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ABSTRACT

The Haley—Knott (HK) regression method continues to be a popular approximation to standard interval
mapping (IM) of quantitative trait loci (QTL) in experimental crosses. The HK method is favored for its
dramatic reduction in computation time compared to the IM method, something that is particularly im-
portant in simultaneous searches for multiple interacting QTL. While the HK method often approximates
the IM method well in estimating QTL effects and in power to detect QTL, it may perform poorly if, for
example, there is strong epistasis between QTL or if QTL are linked. Also, it is well known that the esti-
mation of the residual variance by the HK method is biased. Here, we present an extension of the HK
method that uses estimating equations based on both means and variances. For normally distributed
phenotypes this estimating equation (EE) method is more efficient than the HK method. Furthermore,
computer simulations show that the EE method performs well for very different genetic models and data
set structures, including nonnormal phenotype distributions, nonrandom missing data patterns, varying
degrees of epistasis, and varying degrees of linkage between QTL. The EE method retains key qualities of
the HK method such as computational speed and robustness against nonnormal phenotype distributions,
while approximating the IM method better in terms of accuracy and precision of parameter estimates and

power to detect QTL.

N biomedical research, evolutionary biology, and
agricultural science alike, it has long been of inter-
est to study the genetic basis of variation in quantitative
traits (such as blood pressure, litter size, or crop yield).
For this purpose, experimental crosses between inbred
lines are widely used; crosses of model organisms can
lead to improved understanding of related human dis-
eases, and crosses of inbred animal or plant species can
inform breeders of important genomic regions, which
may be used in breeding schemes. The genetic variance
of a quantitative trait is thought to be controlled by a
number of such genomic regions, or quantitative trait
loci (QTL), which may interact in intricate ways (see,
for example, FALCONER and MAckAY 1996; LyNncH and
WarLsH 1998).

With the advent of dense genetic marker maps, a lot of
effort has been devoted to the development of statistical
methods for locating QTL and estimating their effects.
The seminal article by LANDER and BOTSTEIN (1989)
introduced the interval-mapping (IM) method, which
considers, one at a time, a suite of putative QTL positions
along the genome. In the case of a backcross, say, an
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individual with genotype g = QQ or Qg at the putative
QTL is assumed to have phenotype y | g ~ N(B,,0%).
Since the QTL genotypes will generally not be known, the
phenotype distribution given the marker datais a mixture
of the two normal distributions. Closed-form expressions
for the maximum-likelihood estimators are not available
for mixtures of normal distributions. Thus, estimation
under the IM method must be done numerically; most
commonly a version of the expectation-maximization
(EM) algorithm (DEMPSTER et al. 1977) is used.

A key disadvantage to the IM method is long compu-
tation time, since the EM algorithm often requires many
iterations to converge. HALEY and KnotT (1992) and
MaRrTINEZ and CUrNOwW (1992) independently devel-
oped a simple regression method that usually approxi-
mates IM very well and requires much less computation.
Again, consider a backcross individual with genotype
g= 00 or Qqat the putative QTL. The Haley-Knott (HK)
regression method applied to backcross data consists
simply of regressing the individuals’ phenotypes on the
conditional probabilities for having genotypes QQ or Qg
atthe putative QTL, given the marker data. In other words,
an individual with marker data m is assumed to have
phenotype y|m ~ N (BooPr(QQ | m) + Pr(Qg |m), o?).
Since we need only to do a simple regression calculation
at each putative QTL position, there are great savings in
computation time compared to that of the IM method,
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something that is particularly important when general-
izing the methods for multiple-QTL models.

A number of studies have compared the IM and HK
methods (HALEY and KnoTT 1992; XU 1998a,b; Kao
2000), and in many cases the two methods provide
almost identical parameter estimates and test statistics.
There are, however, important differences; for instance,
it is well known that the HK method overestimates the
residual variance (Xu 1995; Kao 2000). In general, the
total genetic variance may be split into two parts, one
part originating from marker genotype variation and
one part from variation of QTL genotype given marker
genotypes. In the HK method the latter part is con-
tained in the residual variance estimate, sometimes
causing overestimation of the residual variance. Also,
Kao (2000), in an extensive comparison of the two
methods by computer simulations, found that epistasis
between QTL and linkage between QTL may lead to
large differences in power to detect QTL and efficiency
of parameter estimation. One further difference be-
tween the IM and HK methods concerns robustness in
the presence of nonnormal phenotype distributions.
In such cases the IM method may produce large spu-
rious LOD score peaks (BRomaN 2003; FEENSTRA and
SKOVGAARD 2004), something that the HK method avoids.

In this study, we develop an extension of the HK
method on the basis of estimating equations. In the
HK method the conditional mean of an individual’s
phenotype given marker data, E(y; | m,), is specified
correctly, but the conditional variance Var(y; | m;) is
incorrectly assumed to be constant. In the estimating
equation (EE) method, we develop joint estimating
equations for mean and covariance parameters, on the
basis of a coherent specification of both E(y; | m;) and
Var(y;| m;). It has been suggested to overcome the bias
of the HK method with an iteratively reweighted least-
squares (IRLS) approach using Var(y; | m;) to weight
observations (Xu 1995, 1998a,b). The IRLS method,
however, does not fully utilize information about the
mean parameters contained in the conditional variance
Var(y;|m;) and may be expected to be less efficient than
the estimating equation approach taken here.

We explore the performance of the proposed EE
method on a number of real and simulated data sets,
covering a range of different genetic models and data
setstructures. Comparison is made with the IM, HK, and
IRLS methods with respect to important performance
criteria, such as power, robustness, efficiency, bias, and
computational speed in implementations. We focus the
comparison on situations where either the HK method
or the IM method is suspected to perform poorly.

