 2, and 3 were constructed at the
Jackson Laboratory and randomized into pools of 24 samples
with TruSeq RNA indices (6 bp). Libraries from wave 4 were
constructed at the New York Genome Center and were
pooled in sets of 24 using 8-bp dual index TruSeq RNA in-
dices. Each pooled RNA sample was sequenced across four
randomly assigned lanes on a HiSeq2500 (Illumina) at 1 3
100 bp at the New York Genome Center. To control for po-
tential batch effects, we incorporated wave as a covariate in
all subsequent analyses.

Reads were aligned to eight strain-specific transcriptomes
of the DO founders (Munger et al. 2014). We used an ex-
pectation maximization algorithm (https://github.com/
churchill-lab/emase) to obtain estimated total read counts
for each gene as a sumacross alleles and isoforms (Raghupathy
et al. 2018). We normalized read counts in each sample using
upper-quantile normalization.

Mouse genotyping and haplotype reconstruction

Genotyping was performed on tail biopsies as described in
Svenson et al. (2012), using the Mouse Universal Genotyping
Array (GigaMUGA) [143,259 markers (Morgan et al. 2015)]
at Neogen (Lincoln, NE). Genotypes were converted to foun-
der strain–haplotype reconstructions using R/DOQTL soft-
ware (Gatti et al. 2014). We interpolated the GigaMUGA
markers onto an evenly spaced grid with 0.02-cM spacing
and added markers to fill in regions with sparse physical
representation, resulting in 69,005 pseudomarkers. We also
reconstructed individual chromosome (Chr) haplotypes from
the RNA-seq data using a hidden Markov model (GBRS,
https://github.com/churchill-lab/gbrs). We identified three
samples with inconsistent genotypes between the GigaMUGA
and RNA-seq-based haplotype reconstructions. Three addi-
tional samples were determined to have poor quality RNA-
seq data. These six samples were excluded, leaving a total of
378 samples for subsequent analyses.

Genome scans to identify QTL for physiological and
gene expression traits

Genetic mapping analysis was carried out with the qtl2 R
package (http://kbroman.org/qtl2) using the founder haplo-
type regression method with the Leave One Chr Out option
for kinship correction (Gatti et al. 2014) (http://kbroman.
org/qtl2). Phenotype data were log transformed. We per-
formed genome scans for each phenotype with sex and ex-
perimental cohort (wave) as covariates. We estimated
significance thresholds by permuting the phenotype values
1000 times while holding the genotypes fixed, mapping the
permuted trait, and retaining the maximum LOD score from
each permutation (Churchill and Doerge 1994). Complete
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details of our analyses are provided in R Markdown files that
can be used to reproduce our work in RStudio (Supplemental
Material, File S1, File S2, and File S3). A guide to the contents
and data type analyzed in each Markdown file [e.g., physio-
logical traits, eQTL hotspots, and “module eigengenes”
(MEs)] is provided in File S4.

Normalized RNA-seq data were transformed to normal
scores [van der Waerden’s method, (Conover 1999)] and
we carried out QTL mapping as described above. We called
an eQTL a “local eQTL” if the marker with the maximum LOD
score waswithin6 4Mb of the transcriptional start site (TSS)
and called the remaining eQTL “distal eQTL.” We identified
eQTL hotspots by counting the number of eQTL with LOD .
7.2 that occurred in a sliding 4-Mbwindowwith a 1-Mb over-
lap between windows. We retained all genes with LOD .
6 within 6 2 Mb (4-Mb width) of the center of each hotspot
and calculated the first principal component (PC1) of the
genes in each hotspot.

Mediation analysis to identify causal drivers

To identify candidate driver genes for distal eQTL, we applied
mediation analysis (MacKinnon et al. 2007). We denote the
genotype at the QTL locus as Q, the gene expression of
the distal eQTL transcript as Y, and the gene expression of
the candidate driver gene as M. We hypothesize a causal
pathway model Q / M / Y in which the genetic variation
on the distal eQTL transcript is fully or partially mediated by
variation in the expression of the driver gene. To evaluate this
model, we applied the causal steps method and verified each
of four conditions:

1. The distal transcript Y should have a significant LOD score
at the locus Q.

2. The candidate mediator M should have a significant LOD
score at Q. Typically, the LOD score of the mediator will be
greater than the distal eQTL. In addition, we require that
the transcript M should derive from a gene at the locus Q,
i.e., that the mediator has a local eQTL, and that the allele
effects pattern matches that of the distal eQTL.

3. Adding the mediator M to the regression of Y on Q should
cause a drop in the distal eQTL LOD score. To determine if
the drop in LOD score is significant, we tested every tran-
script genome-wide as a candidate mediator and com-
puted a Z-score. We identified candidate mediators with
a Z-score , 6.

4. Adding the distal transcript Y as a covariate in the regres-
sion of M on Q, we require that the conditional LOD score
remains significant at a nominal (not genome-wide ad-
justed) level of 0.01.

We evaluated genes with local eQTL at hotspot loci as
candidate mediators; these genes satisfy condition 2. We
evaluated the LOD drop for the PC1 of the hotspot genes
and for each individual gene with a distant eQTL at the
hotspot. The logic of mediation analysis allows us to rule
out candidate mediators, but not to prove them. There are
some potential pitfalls to genetic mediation analysis (Didelez

and Sheehan 2007). A transcript with a strong local eQTL
(typically with LOD. 100) can satisfy conditions 1 through 4
because it can act as surrogate for the local genotype. If the
distal eQTL is mediated by a mechanism other than a change
in gene expression of a local transcript, mediation on RNA
abundance will fail to detect this.

Weighted gene coexpression network analysis

Coexpression gene modules were computed using Weighted
Gene Coexpression Network Analysis (WGCNA) (Zhang
and Horvath 2005), which performs network construction
and module detection based on correlation between traits.
For the WGCNA analysis, we included all expression traits
(21,771 transcripts) that were measured in 378 DO islet
samples. We used a signed WGCNA network with minimum
module size of 30 and a soft thresholding power of 12. A first
PC (PC1) was calculated for each module, which we refer to
as the ME, and used for module–trait correlation and module
QTL analyses. The ME for each module was computed from
the islet RNA-seq measurements for all DO mice, with no
distinction made for sex. Thus, MEs are based purely on the
correlation structure for all transcripts within amodule for all
mice. To identify which modules showed a sex difference in
the expression pattern of the transcripts, we performed a
Student’s t-test using the ME value between males and fe-
males (Table S5). Module enrichment analysis was done us-
ing allez (Newton et al. 2007) to identify enriched categories
in the Gene Ontology (GO) or Kyoto Encyclopedia of Genes
and Genomes (KEGG). This analysis identifies differential
enrichment of a functional category among traits in a mod-
ule, compared to traits not in the module. Of the �22,000
transcripts used for module calculation, 13,412 (�62%)
were assigned to a module. The average number of tran-
scripts per module was 3276 51 transcripts and ranged from
42 (lightsteelblue1) to 1494 (turquoise).

