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ABSTRACT Genetic mapping studies in the mouse and other model organisms are used to search for genes
underlying complex phenotypes. Traditional genetic mapping studies that employ single-generation crosses
have poor mapping resolution and limit discovery to loci that are polymorphic between the two parental strains.
Multiparent outbreeding populations address these shortcomings by increasing the density of recombination
events and introducing allelic variants from multiple founder strains. However, multiparent crosses present new
analytical challenges and require specialized software to take full advantage of these benefits. Each animal in an
outbreeding population is genetically unique and must be genotyped using a high-density marker set;
regression models for mapping must accommodate multiple founder alleles, and complex breeding designs
give rise to polygenic covariance among related animals that must be accounted for in mapping analysis. The
Diversity Outbred (DO) mice combine the genetic diversity of eight founder strains in a multigenerational
breeding design that has been maintained for .16 generations. The large population size and randomized
mating ensure the long-term genetic stability of this population. We present a complete analytical pipeline for
genetic mapping in DO mice, including algorithms for probabilistic reconstruction of founder haplotypes from
genotyping array intensity data, and mapping methods that accommodate multiple founder haplotypes and
account for relatedness among animals. Power analysis suggests that studies with as few as 200 DO mice can
detect loci with large effects, but loci that account for ,5% of trait variance may require a sample size of up to
1000 animals. The methods described here are implemented in the freely available R package DOQTL.
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QUANTITATIVE trait locus (QTL) mapping is an approach widely
used for detecting and localizing genetic variants responsible for phe-
notypic variation. Traditionally, QTL intervals are defined by the
statistical association of phenotypes with genetic markers in backcross

or intercross progeny derived by crossing two inbred strains (Lander
and Botstein 1989). This experimental design relies on a single gener-
ation of meiotic recombination to break up and randomize the paren-
tal genomes; as a result QTL intervals are often too large to identify
causal variants (Flint et al. 2005). Furthermore, the potential for dis-
covery of genetic associations is limited to loci that are polymorphic
between the two parental inbred strains. Experimental mapping pop-
ulations with increased mapping precision and greater genetic diversity
are desirable to improve the performance of QTL mapping studies.

Heterogeneous stocks (HS) derived from multiple inbred founder
strains and maintained as outbreeding populations for many gener-
ations can increase mapping precision and introduce additional genetic
diversity (Li and Lumeng 1984; Hitzemann et al. 1994; Iancu et al.
2010). The Diversity Outbred (DO) mice are a heterogeneous stock de-
rived from eight inbred founder strains and maintained by randomized
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breeding among 175 mating pairs (Svenson et al. 2012). The founder
strains A/J, C57BL6/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ,
PWK/PhJ, and WSB/EiJ (denoted below as A–H, respectively) are the
same strains that were used to establish the Collaborative Cross (CC)
recombinant inbred lines (Churchill et al. 2004; Collaborative Cross
Consortium 2012). The DO population captures at least 37.8 million
single nucleotide polymorphisms (SNPs) plus 6.9 million insertions, dele-
tions, and structural variants that are uniformly distributed across the
genome (Keane et al. 2011). Each DOmouse is heterozygous by ancestry
over an average of 7/8th of its genome, and genetic variants have an
expected minimum minor allele frequency (MAF) of 1/8. A related
heterogeneous stock (CC-HS) was derived from the same founder strains
using a circular breeding design (Iancu et al. 2010). The CC, DO, and
CC-HS populations segregate the same genetic variants in different pop-
ulation structures; they provide a complementary set of resources for
high-resolution QTL mapping and validation.

QTL mapping analysis in HS populations presents a number of
analytical challenges. The genome of each animal is a unique mosaic
of founder haplotypes. Accumulation of meiotic recombination events
over many generations of breeding results in small haplotype blocks
that provide high mapping resolution but also require high-density
genotyping (.50K SNPs) to reconstruct the haplotypes. We demon-
strate the necessity of high-density genotyping to obtain accurate
haplotype reconstructions and show that accuracy is improved by
directly utilizing probe intensity data from genotyping arrays rather
than genotype calls. We produce probabilistic estimates of founder
haplotypes and these provide a basis for genetic mapping and ge-
nome-wide SNP imputation. QTL mapping regression models can
be formulated in a variety of ways using founder haplotypes or SNP
allele calls and we implement three different regression models and
discuss their relative merits. Unlike simple cross designs, HS mice are
not all related to the same degree and covariance among related indi-
viduals necessitates the use of a mixed-model linear regression with
a kinship term (Kang et al. 2008; Cheng et al. 2010; Cheng and Palmer
2013). Methods for determining genome-wide significance levels and
support intervals for QTL location also require special attention in
the context of HS populations. We evaluate the performance of
a simple permutation test for HS populations and demonstrate that
it has the correct size despite the presence of population structure.
Simulations provide estimates of power and sample size required
for successful QTL mapping. We illustrate novel features of the
DOQTL software using an example of mapping hematological traits
in DO mice.

We have implemented specialized QTL mapping software (DOQTL)
for use with DO mice and other HS mapping populations. DOQTL
implements a complete analytical pipeline for haplotype reconstruction
and QTL mapping in the DO. It includes alternative modes of analysis
for some steps in the pipeline. The modular design of the software will
enable development and evaluation of new methods and extension to
other HS populations with relatively few modifications.