GENETIC MODEL

For simplicity, we consider = individuals from a
backcross population, but the results extend easily to
other kinds of crosses. Consider m different QTL,

indexed by j € {1, ... ,m}. At any given QTL, the jth
say, there are two possible genotypes: Q;Q; and Q;q;
making the total number of possible QTL genotypes in
the population 2”. The goal of a genetic model is to
relate the 2" possible genotypic values to a set of genetic
parameters, such that these parameters are interpret-
able in terms of main and epistatic effects of the m QTL.
We prefer a genetic model using orthogonal contrast
scales because it is consistent in the sense that the effect
of a QTL is consistently defined whether the genetic
model includes one, two, three, or more QTL (Kao and
ZENG 2002; ZENG et al. 2005). The relation between the
genotypic value G; of individual ¢ and the genetic
parameters can be expressed by

m m m
G =pn+ E ajXij + E bjkxljxik + E Ciki Xij Xik Xil + ..
= i<k j<h<1
(1)

with

. 3 ifhomozygote Q;Q;,
if Ly heterozygote Q ;q;,

i the mean genotypic value in the backcross popula-
tion, a; the main QTL effects, by, and ¢y, the two- and
three-locus epistatic effects, and the dots representing
fourth- and higher-order epistatic interactions. It is
common to include only pairwise interactions between
QTL (Kao et al. 1999; CARLBORG and ANDERSSON 2002),
and the genetic model is then reduced to

m

Gl' =W + Z a]xl] + Z bijyxik. (2)
j=1

j<k

For other kinds of crosses, such as Fy populations,
different contrast scales are needed to achieve orthog-
onality (ZENG et al. 2005).

STATISTICAL METHODS

A successful statistical model for QTL mapping
should relate the phenotypes of individuals to their
genotypes at the m putative QTL considered. Many
authors describe this relationship using the genetic
parameters mentioned above. However, we choose a
different parameterization with each of the 2" mean
parameters in the model corresponding to the geno-
typic value of an m-locus QTL genotype, as this makes
for a clearer presentation and comparison of the
statistical methods. We emphasize that the two param-
eterizations are equivalent and demonstrate later in this
section how to translate one type of parameter to the
other. Assuming independence between individuals
and given an m-locus genomic position, the statistical
model is given by
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yi:XiB+€i7 izlv"'an7 (3)

where y; is the quantitative phenotype; X; = (X, ...,
Xjon) is a row vector of length 2" indicating the multi-
locus QTL genotype; i.e., one of the X;; =1, the rest are
zeros; B = (By, ... ,Bon) " is the vector of parameters to
be estimated; and ¢; is a random error term with an
unspecified distribution. The relationship between the
model parameters 3 and the genetic model parameters
is important to guide the formulation of relevant hy-
potheses to test and to interpret the estimates from the
final model. Fortunately, estimates of the model param-
eters are readily translated to genetic parameter esti-
mates; we outline how to do this below.

A key QTL-mapping problem is how to deal with
missing genotype data, since the QTL genotypes, X, are
generally not observed. A number of approaches exist
for this; we briefly describe the IM and HK methods and
go on to introduce the proposed EE method.

Interval mapping: The interval-mapping method,
pioneered by LANDER and BoTsTEIN (1989) and gener-
alized to multiple loci by Kao et al. (1999), was the first
approach to fully exploit the fact that QTL are located in
intervals flanked by genetic markers with observed ge-
notypes. This means that given a genetic marker map
and a putative QTL position and assuming a map
function, we may calculate p;, = Pr(g|m,), the condi-
tional probability of QTL genotype g given the multi-
point marker data m, The IM method assumes that
¢; ~N(0, ¢?) in Equation 3 and models the pheno-
types given the observed marker data as a mixture of
normal distributions. The likelihood function for the
parameters, 3, o? is

L(B,O‘Q) = HZﬁzgf(% Bgvo-g) (4)
i g

with p;, defined as above and f(y; B, 0®) being the
density function of a normal distribution with mean B,
and variance .

Haley—Knott regression: The Haley—Knott regression
method deals differently with the missing observations
Xj, in the statistical model (3). Although the genotypes
Xjq are unobserved, we may calculate their conditional
expectations given the marker data. Actually, in the
case of backcross populations, E(X,;g\ m;) = p;,, since the
Xj, are indicator variables. The HK method replaces
X, with E(Xig|mi) in the regression (3), which then
becomes

yi=EX;|m)B+e¢, i=1,...,n, (5)
still assuming that ¢; ~ N'(0, &?). Thus, the likelihood
function is

L(Baag) = Hf <yi; Zpig8g7g2>7 (6>
t g

which may be maximized easily by standard regression
techniques.

An estimating equation method: Like the IM and HK
methods, the estimating equation method considers the
phenotype distribution given the marker data. Initially,
we assume that the marginal density function of the
phenotype, y;, given the marker data, m; for individual ¢
has the general form

SOilm) =" pief i | g), (7)
g

where p;, is defined as before and f{y|g) is the con-
ditional density function of y given the QTL genotype g
We make no specific assumptions about the f{y|g),
provided that these distributions have moments of at
least second order. Interval mapping is a special in-
stance of Equation 7 with the f{y| g) being normal dis-
tributions. We now obtain the following expressions for
the conditional mean and variance of the phenotypes
given the marker data

g
Var(y; | m;) = o7 = E[Var(y,| g) | m|]
+ Var[E(y; | g) | mj]

= 0-2 + Zﬁzgﬁi - l"“?? (9)
g

where B, is the mean in f{y|g). In Equation 9, we have
partitioned the phenotypic variance into two compo-
nents; the first component, %, is assumed to be the same
for all individuals and QTL genotypes and may be
interpreted as the environmental variance, whereas the
second component corresponds to the variance due to
uncertainty of QTL genotype given marker data and
varies with marker and QTL genotype.

To estimate the B parameters as well as o, we must
find a set of estimating equations for the parameters sat-
isfying the requirement that their expectation equals 0.
For simplicity, we further make the assumption in this
article that y;, | m; ~ N'(p;,0?). This resembles the as-
sumption in the HK method that y; | m; ~ N (;, 0%); we
view the method presented here as an extension of the
HK method that uses a coherent specification of both
E(y;| m;) and Var(y;| m;) by which the variance reflects
the uncertainty about the QTL genotype. We use the
resulting score equations as estimating equations for
the parameters. It should be emphasized, however, that
these score equations may be used perfectly well as
estimating equations without assuming normality.

The contribution of a single observation to the neg-
ative log-likelihood function for the normal model is

1

i — B\
—log g(yi) = const. —I—%loggl? +§<¥> .
g

Differentiating this function with respect to the param-
eters B, and o®, summing over individuals, and setting
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the resulting score function equal to 0 yields the esti-
mating equations

g,

2 o

3

1 21
EE,: 5 g =0, (11)

def

where z; = (y; — u,;)/0; and 8, dg(Bg — 1;)/0;. Note that
E(z) = 0 and E(z?) = 1, confirming that the ex-
pectations of the left-hand sides of both Equations 10
and 11 equal 0 as required.

