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ABSTRACT The mouse Collaborative Cross (CC) is a panel of eight-way recombinant inbred lines: eight diverse parental strains are
intermated, followed by repeated sibling mating, many times in parallel, to create a new set of inbred lines whose genomes are random
mosaics of the genomes of the original eight strains. Many generations are required to reach inbreeding, and so a number of investigators
have sought to make use of phenotype and genotype data on mice from intermediate generations during the formation of the CC lines
(so-called pre-CC mice). The development of a hidden Markov model for genotype reconstruction in such pre-CC mice, on the basis of
incompletely informative genetic markers (such as single-nucleotide polymorphisms), formally requires the two-locus genotype
probabilities at an arbitrary generation along the path to inbreeding. In this article, I describe my efforts to calculate such probabilities.
While closed-form solutions for the two-locus genotype probabilities could not be derived, I provide a prescription for calculating such
probabilities numerically. In addition, I present a number of useful quantities, including single-locus genotype probabilities, two-locus
haplotype probabilities, and the fixation probability and map expansion at each generation along the course to inbreeding.

THEmouse Collaborative Cross (CC) is a panel of eight-way
recombinant inbred lines (RIL): eight diverse parental

strains are intermated, followed by repeated sibling mating,
many times in parallel (see Figure 1D), to create a new set of
inbred lines whose genomes are random mosaics of the ge-
nomes of the original eight strains (Complex Trait Consortium
2004; Collaborative Cross Consortium 2012). There are sim-
ilar efforts for Drosophila (Macdonald and Long 2007) and
Arabidopsis (Kover et al. 2009); the panels will serve as im-
portant reference populations for the systemic genetic analy-
sis of complex traits.

Many generations are required for inbreeding of such RIL,
and so a number of investigators have sought to make use of
phenotype and genotype data on mice from intermediate gen-
erations during the formation of the CC lines: the pre-CC mice
(e.g., see Aylor et al. 2011). The mapping of quantitative trait
loci (QTL) with data on pre-CC mice, whether by interval
mapping (Lander and Botstein 1989) or Haley–Knott regres-

sion (Haley and Knott 1992), requires the calculation of con-
ditional genotype probabilities given incompletely informative
marker data (e.g., at single-nucleotide polymorphisms). Such
probabilities are generally derived using a hidden Markov
model (HMM). The construction of an HMM for pre-CC mice
formally requires the calculation of two-locus diplotype proba-
bilities at arbitrary generations along the course to inbreeding.
Thus, I sought to calculate single-locus genotype probabilities
and two-locus diplotype probabilities at generation G2 : Fk (see
Figure 1D), with the latter being a function of the recombina-
tion fraction between the two loci.

Previous work on genotype probabilities in RIL has fo-
cused largely on the final lines (Haldane and Waddington
1931; Broman 2005; Teuscher and Broman 2007), although
Haldane and Waddington (1931) did calculate a portion of
the probabilities for intermediate generations in two-way
RIL by selfing. More recently, Johannes and Colomé-Tatché
(2011) fully derived the two-locus genotype probabilities
for two-way RIL by selfing and described numerical calcu-
lations for the autosome in two-way RIL by sibling mating.

Here I extend these results to the case of four- and eight-way
RIL by selfing and sibling mating, including consideration of the
X chromosome. The basic problem is to calculate the k-step
probabilities of a Markov chain with many states. While I was
not able to obtain closed-form solutions for the two-locus dip-
lotype probabilities at Fk in RIL by sibling mating, I do provide
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recipes for calculating the probabilities numerically. And I was
able to obtain closed-form solutions for single-locus genotype
probabilities and two-locus haplotype probabilities. Further, I
derived the fixation probability and map expansion at Fk. These
latter results have important applications: the single-locus ge-
notype probabilities could be useful in efforts to identify regions
under selection, through the comparison of observed to ex-
pected genotype frequencies; the fixation probability can be
interpreted as the expected proportion of the genome that is
fixed; and the map expansion results indicate the accumulation
of recombination events over generations.

Methods

The generation of two-way RIL by selfing and of two-, four-,
and eight-way RIL by sibling mating is shown in Figure 1.

The notation for generation numbers for RIL can be confus-
ing. The numbering indicated in Figure 1 is used through-
out, with F1 being the first generation in which all parental
alleles are present in a single individual. In the following, I
abbreviate G1 : Fk in four-way RIL and G2 : Fk in eight-way
RIL as simply Fk. In particular, G1 in four-way RIL and G2 in
eight-way RIL is called F0.

Consider a particular crossing strategy, and let Xk denote
the parental type at generation Fk. For RIL by selfing, this is
the diplotype of the individual; for RIL by sibling mating,
this is the pair of diplotypes for the two siblings. For exam-
ple, in considering two loci in four-way RIL by sibling mat-
ing, one possible state is the starting state at F0, AA j BB ·
CC j DD. (In this notation, the pairs of letters on each side of
the vertical bar denote the two haplotypes for an individual;
the first and second letters in each haplotype correspond to

Figure 1 (A–D) The generation of
two-way RIL by selfing (A), two-
way RIL by sibling mating (B),
four-way RIL by sibling mating
(C), and eight-way RIL by sibling
mating (D). A single autosome is
shown. In A and B, the genera-
tion of multiple RIL in parallel is
shown, while C and D illustrate
the generation of a single RIL.
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the alleles at the first and second loci, respectively.) The se-
quence X0, X1, X2, . . . , forms a Markov chain. That is, Xk11 is
conditionally independent of X0, X1, . . . , Xk21, given Xk.

Let P denote the transition matrix of the Markov chain,
defined by Pij ¼ Pr(Xk11 ¼ j j Xk ¼ i). Our goal is to calculate
the k-step probabilities, pk ¼ p0Pk, where p0 is the starting
distribution (at F0), which contains 1 at the fixed starting
state and 0 for all other states.

First note that, for RIL by selfing, it is sufficient to consider
two-way RIL, and for RIL by sibling mating, it is sufficient to
consider four-way RIL. This is due to the bottleneck with two
chromosomes in RIL by selfing at generation F1 and with four
chromosomes in RIL by sibling mating at generation F0. The
results may be extended from two-way RIL by selfing to four-
way RIL by selfing or from four-way RIL by sibling mating
to eight-way RIL by sibling mating, by considering an addi-
tional generation of recombination. One may obtain the
results for two-way RIL by sibling mating from the results
for four-way RIL by sibling mating by collapsing states: let
A [ B and C [ D.

The major technique for deriving the k-step probabilities,
pk, is to derive the eigen decomposition of the transition
matrix: P ¼ VLV21, where L is the diagonal matrix of eigen-
values and V is a matrix whose columns are the correspond-
ing eigenvectors. Then Pk ¼ VLkV21, and Lk is obtained
from L by taking the kth powers of the eigenvalues.

Such an eigen decomposition is straightforward in theory
but is unwieldy in practice, due to the extremely large number
of possible states. And so the second major technique is to take
account of various symmetries to collapse the states into
a smaller number. For two-way RIL by selfing with two loci,
the simplest formulation would give 24 ¼ 16 possible states
(two possible alleles at each locus on each of the two chromo-
somes). But considering that the order of the two haplotypes
is immaterial, these may be reduced to 10 possible diplotypes.
As shown in Haldane and Waddington (1931), these may be
further reduced to just five states, by taking account of two ad-
ditional symmetries: the order of the two loci may be ignored,
and the symbols A and B may be switched.