MATERIALS AND METHODS

Mice and genotyping
We isolated DNA using the Promega (Madison, WI) Maxwell 16 and
Tissue DNA purification kit according to the manufacturer’s instruc-
tions. GeneSeek (Lincoln, NE) carried out genotyping assays on a total
of 4542 DO mice. Genotype calls—A, B, H, or N—were generated
using Illumina’s BeadStudio algorithm. Here A represents homozy-
gosity for the reference allele, B is homozygous for the alternative
allele, H is a heterozygous genotype, and N is “no call.”

We genotyped 3029 of the 4542 DO mice from outbreeding gen-
erations G4 through G9 using the Mouse Universal Genotyping Array
(MUGA) (Welsh et al. 2012). The MUGA assays 7854 SNPs spanning
the 19 autosomes and X chromosome of the mouse with a mean spacing
of 325 kb. We removed 190 probe pairs from the MUGA data that did
not perform well. Of these DNA samples, 34 were run in duplicate in
different batches of MUGA genotyping.

We genotyped 1513 of the 4542 DO mice from outbreeding gen-
erations G8 through G11 using the higher-density MegaMUGA plat-
form (GeneSeek, 2013). The MegaMUGA assays 77,818 SNPs across
the mouse genome with a mean spacing of 33 kb. We used a set of
57,977 SNP assays that distinguish among the genotypes of the eight
founder strains of the DO and their heterozygous F1 offspring.

We obtained MUGA and MegaMUGA data for the eight founder
strains and most of their F1 hybrid progeny. We adjusted the founder
and DO sample intensities for batch differences by quantile normal-
ization across samples at each marker and calculated the intensity
quantiles at each marker for the DO samples and the founders/F1’s
separately. We then normalized the intensities of the founder and F1
samples to match the quantiles of the DO samples.

To obtain reliable and robust reference points for interpreting the
intensity data, we assayed multiple DNA samples from animals of
each sex, each founder strain, and most of the F1 hybrids, on both
MUGA and MegaMUGA platforms. At each marker, we applied
a polar coordinate transformation to the X and Y intensity values on
combined data from founder, F1 and DO DNA samples (Figure 1, A
and B). We estimated the mean and variance of the angle u and radius
r for each cluster using mclust software (Fraley 2012). Mclust fits
a bivariate Gaussian mixture model at each marker and maximizes
the Bayesian information criterion to determine the number of clus-
ters. Probe intensities are expected to fall into three distinct clusters
corresponding to SNP genotypes A, H, and B. However, 16% of
MUGA probes and 6% of MegaMUGA probes consistently yielded
more than three distinct clusters due to variant(s) that are present
near or within the constant portion of a probe’s target sequence. In-
tensity data from these nonconforming probes can provide more in-
formation than genotype calls leading to improved accuracy in
haplotype reconstructions (Fu 2012).

Haplotype reconstruction
Each chromosome pair of a DO animal is composed of a unique mosaic
of founder haplotypes. We refer to the pair of founder haplotypes
at a given locus as the founder diplotype. There are 36 possible
diplotypes—8 homozygous and 28 heterozygous diplotypes. We de-
veloped a hidden Markov model (HMM) to reconstruct the diplotypes
from the genotype array data by generating a probabilistic estimate
of the diplotype state (s) at each marker locus (j) in each DO animal
(i). We denote these diplotype probabilities as pij(s).

The HMM is composed of a transition model and an emission
model. The transition model is a Markov chain with 36 states that
defines the probability of transitioning from one diplotype state to
another between adjacent marker loci by meiotic recombination. We
calculated transition probabilities between markers based on genetic
map positions of markers (Cox et al. 2009) and the outbreeding
generation (Broman 2012). The emission model defines the condi-
tional probability distribution of observed data given the underlying
diplotype state. We implemented two different emission models, a dis-
crete model for genotype call data, and a continuous model for in-
tensity data. Emission model parameters are estimated using an
expectation-maximization (EM) algorithm. We describe each of the
emission models here.
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Genotype model: The emission model for genotype calls is a multi-
nomial distribution over the four outcomes A, H, B, and N. The
expected diallelic genotypes corresponding to the diplotype states at
a given marker were obtained from the genomic sequences of the
founder strains (Keane et al. 2011). We initially set the expected
genotype to occur with high probability (0.97) and distributed the
remaining probability evenly over the other outcomes (0.01 each) to
allow for genotype calling errors and no calls. We treat no call N as
a separate, informative outcome because it contains information about
the underlying diplotype state. A no call can occur at different rates

for different true diplotype states and therefore contains information
about the diplotype state. For example, when the diplotype is FF
(CAST homozygous), the genotype call may be N 90% of the time,
whereas for a BB diplotype (C57BL/6J homozygous), N calls may
occur only 1% of the time.