The estimating equations must be solved numerically.
To do so, we implemented an algorithm that uses two
conditional maximizations in each iteration. First,
estimates of B, are updated by solving Equation 10
while keeping fixed ¢® and the B,’s that enter in o, and
z7. Second, an updated estimate of ¢” is obtained by
solving Equation 11 with the B,/’s fixed. We iterate until
the estimates converge.

Relation to iteratively reweighted least-squares re-
gression: XU (1995) first pointed out that the HK
method tends to give biased estimates of the residual
variance. It was suggested to correct the bias by using
Equations 8 and 9 for the conditional mean and
variance, respectively, of the phenotypes given full
marker data. Xu (1998a,b) further assumed that
y; |m; ~ N (p;,0%) and claimed to maximize the corre-
sponding likelihood function by the iteratively re-
weighted least-squares method. In the IRLS method,
the variance is written

2 _ 2
o, =077,

(2
both on ¢* and on the B, In the iterations, updated

parameter estimates are obtained by treating the v; as
known weights and performing weighted least-squares
regression,

where v; =1+ (1/02)(ng,~gB§ — w?); i.e, v; depends

g = (UTvu)lulvly (12)
and

G = y-URVIy-UR),  (13)

n—2"

with Va n X n diagonal matrix of the weights v;, y the
n-vector of phenotype observations, and

pun o prom
u=|: o (14)
pnl Tt pn,?'”
The above two equations correspond to Equations 7
and 8 in Xu (1998b). It may be shown that IRLS

iterations using Equations 12 and 13 are (asymptoti-
cally) equivalent with using

EEIRLS,Bg: Zplgyl _2Mi =0 (15)

g

as an estimating equation for B,and using

R
EE 5.0 Z(WTM_ 1) =0 (16)

as an estimating equation for ¢®. These estimating
equations are simpler than the ones (Equations 10
and 11) used in the EE method, and intuitively it might
be expected that the EE method captures more in-
formation about the parameters than the IRLS method.
In the APPENDIX, we demonstrate that the EE method is
indeed more efficient than the IRLS method under the
assumptions used here. Situations where the assump-
tion that y; |m; ~ N (p,, 0?) is not met are explored by
computer simulation in the RESULTS.

Estimating genetic parameters: To illustrate the
translation from genetic parameters in the genetic
model (1) to mean parameters in the statistical model
(3) and vice versa, we consider parameters from a model
with three loci in a backcross population.

At each QTL, we index homozygotes by 2 and
heterozygotes by 1, e.g., the parameter 91, corresponds
to QTL genotype Q; 01/ Qoqo/ Q3¢s5. Expressed in matrix
notation, the relation between the two types of param-
eters is

NN
Boa1 1 % %_% i_i_%_é a
Boro Tog—y 2% 4% @
Bar _ T og—5—3—i—i 1% as (17)
Bioo = 5 s—i—5 4 5 || b
a | |14 bt At ]
Bii2 1‘%‘% % i_%_}; % bos
Bin —37373 i 1 i/ \a

or B = Sy, where S is the genetic effect design matrix
and  is the vector of genetic parameters. Conversely, {
may be found from B by §y = S7'B. In the case where
there is no three-locus epistasis, i.e., ¢j93 = 0, there is a
constraint on the parameter vector § in the sense that
B111 can be expressed as a function of the other seven
Bg's. Writing the genetic effect design matrix as

Si1 Sie
S = ,
( So1 Sgo
where Sy is the top left 7 X 7 submatrix, we may express

Bii1 as

Bi1 = Sa1S1) By,
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where 7 is the restriction of § holding the first seven
parameters. Evaluating the expression yields 3117 = Bogeo
— Baa1 — P12 T Bai1 — Bizz t Bi21 + Bi1e- Obviously, for
other models and kinds of crosses different constraints
on 3 apply. These may be found in a similar manner.

RESULTS

We explored the behavior of the IM, HK, IRLS, and
EE methods over arange of real and simulated data sets.

As astarting point, we considered the simple situation
of detecting a single QTL and estimating its effect. A
backcross population was simulated with a single QTL
placed at the center of chromosome 1, which had a
length of 100 cM and six evenly spaced markers. Progeny
sizes of 50, 100, and 200 were considered and the
corresponding ranges of additive effects of the QTL
(@ in Equation 2) were 0.54-3.80, 0.34-2.00, and 0.20-
1.00, respectively. In each case, six different values for the
additive effect were simulated. Moreover, three different
genetic models were used in the simulation setup. First,
no other QTL were segregating in the population.
Second, a QTL of moderate effect (as = 0.60) was
segregating at a position unlinked to chromosome 1.
Third, two unlinked but strongly interacting QTL (as =
1.00, as = 1.00, and b3 = 4.00) were segregating at
positions unlinked to chromosome 1. The environmen-
tal variation was sampled from a standard normal
distribution in all cases. Single-locus scans were con-
ducted with all four methods to detect the QTL on
chromosome 1. In this simple setup there were only
minor differences between the methods for all genetic
models, and we therefore summarize the results in text
only. Power and precision of locating the QTL were
virtually the same for all methods as were mean param-
eter estimates. In accordance with previous reports (Xu
1995; Kao 2000) the HK method overestimated the
residual variance. There was a slight but consistent trend
that the lowest standard deviations and mean squared
errors on mean parameter estimates were seen with the
IM method followed by the EE, IRLS, and HK methods.

Since the differences in the simple simulation setup
were only minor, we focus our attention in the following
on more complicated situations where either the HK
method or the IM method is known to perform poorly.

Nonrandom missing data patterns: In many cases the
costs involved in genotyping an individual for a large
collection of genetic markers are much higher than the
costs of obtaining the individual’s phenotype. In such
situations, selective genotyping, where individuals with
extreme phenotypes are genotyped much more heavily
than intermediate ones, may be an effective strategy for
reducing experimental costs without losing much in-
formation about the QTL behind the trait of interest
(LANDER and BoTsTEIN 1989; DaArvast and SOLLER
1992; SEN et al. 2005). It appears, however, that the HK

method is particularly sensitive to the special kind of
nonrandom missing data that follow from selective
genotyping.