Let us formalize this idea. (For a more rigorous approach,
see Burke and Rosenblatt 1958.) Let the possible states
of the chain be S ¼ {s1, . . . , sn}. Partition S into m subsets
of equivalent states, Si � S, so that, for any pair i and j,
Pr(Xk11 2 Sj j Xk ¼ s) ¼ qij for all s 2 Si. The qij form
an m · m transition matrix, Q, for the collapsed states.
Let Z denote the n · m incidence matrix defined by zij ¼ 1
if si 2 Sj and 0 otherwise. Then

PZ5 ZQ (1)

and so PkZ ¼ ZQk. As a result, pkZ ¼ p0PkZ ¼ p0ZQk. Thus,
one may work with the m · m transition matrix Q in place of
the n · n transition matrix P.

For this collapse of states to be useful, the multiple states
within each equivalence class, Si, need to have equal proba-
bilities at each generation, so that the probabilities of the in-

dividual states may be derived from the probabilities of the
collapsed states. This will depend on the starting distribution.
For example, consider one locus in two-way RIL by sibling
mating. If the starting state is AA · BB, then at any future
generation, the chance of being in state AA · AB is the same as
that of being in state AB · BB. However, if the starting state is
AA · AB, then there will be a lack of symmetry between A and
B. (For the asymmetric case of two-way RIL initiated from
a backcross, see Johannes and Colomé-Tatché 2011.)

Kimura (1963) described a further technique that has been
critical in this work. In many instances, we do not need the
full distribution pk, but only various linear combinations, say
pkz ¼ p0Pkz, where z is an n · 1 vector. Kimura (1963)
demonstrated how to expand z to an n · m matrix Z in such
a way that there exists a matrix Q satisfying Equation 1. Then
we again have pkZ ¼ p0PkZ ¼ p0ZQk and may work with
the m · m matrix Q in place of the n · n matrix P. Here, the
matrix Q is not a transition matrix but simply defines a re-
cursion. The first element of pkZ is the target quantity, pkz.

Consider, for example, the probability of a random two-
locus haplotype drawn from generation Fk in the formation
of RIL by sibling mating. Let Ck(AA) denote that chance that
AA is drawn. This could either be an intact haplotype, trans-
mitted without recombination from generation Fk21, or be
the result of recombination between the two haplotypes in
a random Fk–1 individual. Consider drawing a single random
allele at the first locus from generation k and then taking
the allele at the second locus but on the opposite chromo-
some in that individual. Let Sk(AA) denote the probability
that these two alleles are both A. Then Ck(AA) ¼ (1 2 r)
Ck21(AA) 1 rSk21(AA), where r is the recombination frac-
tion between the two loci. Further, Sk(AA) ¼ Tk21(AA),
where Tk(AA) is the chance that, if one draws a random
allele at the first locus from generation Fk and then a random
allele from the opposite individual at the second locus, both
alleles are A. We may further write Tk(AA) as a function of
Ck21, Sk21, and Tk21, forming the recursion matrix, Q,
which is shown in Supporting Information, Table S1. More-
over, this same recursion applies for all of the other haplo-
types; one just needs to use different starting distributions,
p0Z. For the three distinct cases for four-way RIL by sibling
mating, these are shown in Table S2.

A particularly useful aspect of Kimura’s technique is that the
recursion matrix can be constructed by probabilistic arguments,
without the need to form the full transition matrix, P, or even
the n · m matrix Z. For two autosomal loci in four-way RIL by
sibling mating, there are 48 ¼ 65, 536 diplotype pairs without
accounting for any symmetries. This may be reduced to 9316
after accounting for the obvious symmetries (exchange the two
haplotypes in each individual and exchange the two individu-
als) and then to 700 diplotype states after accounting for the
less obvious symmetries (exchange the two loci, exchange
alleles A and B, exchange alleles C and D, and exchange both
A for C and B for D). By the technique of Kimura (1963), one
may work with a 3 · 3 matrix in place of the 700 · 700
transition matrix, if only haplotype probabilities are desired.
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Throughout this work, Maxima (http://maxima.sourceforge.
net) was used for symbolic algebra, and R (R Development
Core Team 2010) and Perl (Wall et al. 2000) were used for
additional verifications of the results.

Results

Two-way RIL by selfing

As noted in the previous section, it is sufficient to consider
two-way RIL by selfing, due to the bottleneck with two
chromosomes at F1. Let us jump directly to two-locus dip-
lotype probabilities, as the results are fairly simply obtained.
As noted in Haldane and Waddington (1931) and in the
previous section, if one takes account of the various symme-
tries, one may collapse the two-locus diplotype states to
a Markov chain with five states. The transition matrix of this
chain is shown in Table S3, with r denoting the recombina-
tion fraction between the two loci.

I obtained the eigen decomposition of this transition
matrix (not shown) and, noting that the starting state (at
generation F1) is AA j BB, derived the two-locus diplotype
probabilities at generation Fk (that is, after k 2 1 steps),
pk21 ¼ p0Pk21 ¼ p0VLk21V21, presented in Table 1. For
each group of states, a single prototype and the number of
states in that group are provided. For example, in the third
row, with prototype AA j AB, the cited probability is for that
prototype as well as each of the other three states in that
group: AA j BA, BB j AB, and BB j BA.

Haldane and Waddington (1931) also derived these
results for intermediate generations in two-way RIL by self-
ing. They displayed just the two cases AA j AA and AB j AB
(Haldane and Waddington 1931, equation 1.4), but the
results match those in Table 1, though note that their results
are a factor of 2 larger, as they concern the combined states.
Also note that Haldane and Waddington (1931) allowed
a sex difference in the recombination fraction, whereas I
assume no sex difference in recombination.

Four-way RIL by sibling mating, one locus
Autosome: For a single autosomal locus in four-way RIL by
sibling mating, there are 55 genotype pairs, after accounting

for the obvious symmetries. These may be reduced to 13
states, after accounting for the less obvious symmetries. The
transition matrix for this reduced Markov chain is shown
in Table S4. The starting state at generation F0 is AB · CD.
I calculated the eigen decomposition of the transition ma-
trix, and from that pk ¼ p0Pk ¼ p0VLkV21. The results are
shown in Table S5, which also indicates the number of ge-
notype pairs corresponding to each of the 13 states. (The
sum of the second column in Table S5 is 55.)

The probabilities of single-locus genotype pairs at gener-
ation Fk, shown in Table S5, are complex and not of particular
interest in themselves (hence their inclusion in the Support-
ing Information). However, the single-locus probabilities for
a random Fk individual follow immediately from these re-
sults; they are shown in Table 2. These are of considerably
greater interest, as they constitute the “initiation” probabili-
ties for an HMM. The single-locus genotype probabilities for
the first several generations are plotted in Figure S1A.

X chromosome: In considering the X chromosome, it is im-
portant to consider the order of the initial crosses. In four-
way RIL by sibling mating, I assume that a female A was
crossed to a male B, and a female C was crossed to a male D,
and then a female from the A · B F1 was crossed to a male
from the C · D F1 (see Figure S2B). In the F1, there are three
X chromosomes, A, B, and C; the D allele is lost.

After accounting for the obvious symmetries, there are 18
possible single-locus genotype pairs. These may be reduced
to 10 states, after accounting for the less obvious symme-
tries. The transition matrix for this reduced Markov chain
is shown in Table S6. The starting state at generation F0 is
AB · C. Through the eigen decomposition of the transition
matrix, the results in Table S7 are obtained.