Identification of human loci syntenic to mouse QTL and
integration with diabetes-associated GWAS

The R/Bioconductor package ChIPseeker (v1.13.1) (Yu et al.
2015) was used to first annotate the QTL locations to
the nearest annotated gene in the University of California,
Santa Cruz R/Bioconductor package TxDb.Mmusculus.
UCSC.mm10.knownGene (v3.4.0) (Lawrence et al. 2013)
using the function annotatePeak with options tssRegion =
c(21, 1), TxDb = TxDb.Mmusculus.UCSC.mm10.known-
Gene, annoDb = “org.Mm.eg.db,” overlap = “all,” and all
other options set to default. Then, the syntenic regions in
human (hg19) to each of the nearest QTL genes were
mapped using the R/Bioconductor package biomaRt
(v2.33.4) (Durinck et al. 2009). The locations of the syntenic
human genes were rounded to the nearest megabase pair.
The circle plots were made using the R package “circlize”
(v0.4.1) (Gu et al. 2014) and initialized using the provided
hg19 andmm10 cytobands. The circular layouts of themouse
and human genome (Figure 9) were made in R version 3.4.1
(https://www.r-project.org).
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We used GWAS Central (http://www.gwascentral.org/)
to download all SNPs that are associated with type 1 diabetes
(T1D) and T2D above a threshold of 2log10 P-value $ 4,
resulting in 666 and 509 unique SNPs, respectively (Beck
et al. 2014); these SNPs are contained within Table S8.
We then determined the number of T1D- or T2D-associated
SNPs occurringwithin a 1-Mbp genomic window, yielding the
histograms shown for each Chr in Figure 9. The number of
T1D-associated SNPs at the HLA locus on Chr 6 (�30–33
Mbp) was 344. For display purposes of the T1D GWAS histo-
gram shown in Figure 9, the maximum value for the 1-Mbp
bins was set to 20 at the HLA locus. All analyses used to
integrate the mouse QTL with human GWAS are reproduced
in an R Markdown document, accompanying data files, and
guide (File S5, File S6, and File S7, respectively).

We identified 67moduleQTL and 30 physiological QTL for
a total of 97; 49 of these QTL are syntenic to human loci that
are within 1 Mbp of the T1D- and T2D-related GWAS SNPs
that we obtained from GWAS Central. We performed a test of
significance by randomly selecting 97 human genes from a
restricted set of genes located on Chr 1–22 and X. The human
genes were restricted to those from biomaRt that have syn-
tenic regions in hg19 andweremappable tomm10. Addition-
ally, we only included genes whose expression mean was
greater than the fifth percentile of mean expression in our
mouse islet RNA-seq data. For these 97 randomly selected
genes, we then counted how many were within 1 Mbp of
the diabetes-related SNPs from GWAS Central. We repeated
this sampling 1000 times to derive an empirical P-value of
enrichment.

Data availability

Raw sequence reads have been deposited in the Sequence
Read Archive (SRP125176). Phenotypes, genotypes, and
quantified gene expression data have been deposited with
Dryad (doi:10.5061/dryad.pj105; data files: Attie Islet eQTL
data). Thedataare also accessible throughan interactiveweb-
basedanalysis tool thatwill allowusers to replicate theanalyses
reported here, including genetic mapping and mediation
analysis (http://churchill-lab.jax.org/qtl/islet/DO378). Soft-
ware for this interactive tool is maintained at https://github.
com/churchill-lab/qtlviewer and https://github.com/churchill-
lab/qtlapi. Supplemental material available at Figshare:
https://doi.org/10.25386/genetics.5977459.

Results

Wide range of diabetes-related phenotypes in DO mice
maintained on a Western-style diet

To better understand the impact of a Western-style diet on
physiological traits related to diabetes, we generated a cohort
of �500 DO mice that were metabolically challenged with a
HF/HS diet (45% kcal fat and 34% sucrose). We measured
body weight, fasting plasma glucose, insulin, and TGs at reg-
ular intervals (Figure 1, A–D). There was a large spread in
phenotype values, due in part to the genetic diversity of DO

mice. For example, body weight at 14 weeks of age ranged
from �15 to . 50 g (Figure 1A) and fasting plasma insulin
showed a �100-fold range (Figure 1C), consistent with sig-
nificant differences in peripheral insulin resistance among
the mice. Only two of the �500 DO mice evaluated became
diabetic (blood glucose . 300 mg/dliter) (Figure 1B), sug-
gesting that the HF/HS diet evoked a compensatory increase
in insulin production to offset diet-induced insulin resis-
tance. All mice were individually housed throughout the
course of our study, allowing us to measure daily food con-
sumption for individual mice. As with the other phenotypes,
there was a broad range in the amount of food consumed
(1.9–5.5 g/day) and was on average, higher in males than
females (Figure 1L), reflecting differences in body weight
between the sexes. At all ages, male DO mice demonstrated
higher values for body weight (P , 2.2e216), plasma glu-
cose (P , 2.2e216), insulin (P , 2.0e212), and TGs (P ,
6.5e210), compared to female DO mice.

To interrogate islet function, we performed an oGTT at
�18 weeks of age. Prior to the oGTT, all mice were fasted for
4 hr and a blood sample was collected, from which we com-
puted HOMA-IR and HOMA-B, homeostatic measures that
are related to peripheral insulin resistance and b-cell func-
tion, respectively (Matthews et al. 1985). HOMA-IR (Figure
1E) showed a. 100-fold range and was higher in males than
females (P = 1.0e211), whereas HOMA-B was not different
between the sexes (Figure 1F). The glucose (Figure 1G) and
insulin (Figure 1H) responses during the oGTT (AUCglucose

and AUCinsulin, respectively) were significantly higher in ma-
les than females (P = 2.0e211) and showed a large dynamic
range.

At�22weeks of age, all DOmice were sacrificed and their
islets isolated by hand-picking. The average number of islets
per DO mouse was 483, ranging from 42 to 1096 (Figure
1I). The average amount of insulin per islet was 85 ng/islet
and ranged from�9 to 290 ng/islet (Figure 1J). The whole-
pancreas insulin content (WPIC), a surrogate measure of
b-cell mass per pancreas, was 42.76 1.4 mg/pancreas (Fig-
ure 1K). The number of islets per pancreas (P = 0.03) and
WPIC (P = 0.01) were significantly elevated in male mice,
whereas the insulin content per islet was not significantly
different between the sexes (P�0.2). All mice were individ-
ually housed throughout the course of our study, allowing
us to measure daily food consumption for individual mice.
As with the other phenotypes, there was a broad range
in the amount of food consumed (1.9–5.5 g/day) and was,
on average, higher in males than females (Figure 1L). How-
ever, this difference is largely driven by the lower body
weight of female mice (Figure 1A). Food consumption as
a function of weight is nearly identical for male and female
DO mice (Figure S1). Some of the physiological traits
are highly intercorrelated (Figure S2). The correlation pat-
terns are largely concordant between the sexes except for
HOMA-B, which is more strongly correlated in males, and
AUCglucose, which has stronger correlations with other traits
in female mice.
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Diabetes-related phenotypes map to multiple QTL loci

We next asked if the physiological phenotypes map to QTL.
We identified a total of 34 physiological QTL (Figure 2) that
were significant, or suggestive. Among the physiological
traits, AUCinsulin and HOMA-B showed the strongest QTL,

and comapped to a locus on Chr 11 at �85 Mbp with LOD
scores of 11.3 and 10.3, respectively. HOMA-B has a second
QTL on Chr 18 at�47Mbp. Bodyweight at 6 and 10weeks of
agemapped to Chr 11 at�12Mbp and to Chr 17 at�35Mbp.
Plasma insulin at 14 weeks comapped with the body weight