Consider, for example, the data set consisting of 250
backcross mice studied for hypertension in SUGIYAMA
et al. (2001). Initially, individuals with extreme pheno-
types were genotyped; in regions showing evidence for
QTL, all individuals were genotyped and additional
markers were added. Further, at some markers only
recombinant individuals were genotyped. In 8 of the 19
autosomes, only 46 individuals in each extreme of the
phenotype distribution were genotyped; i.e., the middle
158 individuals were not genotyped for any markers on
those chromosomes. When those eight chromosomes
are scanned with both the IM and the HK methods, the
LOD curves produced by the HK method exceed those
produced by the IM method, with differences of up to 1
LOD score unit. If, however, the phenotypes of in-
termediate individuals are discarded, the LOD curves
produced by the HK method are virtually indistinguish-
able from those produced by the IM method for the
eight chromosomes considered (results not shown).

To further investigate this behavior of the HK
method, we simulated 250 backcross individuals and a
single chromosome of length 100 cM with 10 markers
and a QTL at position 45 cM explaining 14% of the
phenotypic variance. We scanned the simulated chro-
mosome with one-locus versions of the IM, HK, and EE
methods in the case where all individuals had complete
marker data, but we also considered the case of selective
genotyping by letting observations from the 40th to the
60th percentile in phenotype distribution have missing
observations for all markers on the chromosome.

Figure 1 shows that discarding marker genotypes
for individuals in the middle 20% of the phenotype
distribution inflates the HK LOD curve over the whole
range of the chromosome compared to using the HK
method with all marker data and compared to using the
IM method. The inflation is most pronounced at the
peak of the LOD curve. The EE method almost
completely avoids this problem of inflated LOD curves.
In Figure 1, it can be seen that the LOD curves for the
EE method are close to the IM curve, both in the case of
full marker data and in the case of selective genotyping.

A closer look at the HK method explains the
phenomenon of inflated LOD curves. The one-locus
regression may be written

yi =By T (Bog — Bg)Pr(QQ [m;) + e,

where ¢; ~ N (0,0%). In Figure 2, regression lines are
shown for the position with the largest LOD score.
Observations from the middle 20% of individuals are
shown as solid dots and other observations as open
circles.

In Figure 2, left, full marker data are used. There
is indeed a QTL effect, as the regression line is not
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FIGURE 1.—A simulation example of QTL mapping with a population of 250 backcross individuals and a single QTL at 45 cM.
The right side magnifies the box in the left side. The HK method inflates the LOD curve in the case of selective genotyping. The
EE method almost completely avoids inflation of the LOD curve.

horizontal. In Figure 2, right, the middle 20% of
individuals have missing marker data. Thus, there is
no marker information for those individuals about
Pr(QQ | m;) and this probability therefore equals 0.5.
Consequently, the points corresponding to the middle
20% of individuals are translocated horizontally to
Pr(QQ|m;) = 0.5, thereby removing positive residuals
from the low end of the regression line and negative
residuals from the high end, causing the line to become
steeper. Furthermore, the points cluster closer around
the regression line with selective genotyping, meaning

that the likelihood under the alternative is larger. It is,
however, unchanged under the null hypothesis of no
QTL effect, since the points do not move vertically, and
the LOD score is thereby inflated. Also, the steeper
slope of the regression line means that the size of the
QTL effect is overestimated by the HK method in the
case of selective genotyping.

As may be seen from the simulation example in
Figure 1, the EE method almost completely avoids this
problem, as it weights observations by their inverse
variances. Thus, observations with large variance due to

Ficure 2.—Haley-Knott regression
lines at the position with largest LOD
score in a simulated data set. Lines are
shown in the case of full marker data
(left side, dashed line) and in the case
of selective genotyping with missing
marker data for the intermediate 20%
of individuals (right side, solid line).
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uncertainty of QTL genotype [i.e., Pr(QQ|m;) close to
0.5] have little weight in the likelihood calculation.

Nonnormal phenotype distributions: In earlier work,
we have considered QTL mapping strategies in situa-
tions where the phenotype distribution deviates from a
normal distribution (BromaN 2003; FEENSTRA and
SKOVGAARD 2004). The IM method can occasionally
produce spurious LOD score peaks in regions of low
genotypic information (e.g., widely spaced markers),
especially if the phenotype distribution deviates mark-
edly from a normal distribution. This is caused by the
fact that the IM method models the phenotype distri-
bution as a mixture of two or more normal distributions
when a QTL is included in the model, while only using a
single normal distribution under the null hypothesis. If
the phenotype distribution is not normal, the model
including a QTL may fit the data much better than the
null model, even if there is no real QTL and no genetic
marker information (FEENSTRA and SKOVGAARD 2004).

In FEENSTRA and SKOVGAARD (2004), we considered
models with a single QTL and developed a two-component
mixture model that avoids the problem of spurious
LOD score peaks. Here, we broaden our view to models
with more than one QTL with possible epistatic inter-
actions between loci. It appears that the problem of
spurious LOD score peaks gets worse when the IM
method is used to map more QTL simultaneously.

Figure 3 shows the results of two-QTL scans of a
simulated data set consisting of 80 backcross individu-
als, five chromosomes of length 140 cM with 12,12, 8, 6,
and 4 markers, respectively, and two epistatically inter-
acting QTL on chromosome 1 at position 45 cM and
chromosome 2 at position 5 cM, respectively. In Figure
3A, results for the IM method are shown. It can be seen
that the interacting QTL on chromosomes 1 and 2 are
detected with high LOD scores. However, there are also
large areas in the plot corresponding to combinations
of positions on other chromosomes with high LOD
scores. These high LOD score areas involve chromo-
somes with few markers, i.e., little genetic information,
strongly suggesting that this is the same kind of artifact
as the spurious LOD score peaks seen in one-QTL scans.
In this simulation example, the residual variation was
normal, but the influence of the two interacting QTL
caused the phenotype distribution to be nonnormal,
thereby allowing the phenomenon of artificially high
LOD scores at other positions.