The marginal probabilities for the female and male are
displayed in Table 2 and are plotted in Figure S1, B and C.
The oscillations in the male X chromosome probabilities are
interesting, but not particularly surprising.

Fixation probabilities: The detailed single-locus results in
Table S5 (for autosomes) and Table S7 (for the X chromosome)
immediately provide the fixation probability in four-way RIL

Table 1 Two-locus diplotype probabilities at generation Fk (for k $ 1) in the formation of two-way RIL by selfing

Prototype No. states Probability of each

AA j AA 2
1

2ð112rÞ2
�
1
2

�k11�
22

�
122r12r2

�k21
1
ð122rÞk
112r

�

AB j AB 2
r

112r
2

�
1
2

�k11�
22

�
122r12r2

�k21
2 

ð122rÞk
112r

�

AA j AB 4

�
1
2

�k�
12

�
122r12r2

�k21
�

AA j BB 1

�
1
2

�k��
122r12r2

�k21
1
�
122r

�k21
�

AB j BA 1

�
1
2

�k��
122r12r2

�k21
2
�
122r

�k21
�
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by sibling mating. For an arbitrary autosomal locus, the
chance that a four-way RIL has been fixed at or before gen-
eration Fk is 4 � Pr(AA · AA). For an arbitrary X chromosome
locus, the chance of fixation by generation Fk is 2 � Pr(AA ·
A)1 Pr(CC · C). These are shown in Table 3 and are further
plotted in Figure 2A. Note that the probability that an arbi-
trary locus in four-way RIL has become fixed at exactly gen-
eration Fk may be derived as the difference between the
results for k and k 2 1. These are shown in Figure 2B. Note
that the fixation probabilities for eight-way RIL are identical
to those for four-way RIL.

The fixation probabilities for two-way RIL by sibling
mating are also simply derived: collapse alleles A [ B and
C [ D. Thus, for an autosomal locus, one adds up the rows
in Table S5 that contain only A or B.

The fixation probability for an X chromosome locus is slightly
larger than that for an autosomal locus, and that for two-way
RIL is slightly larger than that for four-way RIL. The fixation

probability for two-way RIL by sibling mating at generation k is
quite similar to that for four-way RIL at generation k 1 1.
Fixation in RIL by selfing occurs much more rapidly.

For a large genome, the fixation probabilities for an
arbitrary autosomal locus, displayed in Figure 2A, may be
interpreted as the approximate proportion of the autosomal
genome that will be fixed at generation Fk. Nevertheless, as
shown in Broman (2005) via computer simulation, there
will be considerable variation across lines.

Four-way RIL by sibling mating, two-locus haplotypes
Autosome: The technique of Kimura (1963), described
above, may be used to derive probabilities of random two-
locus haplotypes drawn from generation Fk in the formation
of four-way RIL by sibling mating. There are three distinct
cases to consider (AA, AB, and AC), which share a common
recursion matrix (shown in Table S1) but require consider-
ation of different starting states. For each case, the starting

Table 2 Single-locus genotype probabilities at generation Fk in the formation of four-way RIL by sibling mating

Chromosome Individual Prototype No. states Probability of each

A Random AA 4
1
4
2

�
513

ffiffiffi
5

p

40

��
11

ffiffiffi
5

p

4

�k

2

�
523

ffiffiffi
5

p

40

��
12

ffiffiffi
5

p

4

�k

AB 2

�
52

ffiffiffi
5

p

20

��
11

ffiffiffi
5

p

4

�k

1

�
51

ffiffiffi
5

p

20

��
12

ffiffiffi
5

p

4

�k

AC 4

ffiffiffi
5

p

10

��
11

ffiffiffi
5

p

4

�k

2 

�
12

ffiffiffi
5

p

4

�k�

X Female AA 2
1
3
1
1
6

�
2
1
2

�k

2

�
51

ffiffiffi
5

p

20

��
11

ffiffiffi
5

p

4

�k

2

�
52

ffiffiffi
5

p

20

��
12

ffiffiffi
5

p

4

�k

AB 1

�
52

ffiffiffi
5

p

10

��
11

ffiffiffi
5

p

4

�k

1 

�
51

ffiffiffi
5

p

10

��
12

ffiffiffi
5

p

4

�k

AC 2

ffiffiffi
5

p

5

��
11

ffiffiffi
5

p

4

�k

2

�
12

ffiffiffi
5

p

4

�k�

CC 1
1
3
1
1
6

�
2
1
2

�k21

2 

�
51

ffiffiffi
5

p

20

��
11

ffiffiffi
5

p

4

�k21

2 

�
52

ffiffiffi
5

p

20

��
12

ffiffiffi
5

p

4

�k21

X Male A 2
1
3

�
12

�
2
1
2

�k�

C 1
1
3

�
112

�
2
1
2

�k�

Table 3 Fixation probability at generation Fk in the formation of RIL

Cross Chromosome Probability of fixation at or before Fk

Two-way selfing 12

�
1
2

�k21

Four-way sibling mating A 11

�
1
2

�k

2

�
1
5

��
1
4

�k

2

�
914

ffiffiffi
5

p

10

��
11

ffiffiffi
5

p

4

�k

2

�
924

ffiffiffi
5

p

10

��
12

ffiffiffi
5

p

4

�k

Two-way sibling mating A 11

�
2
5

��
1
4

�k

2

�
713

ffiffiffi
5

p

10

��
11

ffiffiffi
5

p

4

�k

2

�
723

ffiffiffi
5

p

10

��
12

ffiffiffi
5

p

4

�k

Four-way sibling mating X 11

�
1
2

�k11

2

�
1517

ffiffiffi
5

p

20

��
11

ffiffiffi
5

p

4

�k

2

�
1527

ffiffiffi
5

p

20

��
12

ffiffiffi
5

p

4

�k

Two-way sibling mating X 12

�
513

ffiffiffi
5

p

10

��
11

ffiffiffi
5

p

4

�k

2

�
523

ffiffiffi
5

p

10

��
12

ffiffiffi
5

p

4

�k

For RIL by selfing, k $ 1; for all others, k $ 0.
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probabilities, p0Z, form a 1 · 4 row vector with a single
nonzero entry (see Table S2).

I obtained the eigen decomposition of the recursion
matrix, Q, which is shown in Table S1, and through the
equation pkZ ¼ p0ZQk ¼ p0ZVLkV21 obtained the two-locus
haplotype probabilities in Table 4. The equations for auto-
somal haplotypes in Table 4 are valid only for r , 1

2 , but
the results for r ¼ 1

2 are obvious by symmetry: Pr(AA) ¼ 1
4 at

F0, Pr(AA) ¼ Pr(AB) ¼ 1
8 at F1, and Pr(AA) ¼ Pr(AB) ¼

Pr(AC) ¼ 1
16 at Fk for k $ 2.

The autosomal haplotype probabilities as a function of the
recombination fraction, r, are displayed in the left panels in
Figure S3.

X chromosome: To calculate the probability of a random
two-locus X chromosome haplotype drawn from the female
at Fk in four-way RIL by sibling mating and of the single X
chromosome haplotype in the corresponding male, there are
four cases to consider (AA, AB, AC, and CC). Application of
the technique of Kimura (1963) for the X chromosome
requires consideration of a set of four states, with the re-
cursion matrix shown in Table S8. Each of the four cases
uses the same recursion matrix but different starting proba-
bilities (shown in Table S9). Calculation of the probabilities
of a random haplotype drawn from the female and of the
single haplotype in the male uses the same set of equations,
but for a random female haplotype one takes the first ele-
ment of pkZ, while for the male haplotype one takes the
third element. Again, following the eigen decomposition of
the matrix in Table S8, the haplotype probabilities in Table 4
were obtained.