Intensity model: The emission model for intensity data are a bivariate
Gaussian distribution. For each diplotype state at a given marker, the
distribution of intensities in polar coordinates is defined as the pro-
duct of two univariate normal distributions. We also investigated

Figure 1 X and Y probe intensities on the MUGA contain information about founder haplotypes that is not captured by the four genotype allele
calls. Each point represents the X and Y intensity values for one sample at marker UNC190139327, chromosome 19, 5.083353 Mb (rs46230775).
Locations of the founder strains, including multiple independent samples of founder and F1 hybrids animals, are shown as colored circles. Founder
strains are represented as colored circles and F1 hybrids are represented by a circle in one founder color and an internal triangle in the other founder
color. For example, the eight red points in cluster 3 represent replicates of the PWK/PhJ founder. (A) Cluster 1 represents homozygotes and
heterozygotes between A/J, CAST/EiJ, NOD/ShiLtJ, and WSB/EiJ. Cluster 2 represents heterozygotes between the founders in cluster 1 and PWK/
PhJ. Cluster 3 represents PWK/PhJ homozygotes. Cluster 4 contains heterozygotes between the founders in clusters 1 and 6. Cluster 5 represents
homozygotes and heterozygotes between PWK/PhJ and the strains in cluster 6. Cluster 6 consists of homozygotes and heterozygotes between
129S1/SvImJ, C57BL/6J, and NZO/HlLtJ. (B) The X and Y intensities from A have been transformed to r and u coordinates and the cluster axes are
aligned vertically. (C) Initial 36 diplotype state cluster locations that are estimated using mclust from the sample and founder data. Many diplotype
states have the same cluster center. (D) Final diplotype state locations after the genotyping algorithm has completed.
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models with a covariance term and models of x–y intensity but these
are not considered further here. There are four parameters for each
diplotype at each marker, two means and two variances. It is impor-
tant to obtain good initial estimates for these parameters. At a given
marker, we assigned each of the 36 diplotype states to a cluster (de-
scribed above) using the founder and F1 samples as reference points.
Initial parameter estimates for each diplotype state were obtained from
these clusters (Figure 1C). However, we allowed each diplotype state to
follow its own distribution to correct errors in the initial cluster assign-
ments and to extract additional information from the intensity data
(Figure 1D).

The EM algorithm: EM algorithms for parameter estimation in
discrete or continuous outcome HMMs have been described in detail
elsewhere (Baum 1970; Churchill 1989; Rabiner 1989). In our imple-
mentation, transition model parameters were held fixed over itera-
tions; only emission model parameters were estimated from the data.
In principle, the transmission parameters could also be estimated but
we found that the resulting diplotype reconstructions tended to tran-
sition too frequently between diplotype states.

The E-step uses current estimates of model parameters to exe-
cute a forward–backward HMM algorithm and generates diplotype
probabilities pij(s). The E-step is computationally intensive but it
can be applied to one individual and one chromosome at a time.
The M-step uses the diplotype probabilities to compute new esti-
mates of the (emission) model parameters. The M-step can be com-
puted one marker at a time; it combines information across individuals.
These steps are iterated until a convergence criterion is satisfied. We
stopped iterations when the log-likelihood of the model changed by
,1/1000 of the initial log-likelihood in successive iterations. Best
results are obtained with large collections of individuals, at least sev-
eral hundred.

A marginal reconstruction of DO haplotypes can be obtained by
assigning each locus to the diplotype state that has maximum prob-
ability. The diplotypes are phased to obtain a pair of haplotypes
by minimizing the number of recombination events. Phasing is not
critical for QTL mapping but we use phased chromosomes for
graphical representation and to count recombination events. Our
phasing algorithm could result in undercounting of recombina-
tion events but it is simple and appears to work well. We place
transitions at the midpoint between flanking marker loci. SNP
genotypes across the entire genome can be imputed from the mar-
ginal reconstruction by reference to the founder genome sequences
to obtain a diploid genome sequence for each DO animal. Proba-
bilistic imputation of SNP genotypes can also be obtained as dis-
cussed below.

Regression modeling
We computed genome scans by regression on diplotype probabilities
(Haley and Knott 1992). We fit a linear mixed model with sex and
batch as covariates. A random-effect term captures the polygenic co-
variance due to kinship among the animals. The likelihood ratio com-
paring this model to a null model without the diplotype term is
converted to a LOD score or to 2log10(p-value). We consider three
different ways to include the diplotype states in the regression
model, which we refer to as the full model, the additive haplotype
model, and the additive SNP model. The full and additive haplotype
models can be computed at the marker loci or, if desired, at points
between marker loci using interpolation to approximate the diplotype
probabilities. The additive SNP model is computed at imputed SNP
loci.

Full model: The full model is an unconstrained regression on the 36
diplotype states. We express the full model at marker locus j as

yi ¼
X
k

xikak þ
X36
s¼1

pijðsÞbs þ gi þ ei; (1)

where yi is the phenotype for animal i, xik is an indicator for cova-
riate k and animal i, ak is the effect of covariate k, pij(s) is the
diplotype probability at a marker locus j for animal i generated by
the HMM, gi is an adjustment for kinship, and ei is the residual
error. The model includes 36 regression coefficients, bs, one for each
diplotype state s. The full model is general and allows for arbitrary
patterns of additive and dominance effects among the founder
alleles. However, the likelihood-ratio test with 35 degrees of freedom
is expected to perform poorly unless sample sizes are very large.

Additive haplotype model: The additive model assumes that the
effects of founder alleles combine additively; there are no dominance
effects in this model. To implement the additive model, we compute
the allelic dosage of founder h at each marker at marker locus j as

dijðhÞ ¼
X36
s¼1

pijðsÞNhðsÞ; (2)

where Nh(s) is the number of alleles coming from founder h in
diplotype s. For example, Nc(CC) = 2, Nc(BC) = 1, and Nc(BB) = 0.