The HK method is known to be quite robust toward
nonnormal phenotype distributions (REBaf 1997), and
both the HK and the EE methods are immune to the
artifact of spurious LOD score peaks, since single nor-
mal distributions are used both when one or more QTL
are included in the model and under the null hypoth-
esis of no QTL effect. Figure 3B shows LOD scores for a
two-QTL scan of the same data set by the EE method.
The interacting QTL on chromosomes 1 and 2 are de-
tected, but no other combinations of positions show
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F1cure 3.—LOD scores for a two-dimensional, two-QTL ge-
nome scan of a simulated population of 80 backcross individ-
uals with two interacting QTL on chromosomes 1 and 2.
Values below the diagonal correspond to a test of two addi-
tively acting QTL vs. none. Values above the diagonal corre-
spond to a test for two-locus epistasis. In the gray-tone scale,
the numbers to the right and left correspond to values below
and above the diagonal, respectively. (A) Results from the IM
method. (B) Results from the EE method.

high LOD scores. The HK method gave very similar re-
sults to the EE method for these data (results not shown).

Epistasis between QTL: In an extensive analytical and
simulation-based comparison between the IM and HK
methods, Kao (2000) found that there may be signifi-
cant differences between the two methods, especially if
QTL interact or are linked. Here, we focus on the situa-
tion where two unlinked QTL interact. We use the simula-
tion setup from Table 3 in Kao (2000) and also include
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TABLE 1

Comparison of the IM, HK, IRLS, and EE methods applied to simulated data under different strengths of epistasis

1:1:1 1:1:2 1:1:3
Mean SD MSE Mean SD MSE Mean SD MSE
p=0
M 0.001 0.061 0.004 0.001 0.070 0.005 0.004 0.086 0.007
HK 0.000 0.063 0.004 0.001 0.074 0.006 0.003 0.091 0.008
IRLS 0.000 0.062 0.004 0.001 0.072 0.005 0.003 0.088 0.008
EE 0.000 0.062 0.004 0.001 0.072 0.005 0.002 0.088 0.008
ay = 1
M 0.998 0.136 0.019 0.995 0.164 0.027 1.018 0.181 0.033
HK 1.000 0.155 0.024 0.991 0.185 0.034 1.024 0.220 0.049
IRLS 1.001 0.152 0.023 0.993 0.181 0.033 1.024 0.212 0.046
EE 0.999 0.143 0.021 0.995 0.172 0.030 1.020 0.192 0.0387
a =1
M 1.003 0.145 0.021 1.001 0.157 0.025 0.995 0.178 0.032
HK 1.003 0.160 0.026 1.003 0.178 0.032 1.000 0.215 0.046
IRLS 1.003 0.158 0.025 1.004 0.173 0.030 1.002 0.207 0.043
EE 1.004 0.151 0.023 1.003 0.163 0.027 0.996 0.188 0.035
bio
M 0.987 0.289 0.084 2.005 0.342 1.128 2.986 0.395 4.101
HK 0.984 0.385 0.149 1.998 0.434 1.185 3.024 0.518 4.364
IRLS 0.984 0.385 0.148 1.997 0.433 1.182 3.024 0.517 4.364
EE 0.990 0.314 0.099 2.002 0.370 1.141 3.014 0.459 4.265
0.2
M 0.548 0.073 0.006 0.731 0.092 0.009 1.026 0.127 0.018
HK 0.776 0.081 0.052 1.080 0.114 0.122 1.556 0.158 0.268
IRLS 0.560 0.091 0.008 0.751 0.131 0.017 1.035 0.187 0.036
EE 0.543 0.085 0.008 0.728 0.117 0.014 1.009 0.162 0.029
P =05
M 0.511 0.064 0.004 0.511 0.057 0.003 0.514 0.056 0.003
HK 0.426 0.062 0.009 0.414 0.063 0.011 0.416 0.065 0.011
IRLS 0.508 0.083 0.007 0.505 0.088 0.008 0.517 0.092 0.009
EE 0.514 0.075 0.006 0.513 0.074 0.006 0.522 0.075 0.006
LRT
IM 83.0 17.3 80.5 16.2 77.2 15.5
HK 73.6 16.4 65.1 14.7 61.3 14.4
IRLS 80.0 17.2 75.2 16.0 71.7 15.5
EE 80.6 17.2 75.8 16.0 72.3 15.5

For each combination of simulated parameters, 1000 replicates, each with sample size 200, were analyzed with QTL located in the
middle of two unlinked 40-cM marker intervals. o2 = 0.5625 for effect 1:1:1; ¢* = 0.75 for effect 1:1:2; o> = 1.0625 for effect 1:1:3.
b2 =1, 2, and 3 for the three effect ratios, respectively. /%, the broad sense heritability (proportion of variance explained by QTL).

the IRLS and EE methods in the comparison. Data were
generated from a genetic model with two unlinked epi-
static QTL with genetic parameters p. =0, a1 =1, as =1,
and b9 =1, 2, or 3 (¢f. Equation 1). Thus, the strength of
epistasis was increased compared to the additive effects
of the QTL. Estimates of the genetic parameters, 0%, and
the broad sense heritability, A* (see, for example,
FAaLcoNER and MaAckay 1996), were recorded as well
as likelihood-ratio test (LRT) statistics comparing the
full model with a null model of no QTL.

Table 1 displays the simulation results. The means
of the estimated main and epistatic effects by the four
methods are almostidentical and very close to the true
values for all three degrees of epistasis. Standard
deviations (SDs) and mean square errors (MSEs) are
smallest for the IM method, slightly larger for the
EE method, and largest for the HK method. The
IRLS method resembles the HK method with respect
to SDs and MSEs for the main and epistatic effect
estimates.
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As in Kao (2000), we find that the most conspicuous
difference between the IM and HK methods is the bias
of the HK method in the estimation of ¢ and /2. The EE
method does not show this bias and provides almost
identical estimates of ¢* and #* to those by the IM
method (Table 1). The IRLS method also performs very
well in this respect.

We note that the results are in good accordance with
those from Kao (2000), with one exception. When cal-
culating the genetic variance component, and thereby
the heritability for the HK method, Kao (2000) does
not use the model that the data were simulated from
(Equation 3). Rather, it appears that the modified re-
gression model (Equation 5) is used for calculating the
genetic variance. Indeed, when calculating the genetic
variance on the basis of Equation 5 we get /A*estimates
for the HK method of 0.310, 0.279, and 0.259 for the
three levels of epistasis, which are very close to the values
0.302, 0.277, and 0.255 reported by Kao (2000). Thus,
while our estimates of #* by the HK method are also
clearly biased (Table 1), our findings indicate that the
bias in Kao (2000) is exaggerated. In any case, the EE
method avoids the bias and approximates the IM
method very well for all parameter estimates and with
respect to the LRT statistics. In addition, it is superior
to the IRLS method, considering the efficiency of the
parameter estimates.

