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Method for Constructing Confidently
Ordered Linkage Maps

Karl W. Broman* and James L. Weber

Marshfield Medical Research Foundation, Marshfield, Wisconsin

We describe a method for identifying, from a comprehensive genetic map, the
most dense framework of confidently ordered markers. The approach uses the
number of observed recombination events between each pair of markers, and
finds the largest subset of markers for which adjacent loci are separated by at
least one recombination. We illustrate the approach using a short region of chro-
mosome 7p.  Genet. Epidemiol. 16:337–343, 1999.© 1999 Wiley-Liss, Inc.
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INTRODUCTION

Multipoint analyses to identify disease susceptibility genes require that genetic
markers be correctly ordered; an incorrect ordering of markers compromises the link-
age evidence for a disease gene. While the order of genetic markers will ultimately
be obtained from sequence data, currently one must rely on genetic linkage or radia-
tion hybrid data. Generally, genetic maps are presented with a framework map of
markers that are confidently ordered, additional markers being assigned to likely
intervals. The choice of markers placed on the framework map can be ad hoc.

We describe an algorithm that, beginning with a comprehensive genetic map,
identifies the largest possible framework of confidently ordered markers. The
algorithm uses the pairwise recombination information described by Fain et al.
[1995, 1996], and determines the largest subset of markers having adjacent an-
chor markers separated by at least one (or two) recombination events. A two-
recombinant rule is somewhat more conservative than the LOD 3.0 criterion in
common use [Fain et al., 1995].
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The algorithm is an example of dynamic programming [Bellman, 1957; Bellman
and Dreyfus, 1962], which uses recursion and the storage of intermediate results to
optimize a function (in this case, to maximize the number of markers in the frame-
work map) without performing a complete enumeration of all possibilities. Dynamic
programming has also been used to align sets of DNA or amino acid sequences
[Needleman and Wunsch, 1970]. The algorithm requires a comprehensive map with
the markers in approximately the correct order and a table containing the number of
observed recombinations between each pair of markers. Such a table may be ob-
tained using the output from the chrompic option of the CRI-MAP program [Green
et al., 1990].

In this communication, we describe our algorithm and illustrate its use on a
small region of chromosome 7p.

METHODS

Consider a set of linked markers numbered 1,2,...,M, in approximately the cor-
rect order. Assign a weight wi to marker i. (For example, wi = 1 for all i or wi = – log
(1 – heti) where heti is the heterozygosity of marker i.) Let R(i,j) be the number of
observed recombination events between markers i and j.

We wish to identify the subset of markers {i1, i2,...,ik}, with i1 < i2 < ... < ik,
where R(i j,ij+ 1) ≥ Rmin for all j = 1,...,k – 1 and where Σk

j=1
 wij is maximized.

When wi = 1 for all i, this is equivalent to choosing the largest subset for which
adjacent markers have at least Rmin observed recombinations. When the markers do
not have identical weights, some markers are preferred over others. For example, if
the markers are in linkage equilibrium in a population, and if three nearby markers
have heterozygosities het1, het2, and het3 satisfying w(het1) + w(het2) = w(het3) where
w(het) = –log(1 – het), then the chance that an individual is heterozygous for at least
one of markers 1 and 2 is equal to the chance that the individual is heterozygous for
marker 3. In such a situation, one may consider marker 3 to be equivalent to the pair
of markers 1 and 2.

Our solution is based on the following. Let pj denote the optimal subset of
{1,..., j} containing the marker j. (That is, pj is the subset of {1,...,j} containing j,
and with adjacent markers showing at least Rmin recombinations, for which the sum
of the weights is maximized.) If the overall optimal subset of {1,...,M} contains the
marker j, then the portion of this overall optimal subset which is ≤ j must be exactly
pj. Thus we may build up the optimal subset from left to right along the map, at
marker j storing the optimal subset of {1,...,j} containing j.