The female and male X chromosome haplotype probabil-
ities, as a function of the recombination fraction, r, are dis-
played in the center and right panels, respectively, in Figure
S3. The probabilities of haplotypes AA and CC in females,
and all of the haplotype probabilities in males, show pro-

nounced oscillations across generations. For example, the
CC haplotype is common in males for even k and common
in females for odd k and vice versa for haplotype AA.

Map expansion: The multiple generations of recombination
in the formation of RIL lead to genetic map expansion. The
map expansion as a function of generation is easily obtained
from the haplotype probabilities. Let R denote the probabil-
ity of a recombinant haplotype. [For the autosome, take 1 2
4 � Pr(AA).] The map expansion relative to a single meiosis is
ðdR = drÞjr50 (see Teuscher and Broman 2007). For the X
chromosome, I calculated the map expansion separately in
females and males and then obtained a combined map expan-
sion by averaging the two values, giving the female value
weight 2

3.
The map expansion for the two-way RIL by selfing case

may be obtained from the values in Table 1. To obtain the map
expansion for two-way RIL by sibling mating, equate alleles
A [ B and C [ D; the recombinant haplotypes correspond to
the AC case in Table 4. To obtain the map expansion for eight-
way RIL by sibling mating, note that the chance of each nonre-
combinant haplotype would be (1 2 r)/2 times the probability
for haplotype AA shown in Table 4. A similar calculation
applies for four-way and eight-way RIL by selfing.

The map expansions for two-, four-, eight-, and 2n-way RIL
by selfing and for the autosome by sibling mating are shown
in Table 5 and are further illustrated in Figure 3. The results
for the X chromosome in RIL by sibling mating are simply
two-thirds those for the autosome and so are not shown. (I
have verified, via Maxima, that this is true for 2n-way RIL up
to n ¼ 98. A general proof continues to elude me.)

Teuscher et al. (2005) also sought to calculate the map
expansion by generation for two-way RIL by sibling mating.
My results match those of Teuscher et al. (2005), were more
easily obtained, and provide a closed-form solution.

Four-way RIL by sibling mating, two-locus diplotypes
Autosome: I now turn to the calculation of the distribution
of the two-locus diplotype on an autosome, for a random
individual drawn from generation Fk in the formation of
four-way RIL by sibling mating. There are 18 cases falling
into three groups: diplotypes of the form AA j AA, with both
loci being homozygous; AA j AB, with one locus being ho-
mozygous; and AA j BB, with both loci being heterozygous.

Let us start with the AA j AA case. Following the approach
of Kimura (1963), I obtained a 13 · 13 recursion matrix, Q,
whose transpose is shown in Table S10. Because of the size
and sparsity of the matrix, only the nonzero elements are
indicated. The starting states for the three related diplotypes
are shown in Table S11. (For each diplotype pattern, the
starting distribution p0Z has a single nonzero entry.)

The next step is to derive the eigen decomposition of Q.
However, while 7 of the 13 eigenvalues can be obtained, the
other 6 eigenvalues are the roots of a sixth degree polynomial
(whose coefficients are polynomials of r of degree up to 5). This
prevented the calculation of the diplotype probabilities at Fk.

Figure 2 Fixation probability at generation Fk for an arbitrary locus as
a function of k. (A) The cumulative probability. (B) The probability of
fixation precisely at Fk. The results for RIL by selfing are in green. The
results for two-way and four-way RIL by sibling mating are in blue and
red, respectively, with the solid curves corresponding to an autosomal
locus and the dashed curves corresponding to an X chromosome locus.
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Nevertheless, the reduction of states represented in Table
S10 and Table S11 is considerable and is useful for the
numeric calculation of these probabilities. Direct calculation
would require consideration of the full transition matrix for
pairs of diplotypes, which, even after accounting for all pos-
sible symmetries, is a 700 · 700 matrix.

Turning to the AA j AB case, with one locus being homo-
zygous and the other heterozygous, the recursion matrix is
17 · 17; the nonzero elements of its transpose are shown in
Table S12. The starting states for the four related diplotype
patterns are shown in Table S13.

Finally, for the AA j BB case, with both loci being hetero-
zygous, the recursion matrix is 14 · 14; its transpose is
shown in Table S14. The starting states for the 11 related
diplotype patterns are shown in Table S15.

X chromosome: It should not be surprising that closed-form
solutions for the two-locus diplotype probabilities for the
female on the X chromosome at generation Fk in the forma-
tion of four-way RIL by sibling mating could not be derived.
(But note that the two-locus haplotype probabilities for the
male X chromosome could be calculated; see Table 5.)

Nevertheless, the recursion matrices and starting states,
derived by the approach of Kimura (1963), may be useful for
numerical computations. After consideration of the various
symmetries, there are 17 two-locus diplotype patterns fall-
ing into the same three groups as for the autosome.

For the AA j AA case, the recursion matrix is 13 · 13; its
transpose is shown in Table S16. The starting states for the four
related diplotype patterns are shown in Table S17. Six of the
13 eigenvalues may be derived; the other 7 are roots of a pair
of polynomials, one of degree 3 and the other of degree 4.

For the AA j AB case, the recursion matrix is 18 · 18; its
transpose is shown in Table S18. The starting states for the
five related diplotype patterns are shown in Table S19. For
the AA j BB case, the recursion matrix is 12 · 12; its trans-
pose is shown in Table S20. The starting states for the eight
related diplotype patterns are shown in Table S21.

Eight-way RIL

The calculation of genotype or diplotype probabilities for
eight-way RIL from those for four-way RIL is straightfor-
ward, but also tedious and potentially confusing. For clarity,
lowercase letters are used for the alleles in eight-way RIL,
while uppercase letters denote the alleles in four-way RIL.

First, consider the genotype at an autosomal locus for
a random individual drawn from generation Fk in the con-
struction of eight-way RIL by sibling mating. Due to the
bottleneck at generation G2, the genotypes ab, cd, ef, and
gh are not possible. (At any one locus, only one allele from
each of these pairs will be transmitted from G1 to G2.) The
probability of genotype aa is the chance that the G2 individ-
ual receives the allele a (which is 1

2) times the probability for
the genotype AA in the construction of four-way RIL by
sibling mating. The probabilities of genotypes ac and ae
are 1

4 the probabilities of genotypes AB and AC, respectively,
in the construction of four-way RIL by sibling mating.

Two-locus haplotype probabilities are obtained in a similar
way, noting that the haplotype in the position of the A hap-
lotype at G2 in the construction of four-way RIL is aa or bb
with probability (1 2 r)/2 each and is ab or ba with proba-
bility r/2 each. Thus, for example, the chance of obtaining ab
as a two-locus autosomal haplotype, drawn at random from
generation Fk in the construction of eight-way RIL by sibling

Figure 3 Map expansion at generation Fk as a function of k, for two-way
(blue), four-way (red), and eight-way (black) RIL by selfing (dashed curves)
and by sibling mating (solid curves). The displayed results for RIL by sibling
mating are for the autosomes; values for the X chromosome are exactly
two-thirds those for the autosomes.

Table 5 Map expansion at generation Fk in the formation of RIL
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For selfing, k $ 1 and n $ 1. For sibling mating, k $ 0 and n $ 2. The map expansion for the X chromosome with sibling mating is two-thirds that
of the autosome.
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mating, is r/2 times the probability of drawing AA from gen-
eration Fk in the construction of four-way RIL by sibling mat-
ing. The chance of drawing the haplotype cg is 1

4 times the
probability of drawing BD from the corresponding generation
in the construction of four-way RIL.