Linked QTL: The most pronounced differences
between the IM and HK methods are found when two
QTL of opposite effect are linked (Kao 2000). Here we
focus on that situation, using the simulation setup from
Table 5 in Kao (2000) and also including the EE and
IRLS methods in the comparison. Data were generated
from a genetic model with two linked QTL of opposite
effects without epistasis (W =0, a; =1, as = —1, 19 =0,
¢f. Equation 1). The two QTL were placed in two
neighboring 40-cM intervals and were 10, 20, 30, or 40
cM apart from each other. Haldane’s map function was
used.

Table 2 shows the simulation results. Again, the
means of the estimates of W, a1, and ay are close to the
true values for all four methods, and again the IM
method has the lowest MSEs on the paramater esti-
mates, followed by the EE method and then the IRLS
and HK methods. Estimates of ¢? and #* from the HK
method are even more biased than in the epistasis case.
Again, the IM, IRLS, and EE methods provide very
similar estimates of o* and #°. Like in the epistasis sim-
ulations, the results are in good accordance with those
reported in Kao (2000) with the exception that the
I*-estimates for the HK method are not as dramatically
biased as those in Kao (2000).

As for the power to detect two QTL, the EE method
provides higher LRT statistics and greater power com-
pared to the HK and IRLS methods. When the two QTL
are >20 cM apart, the LRT statistics and power results
are similar for the IM and EE methods. However, for

QTL only 10 cM apart, the LRT statistics from the IM
method are more than twice as large as those from the
EE method, three times larger than the IRLS statistics,
and five or six times larger than those from the HK
method (Table 2). This is related to the phenomenon of
spurious LOD score peaks that the IM method occa-
sionally shows with nonnormal phenotype distributions.
The residual variance used for the simulations when the
QTL were only 10 cM apart was small (0.091) compared
to the additive effects. This means that phenotype
distributions resulting from the simulations bore much
closer resemblance to a mixture of three normal
distributions (with means —1, 0, and 1 as given by the
two-locus additive model) than to one with two normals
(corresponding to a one-locus model). Indeed, the two
additive QTL were detected with high LRT statistics and
high power.

However, this did not come without a price. To
investigate the effect on chromosomes unlinked to
QTL we simulated a second chromosome with the same
marker spacing, but with no QTL on it, while retaining
the phenotypes (which are strongly influenced by the
QTL on chromosome 1). We then considered positions
on this second chromosome that mirrored the positions
of the QTL on the first chromosome and calculated LRT
statistics for going from a model with two additively
acting QTL on the second chromosome to a model with
just one QTL (data not shown). Since there were no
QTL on this second chromosome, we would expect low
LRT statistics. On the contrary, very high LRT statistics
were observed for the IM method (the 95th percentile
was at 35.5), strongly suggesting that the phenomenon
of spurious LOD score peaks had occurred. The HK,
IRLS, and EE methods did not show such high LRT
statistics on the unlinked chromosome (the 95th
percentiles were at 4.2, 6.0, and 3.8, respectively).

Taking a closer look at the LRT statistics for the IRLS
method on this second chromosome with no QTL on
it revealed another problem. Following Xu (1998a,b)
we calculate LRT statistics for the IRLS method using
the likelihood based on the assumption that y; |m; ~
N (p;, 02). However, it follows from the APPENDIX that
the IRLS method does not give maximum-likelihood
estimates corresponding to this likelihood (in contrast
to the EE method). Thus, the LRT statistics for the IRLS
method are not guaranteed to be nonnegative. In fact,
analyzing the second chromosome with no QTL while
keeping the phenotypes, which are influenced by the
two 10-cM-apart QTL on the first chromosome, yielded
negative LRT statistics for the IRLS method in ~400 of
1000 simulation replicates with the 10th percentile
being at —1.2.

In summary, these simulations have shown that the EE
method approximates the IM method very well when
two loci with opposite effects are closely linked. The EE
method avoids the bias shown by the HK method,
estimates the parameters more efficiently than the IRLS
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TABLE 2

Comparison of the IM, HK, IRLS, and EE methods applied to simulated data under different strengths of linkage

10 cM 20 cM 30 cM 40 ctM
Mean MSE Mean MSE Mean MSE Mean MSE
nw=20
M —0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002
HK 0.000 0.001 0.002 0.002 0.001 0.002 0.001 0.002
IRLS 0.000 0.001 0.002 0.001 0.001 0.002 0.001 0.002
EE 0.000 0.001 0.002 0.001 0.001 0.002 0.001 0.002
ay = 1
M 0.961 0.062 0.985 0.014 0.988 0.015 0.996 0.015
HK 1.023 0.218 0.997 0.095 0.985 0.059 1.012 0.038
IRLS 1.023 0.217 0.997 0.095 0.986 0.058 1.013 0.038
EE 0.931 0.167 0.987 0.035 0.989 0.024 1.002 0.019
as = -1
M —0.962 0.060 —0.985 0.013 —0.987 0.015 —0.993 0.015
HK —1.026 0.218 —-0.997 0.093 —0.986 0.059 —1.010 0.039
IRLS —1.024 0.215 —0.997 0.093 —0.984 0.058 —1.009 0.039
EE —0.932 0.166 —0.986 0.034 —0.987 0.024 —0.999 0.020
0.2
M 0.090 0.000 0.165 0.001 0.225 0.001 0.271 0.002
HK 0.174 0.008 0.305 0.021 0.400 0.032 0.458 0.036
IRLS 0.085 0.003 0.163 0.005 0.229 0.006 0.271 0.005
EE 0.088 0.001 0.161 0.002 0.222 0.003 0.267 0.003
=05
M 0.495 0.004 0.495 0.006 0.498 0.007 0.503 0.007
HK 0.346 0.053 0.347 0.040 0.353 0.033 0.381 0.022
IRLS 0.523 0.088 0.506 0.053 0.492 0.033 0.512 0.021
EE 0.509 0.034 0.505 0.022 0.502 0.014 0.511 0.011
LRT
M 39.7 15.0 31.4 12.1 35.6 12.3 46.3 13.3
HK 8.0 5.5 14.8 7.8 23.3 10.1 36.5 12.5
IRLS 14.8 10.9 22.9 10.9 31.0 11.5 43.3 13.0
EE 19.7 11.1 25.4 11.2 32.7 11.7 44.3 13.1
LRT,
M 38.7 15.0 30.0 11.9 32.8 11.9 40.0 12.3
HK 7.0 5.4 13.5 7.6 21.0 9.7 31.2 11.5
IRLS 13.8 10.9 21.5 10.7 28.4 11.1 37.2 12.0
EE 18.7 11.0 24.0 11.0 29.9 11.3 38.0 12.0
LRT,
M 38.6 15.0 30.0 12.0 32.8 11.9 40.2 12.3
HK 7.0 5.3 13.5 7.6 20.9 9.7 31.4 11.5
IRLS 13.8 10.9 21.5 10.8 28.3 11.1 37.4 12.0
EE 18.6 11.0 24.0 11.0 29.8 11.3 38.2 12.0
Power (%)
M 99.4 98.1 99.3 99.9
HK 32.8 70.8 92.3 98.8
IRLS 66.1 89.7 98.3 99.5
EE 82.1 94.6 99.2 99.7