Now let pj be defined as above, and let bj be the total weight of the subset pj.
The pj are formed in a stepwise fashion. First, let p1 = {1} with weight b1 = w1. Next
suppose we have formed p1,...,pj–1 with weights b1,...,bj–1. If there is no i < j with
R(i,j) ≥ Rmin, then pj = { j} with weight bj = wj. Otherwise, let
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TABLE I. Numbers of Observed Recombinations Between Each Pair of Markers, for a Set of 25 Genetic Markers From Chromosome 7p*

Rmin Marker

No. 1 2 Marker het 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 • • AFMb035xb9 0.67 1 2 1 1 3 3 4 3 2 5 2 6 7 6 8 8 9 3 5 13 19 14 4 18
2 • UT5195 0.64 1 1 2 1 1 4 3 0 4 3 5 5 5 3 5 1 3 5 6 9 8 9 8
3 • AFMa090xg1 0.77 1 1 0 0 3 3 0 4 2 6 5 6 10 8 5 1 1 7 13 14 5 13
4 • AFMb017yh1 0.75 0 0 1 2 2 0 3 1 3 2 4 10 6 6 0 2 9 13 15 5 14
5 D7S21 0.66 0 1 2 2 0 3 2 3 3 3 2 3 1 2 3 4 6 6 6 6
6 • AFM185yh2 0.73 2 3 3 1 4 1 4 4 5 8 7 8 2 4 10 15 14 5 15
7 • • AFM254yc9 0.77 0 0 0 2 1 3 2 2 7 5 4 1 3 10 13 14 3 17
8 AFMa136zh1 0.60 0 0 2 2 4 3 3 7 5 4 1 3 10 13 11 5 13
9 AFMc027xb5 0.66 0 2 1 3 2 1 6 3 5 1 1 8 10 11 1 15

10 AFMb286yc6 0.50 2 1 3 2 2 6 4 3 0 2 9 11 10 3 11

11 AFM210xc7 0.80 0 0 0 0 2 0 1 1 3 5 7 7 3 9
12 Mfd172 0.61 0 0 0 0 0 0 1 3 2 3 4 3 5
13 GATA24F03 0.73 0 1 5 3 3 1 3 7 10 12 2 14
14 • • AFM225xa1 0.83 1 3 2 1 1 3 3 7 7 3 7
15 • AFMa224wh9 0.79 5 3 3 1 3 6 9 12 3 14
16 • • AFM049xe3 0.84 0 0 1 3 3 4 7 3 10
17 GATA61G06 0.62 0 1 1 0 1 4 0 6
18 AFMb040zb5 0.63 1 1 1 2 4 1 7
19 UT626 0.26 0 0 0 1 0 1
20 UT7600 0.63 0 0 1 0 1

21 AFMa062yf9 0.60 0 2 0 4
22 • • AFMc011yc9 0.85 3 1 7
23 • • AFM224yb6 0.72 0 3
24 UT5023 0.47 0
25 • • GATA119B03 0.69

*The second and third columns, labeled ‘‘Rmin,’’ indicate which markers were chosen in the framework maps when requiring at least one or two recombinations
between adjacent markers. The column labeled ‘‘het’’ gives the heterozygosities of the markers.
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Then pj = pi*  ∪ { j}with total weight, bj = bi*  + wj.
Finally, having formed p1,...,pM with total weights b1,...,bM, let

j b
j M

j* arg max .=
≤ ≤1

Then pj*  is the optimal subset of {1,...,M}. The optimal subset is not neces-
sarily unique, though the above algorithm is guaranteed to produce one of the
optimal subsets.

RESULTS AND DISCUSSION

We illustrate our method using 25 markers from chromosome 7p, taken from a
recent comprehensive genetic map of the human genome [Broman et al., 1998]. These
markers span approximately 17 cM. Table I contains the markers in their approxi-
mate order, their estimated heterozygosities, and, for each pair of markers, the num-
ber of observed recombinations in eight of the CEPH families (1331, 1332, 1347,
1362, 1413, 1416, 884, and 102), which comprise approximately 180 meioses. Fig-
ure 1 contains a representation of the sex-averaged map of these markers, taken from
Broman et al. [1998]. The map was formed using the CRI-MAP program [Green et
al., 1990]. Several groups of markers map to the same locus. LOD scores, indicating
the local support for the marker order, were obtained using the flips option of CRI-
MAP: adjacent pairs of markers were exchanged and the change in likelihood noted.
In this process, markers mapping to exactly the same locus were kept together.