Figure 1 Diabetes-related physiological phenotypes in Diversity Outbred (DO) mice. Body weight (A) and fasting plasma glucose (B), insulin (C), and
triglycerides (TG) (D) are shown for female and male high-fat and high-sucrose (HF/HS) diet-fed DO mice at 6, 10, and 14 weeks (wk) of age. HOMA-IR
(E) and HOMA-B (F) measures of insulin resistance and b-cell function, respectively, were computed from fasting plasma insulin and glucose measurements
at 18 wk of age. Area under the curve (AUC) for glucose (G) and insulin (H) were determined from an oral glucose tolerance test (oGTT) performed at 18 wk
of age. The number of islets per mouse (I), and the insulin content per islet (J) were determined at kill at 22 wk. Whole-pancreas insulin content (WPIC), a
surrogate measure of pancreatic b-cell mass, was computed from islet number and insulin content per islet (K). Average food consumption (gram/day) was
computed over the course of the 4 months the mice were maintained on the HF/HS diet (L). * P , 0.05 for male vs. female and ** P , 0.01. HOMA-IR,
homeostatic model assessment of insulin resistance; HOMA-B, homeostatic model assessment of pancreatic beta-cell function.
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QTL to Chr 17, consistent with a model whereby variation in
body weight results in changes in peripheral insulin resis-
tance, leading to increased plasma insulin to maintain eugly-
cemia. However, plasma insulin at 14 weeks also mapped to
Chr 1, Chr 5, and Chr 13, indicating that genetic factors
acting through mechanisms independent of body weight in-
fluence circulating insulin levels. Other physiological QTL
included WPIC, a surrogate for pancreatic b-cell mass, and
insulin per islet on Chr 4 at �60 Mbp. HOMA-IR, HOMA-B,
and plasma insulin at 10 weeks mapped to a locus on Chr 12.
In summary, these results demonstrate that the complex na-
ture of diabetes-related physiological phenotypes results
from genetic regulation at multiple loci.

Genetic architecture of the transcriptome reveals
hotspots in pancreatic islets

We sequenced whole-islet mRNA from 378 HF/HS-fed DOmice
(188 females and 190males) at an average depth of�36million
reads/sample and obtained quantitative estimates of abundance
for 21,771 islet transcripts. RNA abundancewas used to perform
whole-genome scans, resulting in the identification of 18,820
significant eQTL [LOD . 7.2, corresponding to a permutation-
based genome-wide P , 0.05; (Churchill and Doerge 1994)]
(Figure 3A).We classified eQTL as either local (peak LODwithin
4Mbpof gene locus; blue dots) or distal (black dots). At this LOD
threshold, 68% of the eQTL were local, suggesting that genetic
variation proximal to the gene locus plays a key role in regulating
transcript abundance amongDOmice. LOD scores for local eQTL
tended to be higher than for distal eQTL, consistent with what is
normally observed in eQTL studies, and thus the proportion of
local eQTL increases with higher LOD thresholds (West et al.
2007; Munger et al. 2014).

As we have previously shown (Tian et al. 2015), islet distal
eQTL can form clusters at genomic hotspots, where many
expression traits comap to the same locus (Breitling et al.
2008). We used a 4-Mbp sliding window, with 1 Mbp steps,
and defined windows with 100 or more distant eQTL that
comap to be a hotspot. In DO islets, we identified five distal
eQTL hotspots, on Chrs 2, 5, 7, 11, and 13 (Figure 3B and
Table S1). Figure 3C illustrates the genomic profile for the
number of comapping local eQTL, identifying several loci with
�100 comapping local eQTL (e.g., Chrs, 7, 17, and 19). These
local eQTL hotspots are all in regions of high gene density.

Mediation analysis predicts candidate drivers of
eQTL hotspots

One possible explanation for comapping of many expression
traits is the shared influence of polymorphic genetic factors
present at the hotspot locus that directly or indirectly influ-
ence the distal eQTL genes. The effect of genetic variation on
expression of thedistal eQTLgenesmust bemediated through
one ormore trans-acting factors encoded at the hotspot locus.
If the mediation occurs through transcriptional variation in
regulator genes, we can identify candidate regulators by ap-
plying mediation analysis (Chick et al. 2016). A key step in
mediation analysis looks for a substantial drop in the LOD
score at the hotspot after conditioning on the expression of a
candidate regulator gene. A candidate gene is the driver of
the hotspot. We evaluated the conditions for mediation using
PC1 at each of the five hotspots. In addition, we evaluated
each of the distal eQTL genes to identify individual genes that
share the same mediator as the PC1.

The PC1 for the Chr 2 hotspot at �164.0 Mbp (PC1Chr2)
had a single significant QTL with a LOD score of 92.4 (Figure

Figure 2 Genetic architecture of diabetes-related phenotypes. QTL for diabetes-related physiological traits, colored by LOD score (red = high and yellow
= low). Traits are ordered by unsupervised clustering such that traits with similar LOD profiles are grouped together. Table S6 lists all physiological QTL,
their LOD scores, and their genomic positions in mouse and human. AUC, area under the curve; HOMA-B, homeostatic model assessment of pancreatic
beta-cell function; HOMA-IR, homeostatic model assessment of insulin resistance; wk, week; WPIC, whole-pancreas insulin content; TG, triglyceride.
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4A). The WSB and NZO alleles were associated with low and
high expression of PC1Chr2, respectively (Figure 4B). When
conditioned on the expression of each of the genes on Chr 2,
the LOD profile for PC1Chr2 was largely unchanged for most
genes. However, when conditioned on Hnf4a, located on Chr
2 at �163.5 Mbp, the LOD profile for PC1Chr2 dropped sig-

nificantly (Figure 4C), indicating that Hnf4a is a candidate
mediator. The LOD profile (Figure 4D) and allele dependence
(Figure 4E) for the local eQTL for Hnf4a closely matches that
for PC1Chr2 (Figure 4, A and B), consistent with the results
from conditioning PC1Chr2 on Hnf4a. We evaluated each of
the distal eQTL genes, conditioning onHnf4a, and found that

Figure 3 Genetic architecture of gene
regulation in pancreatic islets. (A) Inferred
expression QTL (eQTL) with LOD $ 7.18
(P , 0.05) identified in islets from 378 Di-
versity Outbred mice maintained on a
high-fat and high-sucrose diet. Black, distal
eQTL (5669); blue, local eQTL (12,802).
Data points correspond to the peak posi-
tion of the eQTL. y-axis shows position of
gene, while x-axis shows the genomic po-
sition of the eQTL. Local eQTL follow a
diagonal pattern, whereas the distal eQTL
form vertical bands. Profile illustrating the
number of distal (B) or local (C) eQTL oc-
curring within a 4-Mbp genomic window.
Distal eQTL hotspots with . 100 comap-
ping eQTL were identified in chromo-
somes (Chr) 2, 5, 7, 11, and 13 (see ;).
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88 of the 147 genes in the hotspot had an LOD drop of $
1.5 (Table S1). Hnf4a is a transcription factor. Using
PSCAN (Zambelli et al. 2009), we asked if the promoters
of transcripts comapping to the Hnf4a gene locus are
enriched with a motif associated with Hnf4a binding.
Known motifs for 635 transcription factors were surveyed

within 2950 to +50 bp of the transcription start sites for
the 206 transcripts that map to the Chr 2 hotspot. Remark-
ably, the most significantly enriched (P = 3.6e29) motif
was for Hnf4a (Figure S3). Our results suggest that Hnf4a
is a driver that mediates the distal eQTL for the Chr 2 hot-
spot expression traits.