Table S22 contains a complete prescription for the calcu-
lation of two-locus autosomal diplotype probabilities for in-
termediate generations in the construction of eight-way RIL,
on the basis of the corresponding probabilities for four-way
RIL. The first column contains the possible diplotype pat-
terns. The second column contains the numbers of diplotype
states corresponding to each pattern. To calculate the prob-
ability of the pattern in the first column, for an eight-way
cross, take the corresponding probability for the pattern in
the third column, for a four-way cross, multiplied by the
value in the fourth column.

Table S23 contains a similar prescription for calculating
probabilities of the two-locus X chromosome diplotype in
the female at intermediate generations in the construction
of eight-way RIL. A key feature to note is that, at a single X
chromosome locus at generation G2, the female is either ac
or bc, while the male is hemizygous e or f (see Figure S2C).

Discussion

I sought to calculate the two-locus diplotype probabilities for
a random individual drawn from generation G2 : Fk in the
formation of eight-way RIL by sibling mating, as these could
form the basis for an HMM for reconstructing the genotype
probabilities in pre-CC individuals given incompletely infor-
mative marker data. While I was not able to obtain closed-
form solutions for these probabilities, the results in Table S10,
Table S11, Table S12, Table S13, Table S14, Table S15, Table
S16, Table S17, Table S18, Table S19, Table S20, and Table
S21 provide a recipe for numerical calculations.

A more careful reading of Haldane and Waddington
(1931) would have indicated that closed-form solutions
for these probabilities would not be possible. As they state
(Haldane and Waddington 1931, p. 367), regarding the cal-
culation of related probabilities for two-way RIL by sibling
mating, “These equations can, in part at least, be reduced to
quartics, but at least one quartic is irreducible. Hence only
numerical calculation is practicable.”

Moreover, Liu et al. (2010) described a general HMM for
the treatment of complex pedigrees with inbreeding, appro-
priate for pre-CC individuals, that does not require the ex-
plicit derivation of these two-locus probabilities. Further,
with the high-density genotype data available on the pre-
CC mice (Aylor et al. 2011), a relatively simple HMM, such
as that in HAPPY (Mott et al. 2000), which does not take
formal account of the varying recombination patterns as
a function of cross direction or generation, is likely sufficient
for genotype reconstruction.

Nevertheless, an HMM making use of these calculations,
as well as functions for simulating partially inbred lines, will
be implemented in a future version of R/qtl (Broman et al.

2003). With this implementation, we will be able to assess
the relative advantages of such a specially tailored HMM
over both the more general approach of Liu et al. (2010)
and the simpler approach of Mott et al. (2000).

In practice, the genetic analysis of RIL generally proceeds
prior to full inbreeding, with calculations based on the
haplotype frequencies at fixation, and with remaining
heterozygous genotypes often omitted and treated as
missing. The calculations herein might be used to deal with
residual heterozygosity, but it is unlikely that it will give
much improvement in the analysis. After only a few gen-
erations, the haplotype probabilities are quite close to the
values at fixation. Moreover, the consideration of hetero-
zygotes can lead to problems in the QTL analysis if the
frequency of heterozygotes is low, although this can be
alleviated by an assumption of additive allele effects at
a QTL. Finally, the remaining regions of heterozygosity in
RIL may have survived due to selection, whereas these
calculations rely on assumptions of no selection or mutation
and so are not appropriate to capture such phenomena.

I derived closed-form solutions for a number of quantities
that are of considerable interest. The single-locus genotype
probabilities (Table 2) could be useful in efforts to identify re-
gions under selection, through the comparison of observed to
expected genotype frequencies. The fixation probability (Table
3 and Figure 2) can be interpreted as the expected proportion
of the genome that is fixed. The map expansion results (Table 5
and Figure 3) indicate the accumulation of recombination
events over generations, which can be valuable for study de-
sign: If an investigator intervenes at an intermediate generation
to speed up the process toward inbreeding, what proportion of
the final recombination breakpoints might be lost, and so to
what extent might mapping precision be eroded?

The single-locus genotype probabilities (Table 2) were
derived by brute force, using the full transition matrix for
the pair of genotypes from generation to generation. The
approach of Kimura (1963) could also be used in these
cases, to provide considerable simplification. For example,
in the single-locus autosome case, one may use a 3 · 3 re-
cursion matrix in place of the 13 · 13 matrix in Table S4.

There is also a simpler way to calculate the fixation
probabilities for four-way RIL by sibling mating. One may
consider a single locus in a two-way RIL, but starting at
a different state (e.g., start at AB · BB, to calculate the
chance that a four-way RIL is fixed at allele A). This requires
the consideration of a 6 · 6 transition matrix.

There is an interesting connection between this work and
the Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, . . .}, defined by
the recursive formula xk ¼ xk21 1 xk22, with starting values
x0 ¼ 0 and x1 ¼ 1 (see Graham et al. 1994, Section 6.6). To
obtain a closed-form solution for xk, one may write the re-
cursion in matrix form and apply the same techniques used
herein to obtain xk 5 ½uk2ð12uÞk�= ffiffiffi

5
p

, where u is the
“golden ratio”, ð11 ffiffiffi

5
p Þ=2. Note that u=2 5 ð11 ffiffiffi

5
p Þ=4

appears numerous times in the results. (When I first derived
the single-locus probabilities in Table 2, I was confused
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about why the results involve
ffiffiffi
5

p
, when the numbers are all

clearly rational.)
The great effort expended here to derive symbolic results

raises the question of the relative merits of computer sim-
ulations, numeric calculations, and symbolic calculations.
Simulations are most flexible and are generally simpler to
obtain, but lack precision. Numeric calculations can be precise,
but can be computationally intensive. Symbolic results are
more general than numeric calculations, can enable quicker
calculations in software, and have the potential to provide
more clear insight. Ultimately, the effort toward symbolic
results largely serves to satisfy a personal compulsion.
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Figure S1 n One-locus genotype probabiliƟes for a random individual on the autosome (A), the female on the X
chromosome (B), and the male on the X chromosome (C), at generaƟon Fk in the producƟon of four-way RIL by
sibling maƟng, as a funcƟon of k.
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Figure S2 n The X chromosome in the generaƟon of two-way (A), four-way (B), and eight-way (C) RIL by sibling
maƟng.
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Figure S3 n Two-locus haplotype probabiliƟes, as a funcƟon of recombinaƟon fracƟon, for a random autosome
haplotype (leŌ column), a random X chromosome haplotype from the female (middle column), and the male X
chromosome haplotype (right column) at generaƟon Fk in the producƟon of four-way RIL by sibling maƟng, with the
individual curves corresponding to different values of k.
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Table S1 n Recursion matrix for calculaƟng two-locus autosomal haplotype probabiliƟes in the generaƟon of
four-way RIL by sibling maƟng

State at k + 1

State at k 1 2 3

1
•
• 1− r 0 1/4

2
•
• r 0 1/4

3
•

• 0 1 1/2
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Table S2 n StarƟng states for calculaƟng two-locus autosomal haplotype probabiliƟes in the generaƟon of
four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA 4
•
• (1) 1/4