We express the regression equation as

yi ¼
X
k

xikak þ
X8

h¼1

dijðhÞbh þ gi þ ei; (3)

where yi, xik, ak, gi, and ei are the same as in Equation 1, and dij(h) is
the allelic dosage of founder h at marker locus j from Equation 2.
The model includes eight coefficients bh representing the additive
genetic effects of each founder haplotype. Thus the likelihood-ratio
test has 7 degrees of freedom. We expect a significant gain in power
and more precise estimation of the regression coefficients compared
to the full model. However, we risk missing dominance interactions
among founder haplotypes.

Additive SNP model: To implement the additive SNP model we
compute a probabilistic imputation of the genotype at every known
SNP locus genome-wide (Baud et al. 2013). The expected allelic dos-
age is computed as

gij ¼
X8

h¼1

dijðhÞGjðsÞ; (4)

where Gj(s) is the number of occurrences of the reference allele at
marker locus j for an animal with allelic dosage of founder h at that
locus. An advantage of mapping at the two-state SNP level is the
potential to introduce dominance effects with one additional degree
of freedom. We focus on the SNP-based additive model, which is
widely used in human association mapping (Bush and Moore 2012).
To gain computational efficiency we assign the diplotype state prob-
ability between each adjacent pair of genotyped markers to the av-
erage of the flanking diplotype state probabilities. Any sets of SNPs
in the interval with identical strain distribution patterns among the
eight founders are assigned identical values and we compute the
regression once for each set of identical SNPs in an interval.
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We express the regression equation at SNP locus j as

yi ¼
X
k

xikak þ gijbg þ gi þ ei; (5)

where yi, xik, ak, gi, and ei are the same as in Equation 1, gij is
generated by Equation 4, and bg is the additive effect of allelic
substitution.

Kinship: For each pair of DO animals, we computed the expected
allele sharing of founder haplotypes based on the diplootype
probabilities from Equation 2. Specifically, the kinship between sample
i and e is

kie ¼ 1
M

XM
j¼1

P8
h¼1dijðhÞ· dejðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP8

h¼1dijðhÞ2
q

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP8

h¼1dejðhÞ2
q ; (6)

where M is the number of markers and dij(h) is the allelic dosage of
founder h for sample i at marker locus j (Equation 2). We have
implemented genome scans using the leave-one-chromosome-out
method (Cheng and Palmer 2013; Yang et al. 2014).

Implementation: We extended the QTLRel software (v. 0.2-14)
(Cheng et al. 2011) to fit any of the regression models described above.
QTLRel estimates the variance scaling factor for the kinship correction
for each phenotype. To provide an alternative method for fitting the
mixed model regression we adapted the R package MatrixEQTL
(Shabalin 2012). MatrixEQTL accepts any user-supplied matrix as
the error covariance matrix and applies the same covariance structure
to all phenotypes. This provides substantially faster computation for
multiple phenotypes but the use of the same error covariance matrix
for all phenotypes is an approximation.

Significance thresholds: A Bonferroni correction can be used to
obtain genome-wide thresholds. For MUGA the 0.05 Bonferroni
corrected threshold is 2log(p) . 5.2, and for MegaMUGA it is
2log(p) . 6.0. The equivalent LOD thresholds are dependent on
the sample size and choice of regression model. Bonferroni corrections
are often too conservative and it is desirable to use a stringent but less
conservative threshold based on permutation analysis (Churchill and
Doerge 1994). However, the kinship structure of the DO population
violates the usual exchangeability conditions (Churchill and Doerge
2008). Recent reports have suggested that by fitting the regression
model without the kinship adjustment term to each permuted data
set, one can obtain conservative thresholds for the mixed-model ge-
nome scan (Cheng and Palmer 2013). We validate this procedure
using simulations to show that it provides expected control of the
type I error rates in the DO. We used a significance threshold of
p # 0.05 to select significant mapping associations.

Support intervals for QTL localization were determined using
a 95% Bayesian credible interval (Sen and Churchill 2001). The LOD
curve is transformed by raising it to the power of 10 and a region
covering 95% of the area under the transformed curve defines the
support interval. The area under the curve is numerically approxi-
mated using trapezoids between the marker loci.

Power simulations
We randomly sampled genomes from a set of marginal reconstruc-
tions of 1129 DO animals at outbreeding generation G8. We simulated
phenotypes using sample sizes of 200, 400, 600, 800, and 1000 animals,
with MAF of 1, 2, 3, and 4 and QTL effect sizes of 0.125, 0.25, 0.375,

0.5, 0.625, 0.75, and 1.0 in standardized units. The MAF refers to the
number of founders that contribute the causative allele. Each com-
bination of these parameters was simulated 1000 times. Phenotypes
were simulated as the sum of a QTL effect plus a polygenic background
component and an independent normal error component each with
unit variance. Thus the polygenic and independent error variance
components contribute equally to the total background variance. For
each simulation, the QTL location was selected at random on the
autosomal genome, minor allele status was assigned to the appropriate
number of founder strains, and the genotype was determined by the
diplotype of the marginal reconstruction. The QTL effect size was
added to one homozygous class and subtracted from the other. We ran
genome scans using the additive haplotype model and declared
detection of the target QTL if the LOD score exceeded a genome-
wide adjusted p # 0.05 threshold. LOD thresholds were determined
once for each set of simulations at a given sample size based on the
maximal LOD score obtained on each of 1000 genome scans of phe-
notypes drawn independently from a normal (0,1) distribution. We
tabulated power as the detection of significant QTL within 5 Mb of the
simulated QTL location. Note that while the type I error rate is con-
trolled genome-wide, power is calculated at a fixed locus and thus can
fall below the nominal 0.05 level.

