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ABSTRACT We consider genomic imputation for low-coverage genotyping-by-sequencing data with high levels of missing data. We
compensate for this loss of information by utilizing family relationships in multiparental experimental crosses. This nearly quadruples
the number of usable markers when applied to a large rice Multiparent Advanced Generation InterCross (MAGIC) study.

HILE genotyping-by-sequencing (GBS) technology

has made dense genotyping cost effective for a wide
variety of species, the often high levels of missing data can
result in a large loss of information (Elshire et al. 2011).
Imputation is possible for human populations with reference
panels of high-coverage genotypes (International Hapmap
Consortium 2003), but such panels are rarely available for
plant species, making it difficult if not impossible to apply
standard software.

The popularity of GBS makes the development of efficient
imputation approaches a priority even for species lacking the
resources of human populations. In the contexts of genomic
selection and map construction, Rutkoski et al. (2013) and
Ward et al. (2013) have considered imputation approaches
for species without reference genomes. Here we consider
imputation under the further difficulty caused by multipar-
ental experimental crosses.

Multiparental experimental cross designs are becoming
increasingly common in plant studies, as they offer greater
diversity than traditional biparental designs do with less
complexity than genome-wide association panels (Cavanagh
et al. 2008; McMullen et al. 2009; Kover et al. 2009). The
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limited set of founders offers a ready-made “reference
panel” for imputation of genotypes, with approaches
designed either for unrelated populations (Browning and
Browning 2009; Howie et al. 2009; Li et al. 2010) or for
inbred lines (Mott et al. 2000; Huang and George 2011).

For many imputation approaches, however, high-quality
founder genotypes are essential. Markers with missing
founder genotypes must be discarded, which can result in
a large loss of data if both founders and progeny are
genotyped using low-coverage GBS. Here we present an
approach to imputing founder genotypes in these popula-
tions, which allows recovery of a large proportion of
markers. Once founder genotypes have been imputed, we
assess the efficacy of a population-oriented approach (BEAGLE;
Browning and Browning 2009) against a family-oriented
approach (R/mpMap; Huang and George 2011) in imputing
progeny genotypes. Further, we compare both approaches to
the general purpose alternative of weighted k nearest-neighbor
imputation (Schwender 2012). We apply our strategy to an
eight-parent rice Multiparent Advanced Generation InterCross
(MAGIC) population and demonstrate the potential gain from
imputation.

Materials and Methods

Our approach has been implemented in R (R Core Team
2013) and is available as the function “mpimpute” in R/
mpMap (http://github.com/behuang/mpMap). The proce-
dure for imputation of genotypes is outlined in Figure 1.
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Figure 1 Diagram of process for
imputing missing genotypes.
We first construct a hidden Markov
model (HMM) based on the prog-
eny genotypes to estimate founder
haplotype probabilities across the
genome. Then at each position,
for each missing founder, we audit
genotypes among progeny inherit-
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ing that founder haplotype. The most common genotype inherited in those progeny is imputed in the founders. The imputed founders are then used as
a reference panel to impute missing progeny data by summing HMM probabilities for possible alleles.

We first fit a hidden Markov model (HMM), which allows
missing founder genotypes to calculate founder allele prob-
abilities in the progeny (Broman et al. 2003). Next, for each
missing founder value, we audit the observed progeny gen-
otypes among lines inheriting an allele with high probability
from the missing founder and impute the most likely value.
Finally, we reestimate the founder allele probabilities using
the imputed founder genotypes. For each missing progeny
value, we combine the founder probabilities across observed
genotypes and impute the most likely value. In the latter two
steps, we can set thresholds on the most likely genotype prob-
ability; so that values will not be imputed if insufficiently prob-
able. Alternately, progeny genotypes can be output as the
expected allelic value, which may be preferable in downstream
analyses such as association mapping (Zaykin et al. 2002).

We tested this approach first through simulation. We
generated 1000 data sets using R/mpMap for each of 16
different scenarios, varying marker density, sample size, and
percentage of missing data (script in supporting informa-
tion, File S1, and example data in File S2). Each data set
consisted of 200 or 400 lines from an eight-parent MAGIC
population with one funnel selfed for six generations. A
single chromosome of length 100 cM was simulated with
markers evenly spaced every 0.5 or 1 cM. Individuals were
simulated with percentage missing data in the progeny,
%MISS, and this value squared in the founders. This corre-
sponds to two replicates of each founder being genotyped,
with missing data occurring randomly in each sample. In
general, we expect that in GBS data the missing markers
may be different for each progeny and founder sample,
and hence we generate the missing data randomly across
the genome for each line.