AB 4
•
• (2) 1/4

AC 8
•

• (3) 1/8
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Table S3 n TransiƟon matrix for two loci in the generaƟon of two-way RIL by selfing

gk+1

gk AA|AA AB|AB AA|AB AA|BB AB|BA

AA|AA 1 0 0 0 0

AB|AB 0 1 0 0 0

AA|AB 1/4 1/4 1/2 0 0

AA|BB (1− r)2/2 r2/2 2r(1− r) (1− r)2/2 r2/2

AB|BA r2/2 (1− r)2/2 2r(1− r) r2/2 (1− r)2/2
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Table S4 n TransiƟon matrix for one autosomal locus in the generaƟon of four-way RIL by sibling maƟng

gk+1

gk 1 2 3 4 5 6 7 8 9 10 11 12 13

1: AA×AA 1 0 0 0 0 0 0 0 0 0 0 0 0

2: AA×AB 1/4 1/2 0 0 0 0 0 1/4 0 0 0 0 0

3: AA×AC 1/4 0 1/2 0 0 0 0 0 0 0 1/4 0 0

4: AA×BB 0 0 0 0 0 0 0 1 0 0 0 0 0

5: AA×BC 0 0 0 0 0 0 0 1/4 1/2 0 1/4 0 0

6: AA× CC 0 0 0 0 0 0 0 0 0 0 1 0 0

7: AA× CD 0 0 0 0 0 0 0 0 0 0 1/2 1/2 0

8: AB ×AB 1/8 1/2 0 1/8 0 0 0 1/4 0 0 0 0 0

9: AB ×AC 1/16 1/8 1/8 0 1/8 0 0 1/16 1/4 0 1/8 1/8 0

10: AB × CD 0 0 0 0 0 0 0 0 0 0 1/4 1/2 1/4

11: AC ×AC 1/8 0 1/2 0 0 1/8 0 0 0 0 1/4 0 0

12: AC ×AD 1/16 0 1/4 0 0 0 1/8 1/16 1/4 0 1/8 1/8 0

13: AC ×BD 0 0 0 0 0 0 0 1/8 1/2 1/8 1/8 0 1/8
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Table S5 n ProbabiliƟes for the genotypes of the pair of individuals at a single autosomal locus, at generaƟon Fk in
the formaƟon of four-way RIL by sibling maƟng

Prototype No. states Probability of each

AA×AA 4 1
4 + 1

4

(
1
2

)k − 1
20

(
1
4

)k −
(

9+4
√
5

40

)(
1+

√
5

4

)k

−
(

9−4
√
5

40

)(
1−

√
5

4

)k

AA×AB 4 1
6

(
− 1

4

)k
+ 1

10

(
1
4

)k − 1
6

(
1
2

)k −
(

1−
√
5

20

)(
1+

√
5

4

)k

−
(

1+
√
5

20

)(
1−

√
5

4

)k

AA×AC 8 − 1
12

(
−1

4

)k
+ 1

20

(
1
4

)k − 1
6

(
1
2

)k
+ 1

10

[(
1+

√
5

4

)k

+
(

1−
√
5

4

)k
]

AA×BB 2 1
3

(
−1

4

)k − 2
15

(
− 1

8

)k
+ 1

30

(
1
4

)k − 1
30

(
1
2

)k −
(

2−
√
5

20

)(
1+

√
5

4

)k

−
(

2+
√
5

20

)(
1−

√
5

4

)k

AA×BC 8 − 1
12

(
−1

4

)k
+ 2

15

(
− 1

8

)k − 1
12

(
1
4

)k
+ 1

30

(
1
2

)k
AA× CC 4 − 1

6

(
− 1

4

)k
+ 1

30

(
−1

8

)k
+ 1

60

(
1
4

)k − 1
30

(
1
2

)k
+

(
3−

√
5

40

)(
1+

√
5

4

)k

+
(

3+
√
5

40

)(
1−

√
5

4

)k

AA× CD 4 1
6

(
− 1

4

)k − 1
5

(
−1

8

)k
+ 1

30

(
1
2

)k
AB ×AB 2 − 2

3

(
− 1

4

)k
+ 2

15

(
−1

8

)k
+ 1

15

(
1
4

)k − 2
15

(
1
2

)k
+

(
3−

√
5

10

)(
1+

√
5

4

)k

+
(

3+
√
5

10

)(
1−

√
5

4

)k

AB ×AC 8 1
6

(
− 1

4

)k − 2
15

(
−1

8

)k − 1
6

(
1
4

)k
+ 2

15

(
1
2

)k
AB × CD 1 2

3

(
− 1

8

)k
+ 1

3

(
1
4

)k
AC ×AC 4 1

3

(
−1

4

)k − 1
30

(
− 1

8

)k
+ 1

30

(
1
4

)k − 2
15

(
1
2

)k −
(

2−2
√
5

20

)(
1+

√
5

4

)k

−
(

2+2
√
5

20

)(
1−

√
5

4

)k

AC ×AD 4 − 1
3

(
−1

4

)k
+ 1

5

(
− 1

8

)k
+ 2

15

(
1
2

)k
AC ×BD 2 −1

3

(
−1

8

)k
+ 1

3

(
1
4

)k
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Table S6 n TransiƟon matrix for one X chromosome locus in the generaƟon of four-way RIL by sibling maƟng

gk+1

gk 1 2 3 4 5 6 7 8 9 10

1: AA×A 1 0 0 0 0 0 0 0 0 0

2: AA×B 0 0 0 1 0 0 0 0 0 0

3: AA× C 0 0 0 0 0 1 0 0 0 0

4: AB ×A 1/4 1/4 0 1/2 0 0 0 0 0 0

5: AB × C 0 0 0 0 0 1/2 1/2 0 0 0

6: AC ×A 1/4 0 1/4 0 0 1/4 0 1/4 0 0

7: AC ×B 0 0 0 1/4 1/4 0 1/4 1/4 0 0

8: AC × C 0 0 0 0 0 1/4 0 1/4 1/4 1/4

9: CC ×A 0 0 0 0 0 0 0 1 0 0

10: CC × C 0 0 0 0 0 0 0 0 0 1
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Table S7 n ProbabiliƟes for the genotypes of the pair of individuals at a single X chromosome locus, at generaƟon
Fk in the formaƟon of four-way RIL by sibling maƟng

Prototype No. states Probability of each

AA×A 2 1
3 + 1

24

(
− 1

2

)k
+ 1

8

(
1
2

)k −
(

5+2
√
5

20

)(
1+

√
5

4

)k

−
(

5−2
√
5

20

)(
1−

√
5

4

)k

AA×B 2 1
3

(
− 1

4

)k − 1
12

(
1
2

)k −
(

5−3
√
5

40

)(
1+

√
5

4

)k

−
(

5+3
√
5

40

)(
1−

√
5

4

)k

AA× C 2 1
8

(
− 1

2

)k − 1
24

(
1
2

)k − 1
3

(
− 1

4

)k
+
(

5−
√
5

40

)(
1+

√
5

4

)k

+
(

5+
√
5

40

)(
1−

√
5

4

)k

AB ×A 2 −1
6

(
1
2

)k − 1
3

(
−1

4

)k
+

(
5−

√
5

20

)(
1+

√
5

4

)k

+
(

5+
√
5

20

)(
1−

√
5

4

)k

AB × C 1 1
3

(
1
2

)k
+ 2

3

(
− 1

4

)k
AC ×A 2 −1

4

(
− 1

2

)k − 1
12

(
1
2

)k
+ 1

3

(
−1

4

)k
+

√
5

10

[(
1+

√
5

4

)k

−
(

1−
√
5

4

)k
]