Figure 4 Mediation predicts Hnf4a as a driver at the chro-
mosome (Chr) 2 expression QTL (eQTL) hotspot. (A) Ge-
nome-wide LOD profile for first principal component (PC1)
of eQTL hotspot at �165 Mbp on Chr 2. (B) Allele de-
pendence of Chr 2 hotspot, showing that WSB and NZO
are the high and low alleles, respectively. (C) LOD score for
Chr 2 eQTL hotspot after conditioning, one at a time, on
the expression of 1892 genes that were located on Chr 2.
Conditioning on Hnf4a local eQTL resulted in the largest
drop in the LOD profile for the hotspot. (D) LOD profile for
Hnf4a local eQTL with a peak at 163.9 Mbp on Chr 2. (E)
Allele dependence for Hnf4a local eQTL demonstrates the
same genetic architecture as the eQTL hotspot; WSB and
NZO are the low and high allele, respectively.
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We performedmediation analysis for the PC1s at the other
four distal eQTLhotspots. At the Chr 13 hotspot, we identified
Il6st as a candidate driver for 82 of 104 genes that map to this
hotspot (Figure S4 and Table S1). When the PC1Chr13 was
conditioned on the expression of Il6st, the LOD profile for the
hotspot was essentially reduced to zero, suggesting that Il6st
explains all of the genetic variation in PC1Chr13. Mediation
analysis of the hotspots at Chrs 5, 7, and 11 identified Pdx-1
(mediates 77 of 182 genes; Figure S5), Fam83e (mediates
96 of 123 genes; Figure S6), and Sat2 (mediates 115 of
126 genes; Figure S7) as potential drivers of their respective
hotspot eQTL (Table S1). The Chr 5 hotspot is complex and
there may be additional driver genes at this locus.

We found concordance between QTL for physiological
traits and four of the five eQTL hotspots. Fasting plasma
insulin at 14 weeks of age mapped to the eQTL hotspot on
Chr 5 and showed the same allele effects pattern. AUCglucose

mapped to the Chr 11 eQTL hotspot and HOMA-IR mapped
to the eQTL hotspot on Chr 13. Despite the weaker genetic
signal and broad confidence intervals associated with many
of the physiological QTL, their allelic effects indicate that
these traits are responding to the same genetic drivers at
the eQTL hotspots. Importantly, mediation analysis can nom-
inate candidate genes with variants that influence diabetes-
related phenotypes through their broad effects on pancreatic
islet gene regulation.

Candidate drivers are associated with diabetes traits in
human GWAS

We next asked if genetic variation at the gene loci for the five
candidate hotspot drivers is associated with diabetes-related
phenotypes in human GWAS. We used LocusZoom (Pruim
et al. 2010) to generate regional association plots at each of
the candidate gene loci for diabetes-associated phenotypes
measured in the Meta-Analyses of Glucose and Insulin-
related traits Consortium (MAGIC) studies, e.g., fasting glu-
cose, insulin, or HbA1c (Dupuis et al. 2010; Soranzo et al.
2010; Manning et al. 2012; Scott et al. 2012a,b). While
many of the SNPs associated with these phenotypes are sub-
threshold for a genome-wide query, the relatively small
number of SNPs interrogated in our analysis (, 400) greatly
reduces the multiple-testing penalty for these single-gene
searches. We identified SNPs with significant association to
one or more diabetes-related phenotypes at three of the five
driver gene loci.

Genetic variation at HNF4A (Figure 5A) and PDX1 (Figure
5B), also known as MODY1 and MODY4, yielded SNPs asso-
ciated with body mass index (BMI)-adjusted 2-hr glucose
(P , 1025) and fasting glucose (P , 1028), respectively.
SAT2, which has been linked to polyamine (Hyvonen et al.
2013) as well as thialysine (Coleman et al. 2004) metabo-
lism, was associated with fasting insulin (P , 1025) (Figure
5C). IL6ST (the b-subunit of the IL6 cytokine receptor) and
FAM83E [a newly discovered gene that may be involved in
MAPK signaling (Cipriano et al. 2014)] each were associated
with HbA1c, albeit with marginal significance (P , 1023)

compared to the other loci (Figure 5, D and E, respectively).
In summary, these results demonstrate that by integrating
our conditional analyses at the eQTL hotspots to predict
causal gene drivers, we performed single-gene queries in hu-
man GWAS that support a role for these genes in islet func-
tion and, potentially, diabetes risk.

Coexpression modules highlight biological processes
related to diabetes

We employed cluster analysis to identify groups of genes with
highly correlated expression patterns in the islet transcrip-
tome (Zhang and Horvath 2005; Langfelder and Horvath
2008). Grouping of transcripts intomodules provides a useful
summary of the complex correlation structure that is typical
of whole-transcriptome data. When grouping the transcripts
into coexpression modules, we did not utilize information
about functional annotations or whether the transcripts were
subject to genetic regulation. Among the 21,771 transcripts
from our whole-islet RNA-seq, 62% were assigned to a coex-
pression gene module. We identified a total of 41 modules
with varying numbers of transcripts, ranging from 42 to
1494 (Table S2). The average number of transcripts permod-
ule was 327. Modules are depicted as the downward
branches in the cluster dendrogram (Figure 6A), the length
of which is proportional to the average gene–gene correlation
within each module.

Highly correlated transcripts are often associated with
common physiological or biochemical processes (Carlson
et al. 2006; Gargalovic et al. 2006; Ghazalpour et al. 2006;
Horvath et al. 2006; Keller et al. 2008). We performed gene
set enrichment analysis (Newton et al. 2007) on each mod-
ule to determine if any genes in the modules are associated
with shared functional annotations. We will refer to mod-
ules by both a color key identifier and by the most common
GO and/or KEGG functional annotations (Figure S8).
Among the 41 modules identified, all but three were signif-
icantly enriched with one or more GO terms (Figure 6B)
and/or KEGG pathways (Figure 6C). Table S3 lists the top
enrichment terms for all modules; however, we note that
not all genes in modules are associated with the functional
annotations.

Todetermine thepotential physiological significanceof the
islet modules, we asked if the modules were correlated with
thediabetes-relatedphenotypesmeasured in theDOmice. For
each module, we first computed a ME, in a similar fashion to
PC1, todescribe thepatternof transcript abundanceamongall
the DO mice. The average percent variance explained by the
MEs was 38 and ranged from �70 (mediumpurple3) to �24
(blue) (Table S4). The percent variance explained by the ME
for transcripts that were not assigned to amodule (transcripts
in gray) was�2, demonstrating the highly coordinate nature
of transcripts within the genemodules. Transcript abundance
within 16 modules showed a highly significant difference
between the sexes (Figure S9 and Table S5).