For each combination of simulated parameters, 1000 replicates, each with sample size 200, were analyzed with two QTL contrib-
uting 50% of the total phenotypic variance. The QTL were located in two neighboring 40-cM marker intervals 10, 20, 30, or 40 cM
apart. 0 = 0.091 for distance 10 cM; 0 = 0.165 for distance 20 cM; 0® = 0.226 for distance 30 cM; o* = 0.275 for distance 40 cM. LRT
is the likelihood-ratio test for Hy: ¢ = 0 and ap = 0. LRT} is the likelihood-ratio test for Hy: a; = 0 and ay # 0. LRTy is the likelihood-
ratio test for Hy: as = 0 and a; # 0. Power is taken to be the percentage of replicates with LRT; > 7.88 and LRTs > 7.88. For the
LRT quantities, numbers in the MSE columns are standard deviations. /* is the proportion of variance explained by the QTL.

GZ0Z YdJe| /0 UO Jesn ss800Yy Jaquisj BoLswy Jo A18100S sonsuas) Aq v201909/6922/7/S L L /olo1e/sonausb/woo dno oliweapeoe//:sdiy Woll papeojumod]



QTL Mapping Using Estimating Equations 2279

method, and also avoids problems with artificially high
LRT statistics on other chromosomes observed with the
IM method and negative LRT statistics seen with the
IRLS method.

DISCUSSION

Most quantitative traits are believed to be influenced
by multiple QTL that may interact, and it is therefore
desirable to model the effect of these QTL simulta-
neously. This may, however, pose a formidable compu-
tational burden even for a moderate number of loci,
since the number of possible models increases expo-
nentially with the number of loci considered in the
model. These computational problems may be ad-
dressed along two main lines of attack.

First, the multidimensional model space may be
searched much more efficiently compared to doing an
exhaustive grid search. More efficient model search pro-
cedures include techniques such as forward selection
and backward elimination to search through nested
sequences of models (BRoMaN and Speep 2002),
randomization algorithms such as Markov chain Monte
Carlo (Y1 2004) or a genetic algorithm (CARLBORG et al.
2000), and deterministic global optimization algo-
rithms that repetitively divide the search space into
smaller parts (LJUNGBERG et al. 2004).

Second, any model space search procedure will
involve fitting the statistical model many times. Thus,
a fast and efficient method for estimating model
parameters is needed to reduce total computation time.
Currently, the HK method is preferred as a fast
approximation to the IM method for estimating model
parameters. However, the HK method is known to
produce biased estimates of the residual variance and
to be sensitive to epistasis and linkage between QTL.

We have focused on the latter issue, fitting multilocus
QTL models fast and efficiently. An extension of the HK
method is proposed and formulated using estimating
equations. This EE method involves simultaneously
solving estimating equations for both mean and vari-
ance parameters. We have compared the IM, HK, IRLS,
and EE methods primarily by computer simulation,
focusing on situations where either the HK method or
the IM method performs poorly.

It is found here that the HK method is sensitive to
certain missing data patterns, e.g., as arise from selective
genotyping. With such data, the HK LOD curve may be
artificially inflated over large stretches of the genome.
The EE method alleviates this problem and produces
LOD curves very similar to IM LOD curves. Also, the HK
method suffers from large bias in the estimation of the
residual variance and has lower power to detect QTL
than the IM method, especially in situations of epistati-
cally interacting QTL or QTL that are linked (Kao
2000). Here, it is found that the EE method approx-
imates the IM method more closely in cases of epistasis

or linked QTL: it produces unbiased estimates of the
residual variance, it has smaller standard deviations on
the parameter estimates than the HK method, and it has
high power to detect even closely linked QTL of
opposite effect.

In comparison to the IM method, the EE method has
increased robustness toward nonnormal phenotype dis-
tributions. The IM method occasionally produces large
spurious LOD score peaks in regions with little marker
information if the phenotype distribution deviates
markedly from a normal distribution (FEENSTRA and
SKOVGAARD 2004). This artifactis caused by the fact thata
mixture distribution with many components always
produces a better fit than a mixture with few compo-
nents. It is found that the problem is aggravated for
models with multiple loci. The HK and EE methods are
immune to this problem, since single normal distribu-
tions are used both for full and for reduced models.

The EE method is not as fast as the HK method, since
it involves solving a set of estimating equations numer-
ically. Still, it may provide gains in computational speed
compared to the IM method. In full two-locus genome
scans, for example, our implementation of the EE
method was twice as fast as the IM method in compu-
tation time, and we expect additional gains in speed
when the code has been further optimized.

We have demonstrated analytically in the APPENDIX
that the EE method is more efficient than the HK and
IRLS methods under the assumption that y;|m; ~
N (p;,0%). Admittedly, this assumption may often be
violated; the residual variation of certain traits may be
inherently nonnormal and the effects of major QTL
may also cause the phenotype distribution to deviate
from normality. It is evident, however, from the simu-
lations investigating epistasis and linkage that the EE
method can also be very efficient compared to the HK
and IRLS methods in cases where y; | m, is clearly not
normally distributed. Moreover, the IRLS method may
result in negative LRT statistics, something that the EE
method avoids.