Type I error simulations
We used the same set of DO genomes as in the power simulations
above and mapped simulated phenotypes on the 19 autosomes. We
selected a sample size n (200, 400, 600, 800, or 1000) and drew n DO
genomes at random from our G8 animals. We simulated a null phe-
notype by sampling n values from a Gaussian distribution. We map-
ped the phenotype using an additive haplotype model with a kinship
adjustment. We repeated this process 1000 times for each sample size
and report the proportion of times in which a QTL was detected on
any autosome at the p # 0.05 significance thresholds. Significance
thresholds for the X chromosome require special consideration (Broman
et al. 2006) and have not yet been implemented in DOQTL.

Phenotypes
DO mice (742 total, 410 females, 332 males) from outbreeding gen-
erations G4 and G5 were obtained from the Jackson Laboratory. Mice
were housed in polycarbonate cages (50 in.2, 4–5 mice per cage) and
fed NIH-31 6% fat mouse diet ad libitum. Acidified (pH 2.8–3.2) or
chlorinated (10–15 ppm residual Cl) water was provided in water
bottles. Mice were maintained on a 12 hr light/12 hr dark cycle. At
ages ranging from 8 to 10 weeks, 50 ml of blood was collected via
retro-orbital bleed and stored at 2–8� in K2EDTA. Neutrophil counts
and other whole blood parameters were measured within 24 hr of
collection on the Drew Scientific HemaVet 850 FS analyzer (Dallas,
TX). Samples were processed in 15 batches of �50 animals each and
some failed samples were removed; 5 mm of tail were collected for
genotyping. These mice were a subset of the 3029 mice genotyped on
the MUGA array. All procedures were reviewed and approved by the
Jackson Laboratory’s Institutional Animal Care and Use committee
(Protocol JW10001/JW202).

Heritability
The narrow sense heritability of neutrophil counts in the 742 DOmice
was estimated by fitting a mixed model with sex and phenotyping
batch as fixed effects and the additive genetic matrix as a random
effect (Clifford and Mccullagh 2006). The ratio of the additive genetic
variance over the total phenotypic variance was used to calculate h2

(Visscher et al. 2008).
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Data and software availability
All data associated with this manuscript can be obtained at http://do.
jax.org/. The DOQTL R package is available from Bioconductor
(http://bioconductor.org/) (Gentleman et al. 2004). Genotyping data
on the MUGA and MegaMUGA for the DO founders and F1s is
available at ftp://ftp.jax.org/MUGA.

RESULTS

Genome reconstructions
We computed diplotype state probabilities and marginal haplotype
reconstructions for 4542 DO mice using allele-call and intensity-based
methods for MUGA or MegaMUGA data. For each of 34 DO animals,
samples from the same DNA isolation were run on the MUGA in
separate batches on different dates. The mean Pearson correlation be-
tween the allelic dosages of replicate samples was 0.97 with a standard
deviation of 0.05. The mean correlation between unrelated samples was
0.02 with a standard deviation of 0.05. Marginal genotype reconstruc-
tions were highly concordant—the vast majority of SNPs shared the
same maximum probability diplotype state between repeated samples
(minimum 63%, median 97%, and maximum 99%). Discordant dip-
lotype states occurred most often in regions where one or more of
the founder strains are identical by state and as a result, two or more
diplotype states have very similar probabilities.

We used marginal haplotype reconstructions to compute the pro-
portion of each founder summed across markers for each DO animal
(Figures 2, A and B). The median founder contribution ranged from
10.6% (PWK/PhJ) to 13.2% (C57BL/6J)—consistent with an expecta-
tion of 12.5%. Individual DO animals displayed a wide range of founder
contributions with a minimum of 3.4% and a maximum of 25.1%.
The proportions of the 36 diplotypes are also consistent with expect-
ations—each heterozygous diplotype should occur at a frequency of
1/32 and each homozygous diplotype should occur at a frequency
of 1/64. The only notable deviation is an underrepresentation of
homozygous PWK/PhJ genotype, which occurs at a median fre-
quency of 0.011%, which is consistent with the lower overall
contribution of PWK/PhJ haplotypes. We also computed the con-
tribution of each founder strain at individual SNPs summed across
all of the DO mice (Figures 2, C and D). A notable deviation from
expected frequencies occurs on chromosome 2 where a previously
reported excess of WSB/EiJ founder allele is observed (Svenson et al.
2012).