Due to the strong influence of sex on many of the physi-
ological phenotypes (Figure 1) and module transcripts, we
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Figure 5 Candidate driver gene loci are associated with diabetes traits in human genome-wide association studies (GWAS). Association (2log10 P-
value, left margin) to diabetes-related phenotypes for SNPs near candidate gene drivers of eQTL hotspots. (A) 2-hr glucose adjusted for body mass index (BMI)
at HNF4A gene locus. (B) Fasting plasma glucose at PDX1 gene locus. (C) Fasting plasma insulin at SAT2 gene locus. Hemoglobin A1c (HbA1C) at the IL6ST (D)
and FAM83E (E) gene loci. Plots were generated using LocusZoom (Pruim et al. 2010) from publicly available GWAS data. For each plot, the index SNP (purple
diamond) is identified by Rs number, along with SNPs that are correlated to the index SNP (color scale shows correlation, r2), defining a haplotype block. The
total number of SNPs plotted are 359, 324, 289, 315, and 217 for (A–E), respectively. Recombination frequencies (centimorgan/megabase) are plotted as blue
traces and are shown along right margins for each locus. Legend for r2 values is shown in (B) and corresponds to all panels. Chr, chromosome.
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computed the Spearman’s nonparametric correlation be-
tween modules and traits, after adjusting for sex and DO
breeding generation as covariates. This allowed us to deter-
mine which modules correlate with specific physiological
phenotypes without sex as a confounding variable. Some of

the physiological traits display significant correlations among
themselves (Figure S2) and, as a result, several modules were
significantly correlated with more than one physiological
trait (Figure 7). We adjusted the P-value for the Spearman
correlations using the Benjamini and Yekutieli method

Figure 6 Coexpression gene modules in islets from Diversity Outbred (DO) mice. Cluster dendrogram illustrates modules (denoted by color and shown
as downward branches) of highly correlated transcripts in islets from 378 DO mice that were maintained on a high-fat and high-sucrose diet (A).
Transcripts falling within gray-colored areas were not sufficiently correlated to be included in a module; �62% of 21,771 transcripts were assigned to a
module. Gene ontology (GO) (B) and Kyoto encyclopedia of genes and genomes (KEGG) pathway (C) enrichments for all modules. Modules are ranked
by Z-score, highlighting those with the most significant enrichment. Top GO/KEGG terms are listed for each module. Table S2 provides a list of transcript
membership for each module. Table S3 contains all significantly enriched (Z-score . 3) GO/KEGG terms for the modules. BCAA, branched-chain amino
acid; ECM, extracellular matrix.
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(Reiner et al. 2003) and found that an adjusted P-value of
0.05 corresponded to a correlation of �0.15. Here, we high-
light features of the most relevant modules and for each, ask:
(1) are the modules correlated with physiological pheno-
types, (2) are they enriched for annotations suggesting that
(some of) the genes may be functionally related to diabetes,
and (3) do the modules demonstrate genetic regulation?

Modules associated with ribosome biogenesis (darkred),
branched-chain amino acid (BCAA) catabolism (brown), cell
cycle (violet), and hexosaminidase activity (yellow) were

most strongly correlated with body weight, plasma insulin,
AUCinsulin, HOMA-B, and HOMA-IR (Figure 7). The d-cell
module (yellowgreen) module, also correlated with these
traits, is discussed below. The correlations are strongest be-
tween these modules and the later time points of physiolog-
ical traits that were measured at multiple times (e.g., insulin
at 14 weeks). The brown, violet, and yellowmodules all share
a significant QTL on Chr 11 at �70 Mb that is concordant
with the Chr 11 hotspot and with a QTL for HOMA-IR (Figure
8). The brownmodule is enriched for BCAA catabolism genes

Figure 7 Correlation between islet gene modules and physiological phenotypes. Heat map illustrates the Spearman’s nonparametric correlation
between islet MEs and diabetes-related physiological phenotypes, after adjustment for sex and batch. Module names are shown along the bottom
axis, and top-enriched GO terms along the top axis. Modules are ordered by unsupervised hierarchical clustering, resulting in them grouping by
correlation patterns to the physiological traits. Red, positive correlation; blue negative correlation. AUC, area under the curve; GO, gene ontology;
HOMA-B, homeostatic model assessment of pancreatic beta-cell function; HOMA-IR, homeostatic model assessment of insulin resistance; MEs, module
eigengenes; wk, week; WPIC, whole-pancreas insulin content; NA, not applicable.
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including Bckhda, Bckhdb, and Bckdk. The latter is one of
several genes in the module that are mediated by Sat2. The
violet module is enriched for the GO term “chromosome seg-
regation” and the KEGG pathway term “cell cycle.” It contains
145 transcripts, including many that are known to play a role
in the regulation of the cell cycle: the cyclins A2, B2, and B1,
Asf1b, Pbk, Aurkb, Cdk1, Bub1, Bub1b, Mcm3, Mcm5, Plk1,
Top2a, and Ube2c, among others. Transcripts in the violet
module largely overlap with an islet cell cycle-relatedmodule
that we previously identified when comparing diabetes-re-
sistant (B6) and diabetes-susceptible (BTBR) mouse strains
(Keller et al. 2008). The violet module has a second QTL on
Chr 17 at �70 Mb, which is concordant with the cell cycle
module discovered in the B6 3 BTBR cross. The darkred
module has a distinct QTL on Chr 17 at �34 Mb, which is
concordant with QTL for weight at 6 and 10 weeks of age.

Several modules show enrichment for genes with physio-
logical functions that are relevant to the pathology of T2D but
did not comap to hotspots or correlate with physiological
traits. The darkmagenta module is enriched for the GO term
“ER chaperone complex” and the KEGG pathway “protein
processing in ER.” It includes transcripts for Pdia4, Calr,
Pdia3, Hspa5, P4hb, Hsp90b1, Sec23b, Sec61a1, Dnajb11,

and Pdia6, all of which are critical for ER homeostasis. The
cyan module contained 261 transcripts and was enriched for
the GO “extracellular matrix” and KEGG “ECM-receptor in-
teraction” terms. The skyblue3 module is enriched for GO
term “NIK/NF-k B signaling” and the KEGG pathway term
“apoptosis.” It contains, Nfkb1, Nfkb2, Tnf, Traf2, Bid, Casp3,
Fas, Il1a, Nfkb1, Nfkbia, and Trp53. The lightgreen module is
enriched for “glucocorticoid receptor binding” and “Pancre-
atic cancer”; Nr4a1, Nr4a3, Nr4a2, Stat3, Bcl2l1, Jak1,
Pik3r1, Rac1, and Tgfb3.

Three modules (plum1, lightsteelblue, and mediumpur-
ple3) with the strongest module-QTL (mod-QTL) did not
enrich for functional annotations. The plum1 module con-
sists of 91 transcripts, all but one of which correspond to
genes located on proximal Chr 14, and mapped to Chr
14 at �7.5 Mbp, LOD . 90 (Figure 8). Transcripts within
plum1 derive from a large region of the Chr (3–7.5Mb) that is
rich in repeated gene families, harbors segmental variations
across the DO founder strains, and is a recombination cold-
spot (Morgan et al. 2017). Eighty-two of the 91 transcripts in
the plum1 module are gene models (e.g., GM10409, GM3020,
and GM26552, etc.) or predicted genes that do not have asso-
ciated physiological annotations. The correlated expression of

Figure 8 Genetic architecture of islet gene modules. Mod-QTL are illustrated for all modules, colored by LOD score (red = high and yellow = low). Top-
enriched GO term for each module is shown; three modules did not significantly enrich for any terms (plum1, lightsteelblue1, and mediumpurple3).
Modules are ordered by unsupervised clustering such that traits with similar LOD profiles are grouped together (e.g., Chr 11). Table S7 lists all mod-QTL,
their LOD scores, and genomic positions in mouse and human. BCAA, branched-chain amino acid; Chr, chromosome; GO, gene ontology; mod-QTL,
module-QTL; NA, not applicable.
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these transcripts reflects an unusually elevated level of linkage
disequilibrium across the region. The lightsteelblue1 module
consists of 42 transcripts, 40 of which are clustered in another
recombination cold spot with segmental variations located
on Chr 2 at 177 Mbp; lightsteelblue1 mapped to Chr 2 at
�175 Mbp, LOD = 89. The genes in the lightsteelblue mod-
ule are mostly gene models with little functional annota-
tion. The MEs for either plum1 or lightsteelblue1 were not
significantly correlated with any of the physiological traits
(Figure 7). The mediumpurple3 module also maps to spa-
tially clustered genes, most of which are located on distal
Chr 6; mod-QTL at�150Mbp, LOD�9. Themediumpurple3
gene clusters are not in recombination coldspots and encode
functional RNAs, including the nuclear 5S ribosomal RNA
and several small nuclear RNAs.