We applied the imputation approach to a real data set
derived from an eight-parent MAGIC rice population. Full
details of the population design and genotyping can be
found in Bandillo et al. (2013). In brief, 8 parent and 178 S4
lines (selfed for four generations; pedigree in File S3) were
genotyped using genotyping-by-sequencing (Elshire et al.
2011) with position aligned to Os-Nipponbare-Reference-
IRGSP-1.0 (IRGSP-1.0). The average depth of coverage
was 4.8 reads per site, with ~300,000 markers called per
sample initially. Heterozygotes were treated as missing data.
This was done due to less certainty in the accuracy of het-
erozygote calls; as S4 lines are close to fixed, heterozygotes
may represent incorrect calls.
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As a preprocessing step, we removed markers across the
genome with (a) >60% missing data in the progeny, (b) no
alleles observed in the parents, and (c) complete data in the
parents but only a single allele observed. These filtering
criteria allow the removal of regions of the genome for
which there may be low confidence in the alignment of
reads or that do not vary in the population. In the remaining
37,240 markers (File S4), the average spacing was 0.04 cM
(9955 bp), and the largest gap was 2 cM (502,775 bp).
However, in markers with complete founder genotypes prior
to imputation, the average spacing was 0.16 cM (39,398
bp), and the largest gap was 7.5 ¢cM (1,875,124 bp).

Results and Discussion

Simulations demonstrated generally good performance of
the method, with accuracy increasing with marker density
and sample size. Table 1 summarizes our results for a variety
of scenarios. Founder genotypes were nearly always fully
imputed accurately (columns %F, %FC). The five nearest
neighbor markers based on simple matching coefficient dis-
tance were also used for imputation (%FK, %K) but had
much poorer performance.

Once founder genotypes were imputed, we used them as
a reference panel for imputation of progeny genotypes. As
there were few errors in founder imputation, errors here are
simply due to uncertainty in which the allele was inherited.
Increases in marker density had a greater impact on perfor-
mance than did increases in sample size, since neighboring
markers will then more accurately represent those with
missing data. BEAGLE and R/mpMap typically both have
~5% errors in imputation, although the family approach
tends to have slightly fewer errors.

In the rice data, we first considered a test example of
markers from chromosome 1. From the set of 1130 markers
with complete founder genotypes on the chromosome, we
simulated 22% missingness and compared the imputed
founder genotypes to the true values. We were able to
impute the set of 128 markers with complete founder data
up to 1092 with 96% of missing values correctly imputed.
The lower accuracy (relative to simulation) should be kept
in mind during future analyses, ideally by utilizing methods
that account for potential genotyping errors. Following this,
we imputed markers in both the founders and the progeny
for the full data set, with results summarized in Table 2.
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Table 1 Simulation results averaged across 1000 replicates of
eight-parent MAGIC populations

M N  %MISS %FO %F %FC %FK %K %B %M

101 200 30 46.9 100 100 86.6 79.8 93.7 96.3
101 200 40 245 100 100 854 788 930 955
101 200 50 9.8 100 99.6 839 775 920 9438
101 200 60 35 999 983 816 757 887 932
101 400 30 47.3 100 100 88.4 803 943 963
101 400 40 249 100 100 87.4 794 938 955
101 400 50 10.1 100 100 86.2 782 926 948
101 400 60 3.6 100 99.7 843 76.7 90.7 935
201 200 30 47.1 100 100 90.7 835 96.7 983
201 200 40 248 100 100 89.5 823 96.3 98.0
201 200 50 10.0 100 100 87.8 80.8 954 976
201 200 60 29 100 99.7 852 788 912 96.8
201 400 30 47.1 100 100 92.1 841 970 983
201 400 40 249 100 100 91.3 83.1 965 98.0
201 400 50 10.0 100 100 90.1 81.8 96.0 97.6
201 400 60 2.8 100 100 88.2 80.0 943 96.8

For each scenario we record the percent of markers with complete founder
genotypes originally (%F0), the percentage complete after imputation (%F), the
percentage of missing founder genotypes correctly imputed (%FC), the percentage
correctly imputed based on the five nearest neighbor markers (%FK), the percent-
age of missing progeny genotypes correctly imputed based on the five nearest
neighbor markers (%K), the percentage correctly imputed with BEAGLE (%B),
and the percentage correctly imputed with R/mpMap (%M).

The approach presented here improves the yield of low-
coverage GBS in complex crosses by allowing high-accuracy
imputation in both parents and progeny. From simulation
we note that the method performs well as long as there is
a high density of markers, which is one of the main features
of GBS. Increasing filtering thresholds for markers and
genotyping several replicates of founders are simple ways
to improve the overall data quality.

Our results in real data are slightly poorer than those
observed in simulation with similar sample sizes and levels
of missingness. Our performance criterion is based on the
proportion of genotypes correctly imputed, and we typically
manage to recover complete founder genotypes for > 90%
of the markers (Table 2, column %F). This may slightly
overestimate the performance in imbalanced populations
given that the probability of correct imputation depends
on allele frequencies. In eight-parent MAGIC populations
most markers have minor allele frequencies >10%; how-
ever, in different designs with more parents it may be pref-
erable to consider a measure of the genetic variation
explained (e.g., correlation between imputed and true
results).