AC ×B 2 1
3

(
1
2

)k − 1
3

(
− 1

4

)k
AC × C 2 1

4

(
−1

2

)k − 1
4

(
1
2

)k
+

√
5

10

[(
1+

√
5

4

)k

−
(

1−
√
5

4

)k
]

CC ×A 2 −1
8

(
− 1

2

)k − 1
8

(
1
2

)k
+

(
5−

√
5

40

)(
1+

√
5

4

)k

+
(

5+
√
5

40

)(
1−

√
5

4

)k

CC × C 1 1
3 − 1

12

(
− 1

2

)k
+ 1

4

(
1
2

)k −
(

5+3
√
5

20

)(
1+

√
5

4

)k

−
(

5−3
√
5

20

)(
1−

√
5

4

)k
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Table S8 n Recursion matrix for calculaƟng two-locus X chromosome haplotype probabiliƟes in the generaƟon of
four-way RIL by sibling maƟng

State at k + 1

State at k 1 2 3 4

1
•
• (1− r)/2 0 1− r 1/4

2
•
• r/2 0 r 1/4

3
•
• 1/2 0 0 0

4
•

• 0 1 0 1/2
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Table S9 n StarƟng states for calculaƟng two-locus X chromosome haplotype probabiliƟes in the generaƟon of
four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA 2
•
• (1) 1/2

AB 2
•
• (2) 1/2

AC 4
•

• (4) 1/4

CC 1
•
• (3) 1
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Table S10 n Transpose of the recursion matrix for calculaƟng probabiliƟes of two-locus autosomal diplotypes of
the formAA|AA, in the generaƟon of four-way RIL by sibling maƟng. Only the non-zero entries are shown

State at k + 1 State at k

1
• •
• • 2: (1− r)2 3: 2r(1− r) 4: r2

2
• •
• • 1: [r2+(1−r)2]

4 2: (1−r)2

2 3: r(1− r) 4: r2

2 5: (1−r)2

4 6: r2

4 7: r(1− r)

3
• •
• • 8: 1−r

2 9: r
2 10: 1

2

4
• •
• • 2: 1

8 3: 1
4 4: 1

8 11: 1
8 12: 1

4 13: 1
8

5
•
• 5: 1− r 6: r

6
•
• 11: 1

7
• •
• 8: 1− r 9: r

8
• •
• 5: 1−r

4 6: r
4 7: 1

4 8: 1−r
2 9: r

2

9
• •
• 8: 1

4 9: 1
4 11: 1

4 12: 1
4

10
• •
• • 2: 1−r

4 3: 1
4 4: r

4 8: 1−r
4 9: r

4 10: 1
4

11
•

• 5: 1
4 6: 1

4 11: 1
2

12
• •

• 8: 1
2 9: 1

2

13
• •

• • 2: 1
4 3: 1

2 4: 1
4
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Table S11 n StarƟng states for the calculaƟon of probabiliƟes of two-locus autosomal diplotypes of the form
AA|AA, in the generaƟon of four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA|AA 4
•
• (5) 1/4

AB|AB 4
•
• (6) 1/4

AC|AC 8
•

• (11) 1/8
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Table S12 n Transpose of the recursion matrix for calculaƟng probabiliƟes of two-locus autosomal diplotypes of
the formAA|AB, in the generaƟon of four-way RIL by sibling maƟng

State at k + 1 State at k

1
• •
• ◦ 2: (1− r)2 3: r(1− r) 4: r(1− r) 5: r2

2
• •
• ◦ 1: r2+(1−r)2

4 2: (1−r)2

2 3: r(1−r)
2 4: r(1−r)

2 5: r2

2 6: r(1−r)
4 17: r(1−r)

4

3
• •
• ◦ 7: 1

4 8: 1−r
4 9: 1−r

4 10: r
4 16: r

4

4
• •
• ◦ 9: r

4 10: 1−r
4 11: 1

4 12: 1−r
4 13: r

4

5
• •
• ◦ 2: 1

8 3: 1
8 4: 1

8 5: 1
8 14: 1

8 15: 1
8

6
•
• ◦ 8: (1− r) 16: r

7
• •
• ◦ 2: 1−r

4 3: 1−r
4 4: r

4 5: r
4 9: 1−r

4 10: r
4

8
•
• ◦ 6: 1−r

4 8: 1−r
2 16: r

2 17: r
4

9
• •
• ◦ 2: 1−r

4 3: 1−r
4 4: r

4 5: r
4 7: 1

4 8: 1−r
4 16: r

4

10
• •
◦ • 2: 1−r

4 3: r
4 4: 1−r

4 5: r
4 11: 1

4 12: 1−r
4 13: r

4

11
• •
◦ • 2: 1−r

4 3: r
4 4: 1−r

4 5: r
4 9: r

4 10: 1−r
4

12
•
◦ • 6: r

4 12: 1−r
2 13: r

2 17: 1−r
4

13
•
◦ • 8: 1

4 15: 1
4 16: 1

4

14
• •

• ◦ 2: 1
4 3: 1

4 4: 1
4 5: 1

4

15
•

• ◦ 8: 1
4 12: 1

4 13: 1
4 16: 1

4

16
•
• ◦ 12: 1

4 13: 1
4 15: 1

4

17
•
◦ • 12: (1− r) 13: r
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Table S13 n StarƟng states for the calculaƟon of probabiliƟes of two-locus autosomal diplotypes of the form
AA|AB, in the generaƟon of four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA|AB 8
•
• ◦ (6) 1/2

AA|AC 16
•
• ◦ (8) 1/4

AB|AC 16
•
• ◦ (16) 1/4

AC|AD 8
•

• ◦ (15) 1/4
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Table S14 n Transpose of the recursion matrix for calculaƟng probabiliƟes of two-locus autosomal diplotypes of
the formAA|BB, in the generaƟon of four-way RIL by sibling maƟng

State at k + 1 State at k

1
• ◦
• ◦ 2: (1−r)2

2 3: r(1−r)
2 4: r(1−r)

2 5: r2

2

2
• ◦
• ◦ 1: (1−r)2

2 2: (1−r)2

2 3: r(1−r)
2 4: r(1−r)

2 5: r2

2 6: r2

2

3
• ◦
• ◦ 7: 1−r

4 8: r
4

4
• ◦
• ◦ 9: 1−r

4 10: r
4

5
• ◦
• ◦ 11: 1

8 12: 1
8 13: 1

8 14: 1
8

6
• ◦
◦ • 12: (1−r)2

2 13: r(1−r)
2 14: r2

2

7
• ◦
• ◦ 2: 1−r

2 3: 1−r
2 4: r

2 5: r
2 7: 1−r

4 8: r
4

8
• ◦
◦ • 9: r

4 10: 1−r
4 12: 1−r

2 13: 1
4 14: r

2

9
• ◦
◦ • 2: 1−r

2 3: r
2 4: 1−r

2 5: r
2 9: 1−r

4 10: r
4

10
• ◦
◦ • 7: r

4 8: 1−r
4 12: 1−r

2 13: 1
4 14: r

2

11
• ◦

• ◦ 2: 1
8 3: 1

8 4: 1
8 5: 1

8 12: 1
8 13: 1

8 14: 1
8

12
• ◦
◦ • 1: r2

2 6: (1−r)2

2 12: (1−r)2

2 13: r(1−r)
2 14: r2

2

13
• ◦
◦ • 7: r

4 8: 1−r
4 9: r

4 10: 1−r
4

14
• ◦
◦ • 2: 1

8 3: 1
8 4: 1

8 5: 1
8 11: 1

8
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Table S15 n StarƟng states for the calculaƟon of probabiliƟes of two-locus autosomal diplotypes of the form
AA|BB, in the generaƟon of four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA|BB 2
• ◦
• ◦ (1) 1/2