There were nine modules with functional enrichment but
no significant or suggestive mod-QTL. These include the
largest module, turquoise, with 1494 transcripts, many in-
volved in mRNA processing and ribosome function, as well
as 12 of the 14 mitochondrial-encoded transcripts. The
darkgrey module consists of 175 transcripts enriched for
“a-amylase activity,” and “pancreatic secretion,” and in-
cludes Amy1, Amy2a5, Amy2a4, Amy2a3, and Amy2a2.
These transcripts are typically expressed in acinar tissue
and most likely reflect residual contamination in isolated
islet preparations, and thus we would not expect to find it
to be controlled by genetic factors.

Modules enriched in a-cell- and d-cell-
specific transcripts

Two modules were enriched with transcripts selectively
expressed in a-cells or d-cells. These could reflect either
increased activity or increased cell numbers relative to
the predominant b-cell component of islets. The greenyel-
low module consists of 387 transcripts, including Gcg, Irx1,
Irx2, Arx,Mafb, Ttr, Gria3, and Sstr2. These transcripts have
been previously associated with selective expression in
a-cells (Dorrell et al. 2011; Ackermann et al. 2016;
DiGruccio et al. 2016; Xin et al. 2016; Lawlor et al. 2017).
The yellowgreenmodule contains 109 transcripts, including
many that have been linked to selective expression in
d-cells; Sst, Hhex, Rbp4, and Ghsr (Dorrell et al. 2011;
Ackermann et al. 2016; DiGruccio et al. 2016; Xin et al.
2016; Lawlor et al. 2017).

In addition to the cell type-specific nature of the yellow-
green (d-cells) and greenyellow (a-cells) modules, both are
significantly enriched with one or more GO terms and KEGG
pathways (Figure 6, B and C, respectively). The yellowgreen
module is enriched for “voltage-gated Ca2+ channel activity”
and includes transcripts for several Ca2+ channels; Cacna1e,
Cacna1g, Cacna2d3, Cacna2d2, Cacna1h, Cacna1i, and Trpa1.
Greenyellow is enriched for “synapse assembly” (Cbln2, Ephb2,
Lrrn3,Nrxn2,Nrxn3,Oxtr, Ptprd,Wnt5a, Flrt3, Lrrtm1, Slitrk1,
Shank2, Nrg1, Lrrtm3, Lrp4, Adgrb2, and Lrrc4b), which may
be related to the control of glucagon secretion by the central
nervous system.

Next, we asked if a module is similarly enriched for known
b-cell genes. In contrast to the a-cell- and d-cell-enriched
modules, keyb-cell geneswere identified in separatemodules,
including Ins1 and Ins2 (yellow), Nkx6.1 (black), Pdx-1 and
Glp1r (grey60), Slc30a8 and Slc2a2 (pink), Mafa (lightcyan),
Ucn3 (red), andG6pc2 and Iapp (brown). These results suggest
that unlike known b-cell-associated transcripts, those in
a-cells and d-cells are highly coordinate in their expression
pattern among the islets of the DOmice. The b-cell transcripts
do not show this same coordinate regulation, suggesting that
they may reflect a greater degree of heterogeneity within the
b-cell population, as has been previously reported for islets
collected from different regions of the pancreas inmice follow-
ing dietary challenge (Ellenbroek et al. 2013), as well for islets
collected from nondiabetic vs. T2D human subjects (Dorrell
et al. 2016; Xin et al. 2016; Lawlor et al. 2017).

Transcriptswithin amodule are highly correlated, suggest-
ing that this coordinate regulation ismaintainedacross theDO
islets thatwere profiled. Further, thea-cell and d-cellmodules
showed significant QTL, implying that, at least in part, some
of this coordinate regulation is driven by factors present at
these loci; e.g., Ptprz1 for the d-cell mod-QTL on Chr 6. In
contrast to the a-cell and d-cell modules, b-cell-specific tran-
scripts were scattered among several different modules, sug-
gesting that the b-cell-specific transcripts are not as tightly
coordinated. We speculate that the discordant regulation of
these genes among the DO mice reflects different compensa-
tory responses. There was a . 100-fold range of plasma in-
sulin values among the DO mice, presumably reflecting
differences in insulin production in response to diet-induced
insulin resistance. It is possible that these differences reflect
greater changes in the b-cell transcriptome, rather than in
a-cells or d-cells. Further, it may be possible that islets col-
lected from a single mouse harbor greater variability in b-cell
transcripts than non-b-cell transcripts.

The a-cell- (greenyellow) and d-cell-enriched (yellow-
green) modules each showed a decline in transcript abun-
dance in male vs. female mice (Figure S9). These results
suggest that the cellular composition of the DO islets—or
the proportion of a, d, and b-cells—may be different between
the sexes, with islets from males having fewer non-b-cell
types than females. A similar sex difference in the proportion
of a-cells and d-cells was reported for islets evaluated from
female vs. male a backcross progeny of C57BL/6J 3 Mus
spretus-F1 3 C57BL/6J; PMID: 16353357 (BSB) mice
(Fisler et al., 1993 Slavin et al. 2010). A complete list of
modules demonstrating differences between the sexes is pro-
vided in Table S5.

We identified distinctmod-QTL for themodules associated
with a-cells (greenyellow) and d-cells (yellowgreen) (Figure
8). The d-cell module mapped to four distinct loci; Chr 4 at
�3.2Mbp, Chr 6 at�4.8, and Chr 18 at�5.4 Mbp and�44.2
Mbp. The a-cell module showed suggestive mod-QTL on Chr
11 at�16.8 Mbp and Chr 15 at 60Mbp. Unlike the a-cell and
d-cell modules, we did not identify any mod-QTL for the
acinar-enriched module (darkgrey). These results suggest
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that islet cell composition may be under distinct genetic reg-
ulation, whereas the acinar component of the isolated islets is
driven by nongenetic influences; e.g., the efficiency of the
collagenase digestion of the pancreas prior to islet isolation.