A number of factors may explain the differences between
real data and simulation. These include lower diversity of
haplotypes in the blocks used for imputation, larger gaps
between markers, and missingness that is not completely
random. The diversity of haplotypes is directly affected by
different genetic relationships among the founders. In the
rice data, all eight founders are of the indica subtype, with
percentage similarity ranging from 61 to 79%. Increased
similarity between parents may decrease the accuracy
of imputation, as the increased difficulty in discriminating

Table 2 Results of imputation in rice 8-way MAGIC

Chr M %F0  %F  %MISS GO G DO D

1 4993 226 93.1 391 58 14 015 0.037
2 4054 28.1 933 38.5 32 09 0.13 0.038
3 2592 307 972 36.9 52 1.2 018 0.058
4 4547 235 916 394 73 18 0.13 0.034
5 2257 279 942 36.5 6.0 19 019 0.056
6 2294 27.2  95.1 37.6 75 1.3 020 0.057
7 2756 27.8 96.6 38.4 42 17 0.15 0.045
8 2466  21.0 940 38.1 72 1.8 022 0.049
9 2029 263 903 36.1 52 20 0.17 0.049

10 2359 237 913 37.2 29 1.0 017 0.043
11 3356 23.0 923 38.8 27 0.8 015 0.037
12 3537 238 859 37.0 42 1.7 013 0.036
All 37240 252 927

Physical map positions were converted to centimorgans using a conversion factor
of 1 cM/250 kb. For each chromosome, we report the number of markers
postprocessing (M) to be imputed; the proportion of markers with complete
founder genotypes initially (%F0); the proportion of markers with complete founder
genotypes postimputation (%F); the percentage of missing data among the prog-
eny (%MISS); the maximum gap between markers with complete founder geno-
types in centimorgans before and after imputation (G0/G); and the mean distance
between markers with complete founder genotypes before and after imputation in
centimorgans (D0/D).

between individual founders will be reflected in lower con-
fidence in the probabilities of inheriting specific alleles.

Gaps between markers and nonrandom missingness may
be due to variation in genome alignment of the reads.
Indeed, our approach relies on the assumption of correct
read alignment; hence it may be desirable to filter regions of
the genome where this is a concern. Rice specifically does
have substantial genome structure variation; however, past
work (Arai-Kichise et al. 2011; Xu et al. 2012) has shown
that genomes of different varieties are at least 90% similar
to the reference genome. Hence most SNPs from a GBS as-
say derive from common regions of the reference and the
varieties being assayed. In our data gaps between markers
typically reflected the sub-centimorgan scale used in simu-
lation; however, a few larger gaps may have affected
performance.

Currently, our approach assumes that lines are nearly
fully inbred, and heterozygous allele calls are treated as
missing data. Hence imputation is not recommended for
populations with high levels of residual heterozygosity, as
genotypes will not be imputed correctly. However, it is
possible to accommodate heteroyzygous genotypes by
employing an alternate HMM, which would allow the use
of this approach in populations such as heterogeneous stock.
Options such as R/DOQTL (http://cgd.jax.org/apps/doqtl/
DOQTL.shtml) and reconstruction (http://mus.well.ox.ac.
uk/19genomes/magic.html) allow for heterozygosity in
the progeny and could be integrated with our approach
for imputation in less inbred populations.

Once founder genotypes have been imputed, the final
step is to impute the progeny genotypes. R/mpMap is
designed specifically for MAGIC populations, and as such
it is unsurprising that it has slightly better performance than
BEAGLE. However, it will not be applicable to other complex
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experimental crosses. For this, alternatives such as BEAGLE or
HAPPY (Mott et al. 2000) will still provide imputation with low
error rates and work well even for large data sets. While
founder imputation is not strictly necessary to estimate haplo-
type probabilities for imputation, we have found that it does
reduce the uncertainty in estimates and improves the final
results.
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Files S1-S4

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.158014/-/DC1

File S1 Script to generate example simulated datasets and impute missing data.

File S2 Example simulated dataset with eight parents (A to H) and 200 progeny, genotyped at 201 markers equally spaced
every 0.5 cM. First sheet shows full data, prior to generating 60% missing data in parents and 36% missing data in progeny.
Second sheet shows data with missing values which was used as input to imputation algorithm.

File S3 Pedigree for 178 progeny lines from MAGIC Indica population after selfing for four generations. Progeny which are
genotyped are indicated in fourth column (value 1) and have row names labelled to match genotypes in data.

File S4 MAGIC Indica dataset prior to imputation. Contains genotypes for eight parents and 178 progeny lines at 37240
markers which passed data cleaning criteria. Progeny lines are labelled with the prefix MAGICINDICA. Markers are labelled as
Sx_y where x denotes the chromosome and y the physical position. Genotype codes are 1=A; 2=C; 3=G; 4=T; NA=missing.
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