The estimating equations used by the EE method
involve weighted linear combinations of the simple esti-
mating functions y; — p;and (y; — p;)*/0? — 1. Under the
assumption taken by the HK, EE, and IRLS methods that
y; |m; ~ N(w;, 02), it may be shown that the EE method
is asymptotically optimal in the sense that any other linear
combination of the simple estimating functions gives rise
to estimates with a larger asymptotic covariance matrix
(GopaMee and HeyDpE 1987). A further development
might be to assume a specific distribution of the residuals
in Equation 3 and derive optimally weighted combinations
of the simple estimating functions on the basis of this
distribution. We anticipate that the gain in efficiency
compared to the EE method will be minimal and possibly
at the expense of greater numerical instability.

Few authors have employed estimating equations
for mapping QTL in experimental crosses. LANGE and
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WHITTAKER (2001) provide a recent exception and
develop a generalized estimating equation (GEE) ap-
proach for QTL mapping of multiple correlated traits.
However, in contrast to the EE method, these authors
assume that the variance due to uncertainty of QTL
genotype given marker genotype could be ignored. This
is the same assumption taken by the HK method, which
may lead to problems of inflated LOD curves, biased
variance estimates, and low power, as seen here. It might
be worthwhile to pursue the estimating equation
approach further compared to this presentation. For
instance, the EE method, as proposed here, tests
hypotheses by likelihood-ratio tests based on a normal
model. It would, however, be perfectly possible to still
obtain parameter estimates by solving the estimating
equations (Equations 10 and 11), but then use, e.g,
score-type test statistics for hypothesis testing. This
could possibly contribute some extra robustness com-
pared to using the EE method in conjunction with LRT
statistics.

In conclusion, the estimating equation method pre-
sented here may be used as a fast and efficient approach
for mapping multiple QTL. Generally, it performs
better than the HK method at approximating the IM
method. Importantly, it avoids problems shown by the
HK method in situations with special missing data
patterns, epistasis, and linked QTL. Furthermore, the
EE method is more robust than the IM method toward
nonnormal phenotype distributions, and it is computa-
tionally faster. These issues become especially important
in the analysis of multiple-QTL models.

The EE method was implemented with new functions
soon to be incorporated in the QTL mapping software
R/qtl (BROMAN et al. 2003), an add-on package for the
general statistical software, R (IHAKA and GENTLEMAN
1996; R DEVELOPMENT CORE TeAM 2005).
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APPENDIX

To demonstrate that the EE method yields more efficient estimates of the mean parameters, 3, than the IRLS
method, we take a closer look at the estimating equations. We let Ggg(y; 0) denote the 2" + 1 vector of estimating
functions for the EE method, i.e., Ggr(y; 0) corresponds to the left-hand sides of the estimating equations (Equations
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10 and 11). Similarly, Giris(y; 6) denotes the estimating functions for the IRLS method, corresponding to the left-
hand sides of Equations 15 and 16.

In general, the asymptotic distribution of an estimator @ that solves a set of estimating equations G(y; 8) = 0 is
Gaussian with mean 6 and variance of the so-called sandwich form

var(h) = (1 (22} )  (Vary (Gly:0) (& (%))

The information matrix may be found by inverting Var(0):

i(6) = <Ee (E)Gé;(;,@)) ) T(Vare(G(Y; 8)))"! (Ee (acgé,e)) > :

Assuming that y; |m; ~ N (p,,0%) (or slightly more generally, that the third and fourth cumulants are zero) the
information matrices for the EE and IRLS methods are given by the matrix expressions (derivations not shown)

. 1/ oMM" + KKT KLT
ize(8) = 2< LK" LLT (A1)
. 1/ 2MMT + (K1) (1I'K")  (KL,)(L1,)
ires(6) = 5 1 TRT 1 ’ (A2)
2 %(Lln)(an ) Q(Lln)(Lln)
where
1 Oy 1 0w, i@;t% i@o’i
o1 0By o OB, o OB, o, OBy
M= : o : and K= : :
10w, 1 0p, 1 do? 1 do?
01 OBgn 0y OBgn o2 OBgn o2 OBgn
(i.e., 2™ X n matrices), and L = (1/0’% .. 1/0'31) (i.e., 21 X nmatrix), and 1, is the identity vector of length n.

To invert the information matrices, we use the following result about inverting a partitioned square matrix. Let
A A
A— 11 12 ,
A Ay
then

Al — (A1 — AjpAgy Agy) ! —A A2 (A — A9 AT A) !
—(Age — A9 A Ae) Ay A (Ago — Ag1A[}App) !

The submatrix corresponding to Aj; — Aj9As3Ag; may be considered the effective information about the mean
parameters, 3, since inverting it yields the asymptotic variance on the estimate of 3. The effective information matrices
for the EE and IRLS methods are

efr,, = MM +JKK" — JKL"(LL") 'LK" (A3)
et s = MM + 2-(K1,)(1)K") — &K1, (L1,)n(L1,) ' (L1,)'L(L1,)1]K".
= MM (A4)
Consider the difference between the effective information for the two methods:
Alegr = fepry, — letrys = JKK' — JKLT(LL")'LK".

By a matrix version of the Cauchy-Schwarz inequality (MARSHALL and OLKIN 1990) it can be seen that Aigg is positive
definite. Thus, by inverting the effective information matrices we get that Var(Bgy) — Var(Br.s) is negative definite
asymptotically; i.e., the EE method estimates the mean parameters more efficiently than the IRLS method.
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We also consider efficiency under the HK method. The closed-form expression for the estimator of 3 is
Brk = (U'u)-'uty
with U defined as in Equation 14. The variance of the estimator is
Var(Byx) = (UTU) " 'UVar(y)u(uTu) 1.

The corresponding effective information about 3 may be found by inverting this matrix, since the estimator of 3
is independent of that of o* under HK regression. This matrix may be written

fefr,e = MNT(NNT)INMT

with M as previously defined and

B
9B, "oB,
N= : . :
o1 8““1 e o 6”‘%
8Bq71 "an71

Consider now the difference between the effective information for the IRLS method and that for the HK method
ieffIRLs - ieffHK =MM' — MN" (NNT)ilNMT'

Again, it follows from the matrix version of the Cauchy-Schwarz inequality MARSHALL and OLKIN (1990) that
leffi s — leffyy, 1S positive definite and consequently that Var(Bgr; s) — Var(Byx ) is negative definite asymptotically. Thus
the EE method is more efficient than the IRLS method, which in turn is more efficient than the HK method.
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