The average number of autosomal recombination events in DO
mice is expected to increase linearly at a rate of 23.9 events per gen-
eration (Broman 2012). We compared this rate between the intensity-
based and genotype-call methods of haplotype reconstruction on each
of the MUGA and MegaMUGA genotyping platforms. For MUGA
samples spanning generations G4 through G9 we observed a rate of
increase of 14.2 events per generation using the intensity-based method
compared to 6.9 events per generation for the allele-call method (Fig-
ure 3A). For MegaMUGA samples spanning generations G8 through
G11 we observed a rate of increase of 21.3 events per generation using
the intensity-based and 17.2 events per generation for the allele-call
method (Figure 3B). The intensity-based MegaMUGA data give esti-
mates that are close to the theoretical rate, suggesting that recombina-
tion events are accumulating as expected and that the other methods
are not capturing all of the events. For both platforms, the intensity-
based method captures more recombination events compared to the
allele call but the difference is greater for the MUGA platform. The
average marker spacing of the MUGA (325 kb) is large relative to the
expected minimum spacing of �40 kb at generation G8 (Pyke 1965),

whereas MegaMUGA, with an average marker spacing of 33.2 kb,
should capture most of the recombination events in current DO gen-
erations. We note that the size distribution of haplotype segments
should approximate an exponential distribution. However, histograms
of interval sizes on the MUGA array (Figure 3C) show a drop in the
numbers of small segments relative to their expected distribution at
sizes below the mean marker spacing, indicating that small haplotype
blocks may be lost in the reconstructions. The closer marker spacing
on the MegaMUGA helps to increase the rate of detecting small re-
combination blocks (Figure 3D).

Simulations
Null model simulations established that type I error rates are correctly
controlled for permutation-based thresholds (Cheng and Palmer
2013).We simulated 1000 phenotypes by sampling from a multivariate
normal distribution with a covariance structure equal to the kinship
matrix between samples. We permuted the phenotype values 1000
times and retained the maximum LOD score across the 19 autosomes
to obtain the empirical distribution of maximum LOD scores. Quan-
tile plots of the type I error indicate that all three regression models
described in Materials and Methods control the type I error at or
below the desired threshold (Supporting Information, Figure S1). In
particular, the type I error at a = 0.05 is properly controlled. The
computational time required to fit a linear mixed-model genome scan
repeated for each permuted data sample can be substantial. Thus our
ability to obtain valid thresholds with a simple linear model fit has
practical importance.

Power simulations provide guidelines for selecting an appropriate
sample size for experiments. The power to detect a QTL depends on its
effect size, the residual and genetic background variances, and the fre-
quency of the causative allele. These factors are difficult to determine
in advance but simulations can help to establish expectations for
a study of a given size. We simulated QTL over a wide range of effect
sizes with minor allele frequencies that range from 1/8 to 1/2. We fixed
the ratio of genetic to residual variation to be one—equal contributions
of each—and scaled effect sizes relative to the residual standard de-
viation. We show results for the additive haplotype model (Equation 3)
and find, as expected, that increasing MAF, effect size, or the sample
size increases power (Table S1). The percentaage variance explained
provides an effective summary of the combined effects of these factors
on power (Figure 4). With a sample size of 200 mice, we can expect to
detect QTL that explain .20% of the phenotypic variance with 90%
power. With a sample of 1000 mice, we can expect to detect a QTL
that explain 5% of the variance with 90% power.

We examined power of the full model and of the additive SNP
model using simulations with a sample size of 600, a MAF of 2, and an
effect size of 0.5 standard deviations from the mean. A QTL with these
characteristics will account for 9% of the phenotypic variance. We
found the power of the full model to be 0.003 and the type I error at
a = 0.05 to be 0.046. For the additive haplotype model, power was 0.94
and the type I error was 0.051. For the additive SNP model, power was
0.91 and the type I error was 0.04. These limited simulations indicate
that the size of the test is controlled at the nominal genome-wide P #

0.05 level. There is a dramatic loss of power using the full model,
whereas, for data simulated under the additive SNP model, the
additive haplotype and additive SNP models have similar power.
This similarity in power for the additive SNP model represents
a best-case scenario because we simulated a biallelic, additive QTL.
When allelic heterogeneity is present under the QTL, the power of
the additive SNP model may be lower.
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Larger sample sizes and larger effect sizes also provide narrower QTL
intervals (Table S2). Support intervals can range (on average) from 5Mb
for effects that explain 5% of the variance down to ,1 Mb for effects
that explain 30% of the variance in mapping population of 1000 mice.

Example: QTL mapping of neutrophil counts
Here we illustrate the unique features of QTL mapping in the DO with
an example: mapping neutrophil counts in whole blood using 742 DO
mice (410 female, 332 male). Males [median, 1004; interquartile range,
IQR, (698, 1288)] had higher median neutrophil counts than females
[median, 729; IQR, (546, 1064))]. The trait has an estimated heritability
of 0.132.

We regressed log neutrophil counts on founder allele dosages at
each marker using a kinship correction with sex and log white blood

cell counts as covariates. We established genome-wide significance
thresholds as described in Materials and Methods. We fit the full
model (Equation 1) by regressing the log of neutrophil counts on
the 36 diplotype probabilities at each marker and found that no
LOD peaks exceeded the significance threshold (adjusted p # 0.05)
(Figure 5A). We fit the additive haplotype model (Equation 3) and
found that one locus on chromosome 1 (LOD, 9.3 at 129.58 Mb GRC
Build 38) achieved genome-wide significance and spanned a 5.7-Mb
support interval (126.7–132.4 Mb, Figure 5B). We fit an additive SNP
model (Equation 5) by regressing the log of neutrophil counts on the
imputed DO genotypes and found one locus with LOD above the p#
0.05 threshold on chromosome 1 (Figure 5C). In the additive SNP
model, the peak on chromosome 1 is still the largest peak. The addi-
tive haplotype model produces estimates of the eight founder allele

Figure 2 (A) Founder allele proportions across samples and markers. Horizontal axis shows the proportion of alleles from each founder across all
samples. Boxes show median and interquartile range. Dotted line is 1/8. (B) Diplotype state proportions across all samples. Diplotypes on vertical
axis are given in two-letter codes shown in legend. Dotted lines at 1/32 and 1/64. (C) Founder allele proportions across markers. Dashed line is
a 1/8. (D) Diplotype state across markers.