The second and third columns in Table I, labelled “Rmin,” indicate the subsets of
markers chosen by the algorithm when Rmin = 1 and 2. When Rmin = 1, a greater
number of markers are used in forming the framework map, but with a greater risk
for errors in the marker order. The genetic map of the subset of markers obtained
using Rmin = 2 is displayed in Figure 1, along with LOD scores indicating the local
support for the marker order.

Table II contains a list of the subsets pj and their total weights bj for the data in
Table I, when using Rmin = 2. In forming, for example, p12, one notes that marker 12
shows two or more recombinations with markers 1, 2, 3, 5 and 8. Among p1, p2, p3,
p5 and p8, the subset p8 has the greatest weight, and so p12 = p8 ∪ {12} = {1, 3, 8,
12}, with weight b12 = b8 + w12

 = 3.5 – log(1 – 0.61) = 4.4.
It is important to note that the table of observed recombinations depends on the

initial ordering of the markers, since the order of the markers is sometimes used to
infer phase, and phase is assumed to be correctly known when counting the numbers
of recombinations. In addition, the method we describe here does not revise the or-
der of the markers, but rather extracts the largest subset of markers that are believed
to be confidently ordered. Thus, the algorithm requires an initial marker order of
reasonable quality.

What is important, in the initial comprehensive map, is that the recombination
events be correctly placed. Thus, the required quality of the initial order depends on
the resolution provided by the available meiotic data. Groups of markers that did not
recombine may be ordered arbitrarily, but if two markers are both informative in a
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Fig. 1. Comprehensive genetic map of a set of 25 markers from chromosome 7p and the framework
map obtained using Rmin = 2. LOD support values, indicating the local support for order, were obtained
using the flips option of CRI-MAP.
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TABLE II. Subsets pj and Their Total Weights bj Formed When Constructing the Overall
Optimal Subset of Markers for the Data in Table I When Using Rmin = 2

j pj bj

1 {1} 1.1
2 {2} 1.0
3 {1, 3} 2.6
4 {4} 1.4
5 {2, 5} 2.1
6 {1, 6} 2.4
7 {1, 6, 7} 3.9
8 {1, 3, 8} 3.5
9 {1, 3, 9} 3.7

10 {1, 10} 1.8
11 {1, 6, 7, 11} 5.5
12 {1, 3, 8, 12} 4.4
13 {1, 6, 7, 13} 5.2
14 {1, 6, 7, 14} 5.7
15 {1, 6, 7, 15} 5.4
16 {1, 6, 7, 14, 16} 7.5
17 {1, 6, 7, 14, 17} 6.7
18 {1, 6, 7, 15, 18} 6.4
19 {1, 6, 19} 2.7
20 {1, 6, 7, 14, 16, 20} 8.5
21 {1, 6, 7, 14, 16, 21} 8.4
22 {1, 6, 7, 14, 16, 22} 9.4
23 {1, 6, 7, 14, 16, 22, 23} 10.6
24 {1, 6, 7, 14, 16, 24} 8.1
25 {1, 6, 7, 14, 16, 22, 23, 25} 11.8

meiosis in which a recombination occurred between them, their initial order needs to
be correct. If the initial placement of a marker is far from its true location, our algo-
rithm is likely to incorporate that marker into the framework map, and it will be
placed in the incorrect position.

While the optimal subset of markers (by our criterion) is not necessarily unique,
a simple modification of our algorithm will allow the identification of all of the
optimal subsets: one retains, at each step in the algorithm, information on all of the
optimal subsets pj rather than a single optimal subset.

Our method should prove useful in obtaining longer and more robust frame-
work maps than can be generated by hand. The algorithm is most applicable when
markers are at a density of less than around 2 cM, since otherwise most adjacent
markers will be separated by more than two recombination events. While we de-
scribe its use for genetic maps, the approach could also be used for radiation hybrid
maps and other maps that rely on breakpoint- or recombination-like events.

We have implemented our algorithm in an Internet query program available at
the Marshfield Web site (http://www.marshmed.org/genetics). The user submits a list
of markers from a single chromosome and indicates whether the markers should be
weighted equally or according to –log(1 – het) and whether to use Rmin = 1 or 2, and
receives the locations of the markers on the Marshfield comprehensive maps, the
table of observed recombinations, and a framework map for those markers, as deter-
mined by this algorithm.
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