An interactive web interface enables browsing of
mouse islet eQTL

We have constructed a web interface that allows the user
to quickly determine if a transcript shows genetic regulation
in the DO islets (http://churchill-lab.jax.org:21010/). For
example, entering the gene symbol Tcf7l2, a locus that is
strongly associated with diabetes in human GWAS, into the
search window, results in a genome-wide LOD profile that
identifies two significant (P , 0.05) eQTL; Chr 13 at
�112.5 Mbp and Chr 19 at �55.4 Mbp (Figure S10). The
gene for Tcf7l2 is located on Chr 19 at �55.7 Mbp. The
allele dependence for the local eQTL (Figure S11A) is
driven by alleles from CAST (low) and B6 (high), whereas
the distal eQTL (Figure S11B) is associated with NZO
(high), suggesting that the genetic dependence of each of
the eQTL for Tcf7l2 is distinct.

Mediation shows that the local eQTL for Tcf7l2 is, as
expected, driven by Tcf7l2 expression (Figure S12A), whereas
the distal eQTL appears to be mediated by the expression of
Il6st (Figure S12B), the driver predicted from our mediation
analysis for the Chr 13 eQTL hotspot (Figure S4). The tran-
script for Tcf7l2 is included in the royalbluemodule, whichwas
enriched for the GO “positive regulation of cytokine produc-
tion” (Figure 6A) and KEGG “Toll-like receptor signaling path-
way” terms (Figure 6B), was positively correlated with plasma
insulin at 10 weeks of age (Figure 7) and mapped most
strongly to Chr 13 at �111.6 Mbp (Figure 8). These tools
demonstrate how the user can begin with a gene of interest,
determine if it shows distal vs. local genetic regulation, and
integrate the findings with the physiological pathways associ-
atedwith the genemodules, as well as the genetic architecture
of the modules and individual transcripts that we have identi-
fied. SNPs at each eQTL that are associatedwith the expression
of Tcf7l2 can be downloaded and surveyed for potential con-
sequences, e.g., missense, frameshift, intronic, splice junction,
etc. [Figure S13A (Chr 19) and Figure S13B (Chr 13)]. In
addition to eQTL for individual transcripts, the website allows
the user to survey LOD summaries, allele effect and SNP asso-
ciation plots for physiological phenotypes (e.g., HOMA-B,
number of islets per mouse), eQTL hotspots, and MEs. This
interactive resource enables a user to discover regulatory loci
linked to the expression of any gene expressed in pancreatic
islets, and to explore potential candidate drivers and down-
stream physiological pathways.

Discussion

We present, for the first time, the genetic architecture of gene
regulation in pancreatic islets from mice subjected to a West-
ern-styleHF/HSdiet (45%kcal fat and34%sucrose).Weused
DO mice, which contain a high level of genotypic and phe-

notypic diversity; a level comparable to that present in the
human population. The study in humans most closely re-
sembling our mouse experiment was reported by Groop
and colleagues (Taneera et al. 2012). They obtained pancre-
atic islets from 63 human cadaveric donors, including six who
had T2D, and interrogated 48 candidate genes located near
SNPs associated with T2D in human GWAS. The expression
of KCNJ11,WFS1, SLCA2A, JAZF1, and G6PC2was decreased
in islets from the T2D donors. They identified five cis-eQTL;
however, none showed significant expression differences in
islets from T2D vs. normal subjects.

We quantitated the abundance of . 21,000 mRNA tran-
scripts and identified nearly 19,000 eQTL (genome-wide P,
0.05) (Figure 3). More than 70% of these are local eQTL. In a
previous islet genetic study (Tian et al. 2015, 2016), we ob-
served a preponderance of distal eQTL, and believe that the
difference is related to a higher LOD threshold in our current
study; local eQTL usually have higher LOD scores than distal
eQTL. We identified five distal eQTL hotspots and applied
mediation analysis to identify candidate causal drivers. Two
of these drivers are genes known to be involved inmonogenic
forms of diabetes: HNF4A (MODY1) and PDX1 (MODY4)
(Figure 5). Genetic variation in the MODY genes has also
been shown to play a role in T2D (Ndiaye et al. 2017).

We chose Pdx1 as a candidate driver at the Chr 5 eQTL
hotspot for several reasons: (1) The LOD drop upon media-
tion against Pdx1 ranked second among the other local eQTL
at the locus (Figure S5C); (2) the allele effect pattern for the
Pdx1 local eQTL (Figure S5E) was the closest match to that
for the Chr5 hotspot PC1 (Figure S5B) with NOD and B6/129
as the high and low alleles, respectively; and (3) the other
candidate mediators have very strong local eQTL LOD scores.
This is one of the pitfalls of mediation; a strong local eQTL
can act as a surrogate for genotype, making it difficult to rule
out the eQTL gene as a candidate mediator. The logic of
mediation analysis is designed to rule out candidate media-
tors, so when there are several candidates we consider other
evidence, including the allele effects and functional plausi-
bility of the candidate.

In addition to the MODY genes, we identified three novel
drivers of eQTL hotspots, Il6st (Chr 13), Sat2 (Chr 11), and
Fam83e (Chr 7), and demonstrated associations with diabe-
tes-related traits in human GWAS when we restrict the asso-
ciation testing to the region defined by synteny with the
mouse eQTL (Figure 5). Il6st, also known as glycoprotein
130 (gp130), is the b-subunit of the IL-6 cytokine receptor.
A recent report showed that Il6st is required for IL-6-mediated
activation of STAT3 and stimulation of glucagon secretion
(Chow et al. 2014). Further, a-cell-specific deletion of Il6st
resulted in protection from streptozotocin-induced diabetes
(Chow et al. 2014), suggesting that, in the context of inflam-
mation that accompanies T2D, Il6stmay promote hyperglyce-
mia by stimulating glucagon secretion from a-cells. Il6st
is in the royalblue module, along with transcripts that are sig-
nificantly enriched for the GO term “positive regulation of
cytokine production.” The FAM83 family consists of eight
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members, several of which are increased in expression or copy
number in various cancers, and are downstream of the phos-
phatidylinositol three-kinase and epidermal growth factor re-
ceptor pathways (Snijders et al. 2017).

Both HOMA-IR, a measure of insulin resistance, and
HOMA-B, a measure of insulin production, map to a common
locus on Chr 11 at�85 Mbp (Figure 2). Several modules also
mapped to this locus, including those enriched in cell cycle,
BCAA catabolism, and NIK-NF-k B signaling (Figure 8). Medi-
ation analysis consistently identified Sat2 as the driver gene for
this locus (Figure S7). Sat2 encodes Spermidine/Spermine
N1-acetyltransferase 2 and is included in the BCAA module.
Indeed, Sat2 has been shown to function with p65 as a coac-
tivator of NF-kB (Vogel et al. 2006). Despite its 61% homology
with Sat1, Sat2 does not appear to have significant activity
toward polyamines. Instead, it catalyzes the transfer of an
acetyl group to thialysine residues, forming Ne-thialysine
(Coleman et al. 2004).

We measured glucose tolerance in all mice, as well as
insulin during the oGTT. Essentially all of the mice were
nondiabetic throughout the course of our study, and yet
showed a. 100-fold range in plasma insulin, suggesting that
the dietary challenge elicited a large variation in the physio-
logical responses required to maintain plasma glucose. Insu-
lin, AUCinsulin, HOMA-IR, and body weight were all positively
correlated with a module enriched in BCAA catabolism (Fig-
ure 7). These same phenotypes were negatively correlated
with ribosome biogenesis. Thus, protein metabolism, synthe-
sis, and turnover were the strongest correlates. These results
are consistent with a growing body of evidence linking BCAAs
with metabolic disease (Newgard 2012). In contrast, plasma
glucose and TGs were not strongly correlated with any of the
modules, suggesting that these traits are effectively buffered
by compensatory variation in insulin levels.