Volume 4 September 2014 | DOQTL | 1629

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/4/9/1623/6025931 by G

enetics Society of Am
erica M

em
ber Access user on 12 M

arch 2025

http://www.g3journal.org/lookup/suppl/doi:10.1534/genetics.114.161844/-/DC1/TableS2.pdf


effects (Figure 5D). The founder allele effects separate into two groups
and the peak may be due to a single diallelic polymorphism, which
would be consistent with the additive SNP model. In this case, DO
mice containing the C57BL/6J, CAST/EiJ, or PWK/PhJ alleles at the
QTL on chromosome 1 have lower neutrophil counts than mice
containing the other five founder alleles.

We examined the mapping results from the additive SNP model in
the QTL support interval on chromosome 1 and found that two types
of SNPs had LOD greater than the p # 0.05 significance threshold
(Figure 5E). Together these SNPs span an interval from 128.519324 to
128.801978 Mb and overlap two annotated features: Gm25384 and
chemokine receptor 4 (Cxcr4). Gm25384 is a noncoding RNA with no
polymorphisms in the DO. Cxcr4 has three SNPs in the coding region
of its transcript, two synonymous SNPs (no rs#, rs8256193), and one
nonsynonymous SNP (rs8256191, 128.589277 Mb, C / T). The mi-
nor allele at each of these three SNPs distinguishes strains C57BL/6J,
CAST/EiJ, and PWK/PhJ from the remaining founders, consistent
with the estimated effects from the additive haplotype model in Figure
5D. Cxcr4 has two alternative transcripts and the nonsynonymous
SNP is in an exon shared by both isoforms. One of the synonymous
variants (no rs#) at 128.589098 Mb occurs in one of the isoforms. The
other synonymous variant (rs8256193) occurs in both isoforms. In
addition, the founder strains C57BL/6J and PWK/PhJ share a segment
of common ancestry (130.414213–130.698555 Mb) from the Mus mus
musculus progenitor (http://csbio.unc.edu/ccv/) (Yang et al. 2011).
Cxcr4 has been shown to play a role in regulation of neutrophil release
from the bone marrow (Eash et al. 2009), making it a strong functional

candidate. On the basis of this evidence we suggest that Cxcr4, specif-
ically the valine to isoleucine substitution, is a causal factor contribut-
ing to variation in neutrophil levels.

Figure 3 (A) Estimated number of au-
tosomal recombinations per sample run
on the MUGA plotted by generation
using the marker allele calls (h) or the
genotyping array intensities (s). Solid
lines are the least-squares fit for each
method. Dashed line is the expected
theoretical number of recombinations.
Numbers are the slopes of each line.
Boxes show median plus interquartile
range. (B) The same plot as in A, but
with samples run on the MegaMUGA.
Top and bottom numbers are the slope
of the intensity- and allele-call-based
reconstructions, respectively. (C) Histogram
of recombination block size using the
MUGA (C) andMegaMUGA (D). The inset
shows the region from 0 to 10 Mb. Red
curves are the maximum-likelihood fit of
the data to an exponential distribution.

Figure 4 Power simulations demonstrate the relationship between power,
sample size, and percentage variance explained. The percentage variance
explained by the simulated QTL is plotted vs. the power to detect the
simulated QTL for five different sample sizes. Points are the mean value from
1000 simulations and curves are logistic regression models fit to the data.
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DISCUSSION
Haplotype reconstruction in progeny from multiparent crosses re-
quires specialized methods and software. These methods have evolved
significantly over the past decade and we expect to see a continued
increase in the overlap between heterozygous model systems and
human genetic mapping. HAPPY, one of the first software packages
developed for haplotype reconstruction in heterogeneous stocks, uses
genotype calls and a dynamic programming algorithm for haplotype
reconstruction (Mott et al. 2000). Our HMM implementation is more
complex than dynamic programming but it provides probabilistic esti-
mates of haplotypes (and diplotypes) that we can use to account for
genotype uncertainty in genome scans. The current implementation is
based on the marginal diplotype state probabilities. Implementation of

a globally optimal reconstruction (Van der Bliek et al. 1988; Viterbi
1967) is planned for a future release of DOQTL.

We have implemented an EM algorithm to estimate HMM
parameters directly from genotype or intensity data. The direct use
of probe intensities from genotyping arrays can improve genome
reconstructions (Fu 2012). Probes that are affected by off-target
variants and might otherwise be removed by genotyping quality
filtering can provide additional information about founder haplotypes
(Didion et al. 2012). Our emission model for intensities is heavily
parameterized as a bivariate normal mixture model over 36 diplotype
states at each marker locus. It is likely that performance could be
improved by adding constraints to this model, for example, by
leveraging haplotype identity among founder strains to reduce the

Figure 5 Mapping of constitutive neutrophil counts. (A) Genome scan of constitutive neutrophil counts using the full model does not show any
significant peaks. The horizontal axis shows the mouse genome. The vertical axis plots the LOD score at each locus. Red line is p # 0.05
significance threshold. (B) Linkage mapping of neutrophil counts using the additive haplotype model reveals a large peak on chromosome 1. (C)
Association mapping of neutrophil counts using the additive SNP model produces a plot similar to linkage mapping. Vertical axis shows LOD
score. Red line is p # 0.05 significance threshold. (D) Founder coefficients from the linkage model on chromosome 1 show the effects of each
founder allele. The founder coefficients are centered around zero. Bottom shows the LOD score with support interval shaded light blue. (E)
Zoomed view of QTL support interval highlights two genes (GRC Build 38 coordinates). Top shows the LOD score for the additive SNP model with
the red line denoting the P # 0.05 significance threshold.
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number of states required at each SNP or by modeling heterozygous
genotypes in terms of the homozygous state intensities. Our state
transition model is not estimated; it is derived from theoretical expect-
ations as a function of the outcrossing generation in the DO. In more
complex breeding designs, this may not be feasible and an empirical
method to estimate the transition probabilities would be desirable.
One approach might be to use a continuous “time” Markov model
with transition probabilities p # eQt, where Q is a common 36 · 36
rate matrix and t is in an interval-specific measure of recombination.
As with the emission model, there is a bias vs. variance tradeoff to
consider in the specification of these highly parameterized models.
Models that capture the main features of the data with the fewest
parameters are best.

Our estimates of the number of recombination events per mouse
are close to the theoretical expectation when we used the higher
density MegaMUGA array and intensity based reconstruction. The
MegaMUGA includes .77,000 informative markers with average
spacing ,33 kb. Still it is clear that smaller haplotype blocks are lost
in the reconstructions. The economics of using even higher density
arrays platform vs. low coverage whole-genome sequencing is starting
to tip. New analytical methods will be required for genotypes derived
from sequencing data. The DO is currently at outbreeding generation
G17 and the accumulation of recombination events appears to be
linear as expected through generation G11. Hotspots of recombination
of 1–2 kb in size can have recombination rates as high as 2–3 cM
(Billings et al. 2010; Parvanov et al. 2010). Recurrent recombination
events at hotspots could impose a limit on the ultimate mapping
resolution of the DO. In addition, cold regions of .500 kb with
strongly suppressed recombination are present in the DO (data not
shown) and are largely concordant with recent reports of cold regions
in the founder strains (Liu et al. 2014).

Availability of whole-genome sequences of the founder strains
adds substantially to the power and utility of multiparent popu-
lations (Baud et al. 2013). With dense genotypes and haplotype
reconstructions we can effectively impute the entire genome of
each individual and track all of the possible causal variants asso-
ciated with any phenotype. SNPs can be imputed using either
marginal or probabilistic genotypes. The same is true for small
indels but larger structural and copy-number variations present
some unsolved challenges. Structural variants could potentially be
changing rapidly in multiparent populations, providing a unique
opportunity to study their short-term evolution.

We considered three different regression models with which to
perform mapping in the DO: a full model, an additive haplotype
model, and an additive SNP model. When mapping using the full
model, we observed loss of power that we attribute to the
additional degrees of freedom. The additive haplotype and SNP
models can produce similar results. A number of open questions
about optimal strategies to model QTL effects on phenotypes in
multiparent crosses remain. Our work looks at the extremes of
a spectrum of possible models. The challenge is to develop models
that are flexible and yet retain sufficient power to detect QTL.
Random effects or hierarchical Bayes models look promising in
this regard (Zhaojun et al. 2014).

One advantage of linkage mapping in multiparent populations
such as the DO is that we obtain estimates of the founder allele effects
at each locus. The pattern of allele effects and sequencing data from
the eight founders were critical in narrowing the neutrophil QTL to a
single gene. For some QTL the allele effects split into two clearly
delineated groups, e.g., C57BL/6J, CAST/EiJ, and PWK/PhJ vs. the
remaining five founders for the neutrophil QTL on chromosome 1.

This is expected if the QTL is caused by a single variant. We have also
observed cases where the allele effects split into multiple classes or
where the classification of effects into discrete clusters is not clear.
These patterns likely result from multiple closely linked causal var-
iants. Allele-effect patterns can help to establish whether comapping
of multiple phenotypes is due to the same variant(s) or linked but
independent variants (King et al. 2012).

DO mice, after multiple generations of outcrossing, will have com-
plex kinship relationships, including siblings, cousins, and extended
multigenerational relationships of unknown degree. These relation-
ships must be accounted for in the mapping analysis or increases in
false positives may be observed (Cheng et al. 2013). Methods for kin-
ship correction remain an active area of research (Zhou and Stephens
2012; Yang et al. 2014).

We recommend using a larger number of animals for a DO
mapping study than is typical for mapping studies in the mouse. In
our experience loci of major effect have been precisely mapped with
,200 animals. It would be prudent to plan on large studies when
using the DO to investigate complex traits. The DO provides sub-
stantial advantages, as illustrated in the above QTL mapping example.

The DOQTL software implements the methods described in this
article from reconstruction of haplotypes through QTL mapping and
graphical summaries and reports. With a few modifications, DOQTL
can be used to analyze other multiparent populations (Kover et al.
2009) and heterogeneous stock populations (Baud et al. 2013). We
encourage investigators who wish to apply our software to analyze
their populations to contact us. Tutorials and additional supporting
materials are available at http://do.jax.org. This site will serve as a re-
pository for DO related data and we encourage groups using the DO
to contribute their published data.
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