Mod-QTL have been identified for hepatic gene expression
networks that were shown to be highly correlated and to
comap with body weight in mice (Ghazalpour et al. 2006;
Fuller et al. 2007). Other groups have used the WGCNA ap-
proach to identify mod-QTL in liver that are associated with
high-density lipoprotein cholesterol (Leduc et al. 2012), or
adiposity and hepatic steatosis (Davis et al. 2012), and in
heart for cardiac left ventricular mass (Scott-Boyer et al.
2014). Our study is the first to apply the WGCNA mod-QTL
approach to pancreatic islets.

Two of the coexpression gene modules that we identified
appear toreflect theactivity,orrelativeproportion,ofa-cellsand
d-cells in the islets. In contrast, no single module was enriched
for transcripts selectively expressed in b-cells. This could be an
indication that there is more heterogeneity in the b-cell pop-
ulation of islets than there is for a- and d-cells, whichmay have
been triggered by the metabolic challenge imposed by the HF/
HS diet, requiring increased insulin production in some, but not
all, mice. The heterogeneity could be due to subtypes of b-cells
(Dorrell et al. 2016) or to plasticity of the cells, i.e., their ability
to transdifferentiate to other cell types (Jonas et al. 1999;
Papizan et al. 2011; Talchai et al. 2012; Wang et al. 2014).

We identified mod-QTL for the d-cell-enriched module
(yellowgreen) (Figure 8) on Chrs 4, 6, and 18. None of the
genes most strongly associated with selective expression in
d-cells and included in the yellowgreen module (Hhex, Sst,
Rbp4, and Ghsr) are physically located at these QTL. How-
ever, mediation analysis for these genes consistently identi-
fied Ptprz1 as a candidate driver for the Chr 6 locus and
Armc4 as a candidate driver for the Chr 18 locus, suggesting
that these genes control the expression of the d-cell identity
module. Ptprz1 is included in the yellowgreen module and is
expressed . 10 times higher in d-cells than a-cells or b-cells
(DiGruccio et al. 2016), consistent with it playing a key role
d-cells. Ptprz1 is a receptor for the heparin-binding glycopro-
tein pleiotrophin (PTN) and has been associated with several
cancers, including glioblastoma (Shi et al. 2017) and pancre-
atic cancer (Xue et al. 2018). In addition to d-cell-specific
transcripts, six genes that encode Ca2+ channels were in-
cluded in the yellowgreen module, including R-type Ca2+

channels (e.g., Cacna1e), which have been previously linked
to glucose-stimulated somatostatin secretion (Zhang et al.
2007).

We identified mod-QTL for the a-cell-specific module
(greenyellow) and, as for the d-cell module, the mod-QTL loci
were distinct from the genes that encode the a-cell-specific
transcripts. Mediation analysis of the a-cell-specific tran-
scripts did not reveal consistent candidates as driver genes.
This a-cell module was enriched for synapse formation,
usually associated with the central nervous system, and
may reflect the strong neural connection with a-cell func-
tion or development.

Wecompared thechromosomal locationsof theQTL for the
diabetes-related phenotypes (Figure 9A) and islet module
pathways (Figure 9B) with their corresponding locations in
the human genome and observed a significant enrichment (P
= 0.003) for diabetes-associated GWAS peaks at threshold
of 2log10 P $ 4. This observation supports the hypothesis
that the genetic drivers of diabetes risk are concordant across
mice and humans. In other words, not only are the same
pathways involved, but our findings suggest that genetic var-
iation in the same gene loci is the underlying cause for the
difference in diabetes incidence and susceptibility.

Our project allows one to nominate novel loci in the human
genome based on associations with diabetes-related pheno-
types, or physiological pathways in pancreatic islets identified
in mouse. For example, the mod-QTL we identified for the
d-cell module on Chr 6 at �4.8 Mbp is syntenic to Chr 7 at
�94.7 Mbp in human (Figure 9B). Our mediation analysis
strongly suggests that Ptprz1 is a driver of this mod-QTL.
Using the gene search tool at GWAS Central (http://www.
gwascentral.org/generegion), one can then determine if any
SNPs have been identified that are proximal to PTPRZ1 and
associated to diabetes-related traits. The results show that
SNPs associated with HbA1c levels have been reported at this
locus (Strachan et al. 2007). Similarly, the cell cycle module
(violet) has a mod-QTL on Chr 11 at �69.8 Mbp. In human,
this region is syntenic to Chr 17 at �7.3 Mbp, which is
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Figure 9 Architectural view of diabetes-related physiological phenotypes and islet-based pathways in mouse and human. QTL for diabetes-related
phenotypes (A) and physiological pathways (B) are illustrated for the mouse genome, which are connected to their syntenic regions in human. The gene
nearest to the peak for the QTL in mouse was used to identify the corresponding locus in human. The thickness of the arc originating from the mouse
QTL is proportional to the 95% C.I. for the QTL. Arcs interconnect mouse QTL to syntenic regions in human; numbers listed next to humans Chrs are
megabase pair position. The color of the arcs in (B) correspond to the module color; top-enriched physiological pathways for modules are illustrated in
the legend for (B). Chr numbers are shown; the Y-Chr is excluded. The number of SNPs from human GWAS (http://www.gwascentral.org/) with nominal
or higher associations (2log10 P $ 4) to T2D (green) or T1D (purple) that occur within a 1-Mbp interval are shown for each human Chr, resulting in the
identification of diabetes GWAS loci. The genomic location is shown for the five candidate gene drivers predicted from our mediation analysis of the
eQTL hotspots; IL6ST, PDX1, SAT2, FAM83E, and HNF4A. BCAA, branched-chain amino acid; Chr, chromosome; eQTL, enhanced QTL; GWAS, genome-
wide association study; T1D, type 1 diabetes; T2D, type 2 diabetes.
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proximal to the gene TMEM102, where SNPs have been iden-
tified that are associatedwith T2D (Sladek et al. 2007). Finally,
one can ask if QTL identified for a diabetes-related phenotype
in our mouse study highlight a novel locus in human. For
example, among the diabetes-related physiological traits in
our study, HOMA-B and AUCinsulin demonstrated the strongest
genetic signal, whereby both mapped to a locus on Chr 11 at
�84 Mbp (Figure 9A) with LODs. 8. In human, this region is
syntenic to Chr 17 at �60.1 Mbp. Interestingly, SNPs have
been identified at this locus that are associated glucose levels
2 hr after an oral glucose challenge (Saxena et al. 2010).

We applied a systems genetics approach, which used gene
expression traits to interrogate the functionofpancreatic islets
under adiabetogenic stressor, and identifiedgroups of comap-
ping transcripts as well as coexpression modules. When we
performed mediation analysis on the comapping transcripts,
we identified strong candidate genes as likely drivers. Mod-
ules provide an alternative viewof the coordinated expression
patterns in the islet cells; functional enrichment analysis
attaches biological interpretation to these modules and is
often correlated with physiological measures of diabetes-
associated traits. Geneticmapping of theMEs revealsmultiple
QTL peaks with modest LOD scores reflecting heterogeneity
in the genetic drivers of the module. Mediation analysis of
moduleQTLwas less successful at identifyingcandidatedriver
genes; however, mediation of individual genes within the
module can be effective. Our web-based analysis tools can
support this kind of data exploration.
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