AA|BC 16
• ◦
• ◦ (7) 1/2

AA|CC 4
• ◦
• ◦ (2) 1/2

AA|CD 8
• ◦
• ◦ (3) 1/2

AB|BA 2
• ◦
◦ • (6) 1/2

AB|BC 16
• ◦
◦ • (8) 1/2

AB|CD 4
• ◦
• ◦ (5) 1/2

AC|BD 4
• ◦

• ◦ (11) 1/2

AC|CA 4
• ◦
◦ • (12) 1/2

AC|CB 8
• ◦
◦ • (13) 1/2

AC|DB 4
• ◦
◦ • (14) 1/2
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Table S16 n Transpose of the recursion matrix for calculaƟng probabiliƟes of the two-locus X chromosome female
diplotype of the formAA|AA, in the generaƟon of four-way RIL by sibling maƟng

State at k + 1 State at k

1
• •
• • 2: (1− r) 3: r

2
• •
• • 1: r2+(1−r)2

4 2: 1−r
2 3: r

2 4: (1−r)2

4 5: r(1− r) 9: r2

4

3
• •
• • 6: 1−r

2 7: r
2 11: 1

2

4
•
• 4: 1−r

2 9: r
2 10: 1

2

5
• •
• 6: 1−r

2 7: r
2 12: 1

2

6
• •
• 4: 1−r

4 5: 1
4 9: r

4 12: 1
2

7
• •
• 6: 1

4 7: 1
4 8: 1

4 13: 1
4

8
•

• 4: 1
4 8: 1

2 9: 1
4

9
•
• 8: 1

10
•
• 4: (1− r) 9: r

11
• •
• • 2: 1

4 3: 1
4 6: 1−r

4 7: r
4 11: 1

4

12
• •

• 4: 1−r
4 5: 1

4 6: 1−r
2 7: r

2 9: r
4

13
• •

• 6: 1
2 7: 1

2
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Table S17 n StarƟng states for the calculaƟon of probabiliƟes of the two-locus X chromosome female diplotype of
the formAA|AA, in the generaƟon of four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA|AA 2
•
• (4) 1/2

AB|AB 2
•
• (9) 1/2

AC|AC 4
•

• (8) 1/4

CC|CC 1
•
• (10) 1
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Table S18 n Transpose of the recursion matrix for calculaƟng probabiliƟes of the two-locus X chromosome female
diplotype of the formAA|AB, in the generaƟon of four-way RIL by sibling maƟng

State at k + 1 State at k

1
• •
• ◦ 2: (1− r) 3: r 4: (1− r) 5: r

2
• •
• ◦ 1: r2+(1−r)2

8 4: 1−r
2 5: r

2 6: r(1−r)
4 7: r(1−r)

4

3
• •
• ◦ 8: 1

4 9: 1−r
4 10: r

4 14: r
4 15: 1−r

4

4
• •
◦ • 1: r2+(1−r)2

8 2: 1−r
2 3: r

2 6: r(1−r)
4 7: r(1−r)

4

5
• •
◦ • 11: 1

4 12: 1−r
4 13: r

4 14: 1−r
4 15: r

4

6
•
• ◦ 12: 1−r

2 13: r
2 16: 1

2

7
•
◦ • 9: 1−r

2 10: r
2 17: 1

2

8
• •
◦ • 2: 1

4 3: 1
4 14: r

4 15: 1−r
4

9
•
◦ • 6: r

4 7: 1−r
4 17: 1

2

10
•
◦ • 12: 1

4 13: 1
4 18: 1

8

11
• •
• ◦ 4: 1

4 5: 1
4 14: 1−r

4 15: r
4

12
•
• ◦ 6: 1−r

4 7: r
4 16: 1

2

13
•
• ◦ 9: 1

4 10: 1
4 18: 1

8

14
• •
• ◦ 4: 1

4 5: 1
4 11: 1

4 12: 1−r
4 13: r

4

15
• •
◦ • 2: 1

4 3: 1
4 8: 1

4 9: 1−r
4 10: r

4

16
•

◦ • 6: 1−r
4 7: r

4 12: 1−r
2 13: r

2

17
•

• ◦ 6: r
4 7: 1−r

4 9: 1−r
2 10: r

2

18
•

• ◦ 9: 1
2 10: 1

2 12: 1
2 13: 1

2
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Table S19 n StarƟng states for the calculaƟon of probabiliƟes of the two-locus X chromosome female diplotype of
the formAA|AB, in the generaƟon of four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA|AB 4
•
• ◦ (6) 1/2

AA|AC 4
•
• ◦ (12) 1/2

AB|AC 4
•
• ◦ (13) 1/2

AC|BC 2
•

• ◦ (18) 1

AC|CC 4
•

◦ • (16) 1/2
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Table S20 n Transpose of the recursion matrix for calculaƟng probabiliƟes of the two-locus X chromosome female
diplotype of the formAA|BB, in the generaƟon of four-way RIL by sibling maƟng

State at k + 1 State at k

1
• ◦
• ◦ 2: 1−r

2 3: r
2 4: 1−r

2 5: r
2

2
• ◦
• ◦ 1: (1−r)2

4 4: 1−r
2 5: r

2 6: r2

4

3
• ◦
• ◦ 7: 1−r

4 8: r
4

4
◦ •
◦ • 1: (1−r)2

4 2: 1−r
2 3: r

2 6: r2

4

5
◦ •
◦ • 9: 1−r

4 10: r
4

6
• ◦
◦ • 11: 1−r

2 12: r
2

7
• ◦
◦ • 2: 1

2 3: 1
2 7: 1−r

4 8: r
4

8
• ◦
◦ • 9: r

4 10: 1−r
4 11: 1

4 12: 1
4

9
• ◦
• ◦ 4: 1

2 5: 1
2 9: 1−r

4 10: r
4

10
• ◦
• ◦ 7: r

4 8: 1−r
4 11: 1

4 12: 1
4

11
• ◦
◦ • 1: r2

2 6: (1−r)2

2 11: 1−r
2 12: r

2

12
• ◦
◦ • 7: r

4 8: 1−r
4 9: r

4 10: 1−r
4
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Table S21 n StarƟng states for the calculaƟon of probabiliƟes of the two-locus X chromosome female diplotype of
the formAA|BB, in the generaƟon four-way RIL by sibling maƟng

Prototype No. states IniƟal paƩern IniƟal probability

AA|BB 1
• ◦
• ◦ (1) 1

AA|BC 4
• ◦
• ◦ (9) 1

AA|CC 2
• ◦
• ◦ (2) 1

AB|BA 1
• ◦
◦ • (6) 1

AB|BC 4
• ◦
• ◦ (10) 1

AB|CC 2
• ◦
• ◦ (3) 1

AC|CA 2
• ◦
◦ • (11) 1

AC|CB 2
• ◦
◦ • (12) 1
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Table S22 n PrescripƟon for the calculaƟon of two-locus autosomal diplotype probabiliƟes at intermediate
generaƟons in the construcƟon of 8-way RIL, from the corresponding probabiliƟes for 4-way RIL

4-way Probability 4-way Probability
Prototype No. states state mulƟplier Prototype No. states state mulƟplier

aa|aa 8 AA|AA 1−r
2 ac|ac 16 AB|AB 1

4

aa|ab 16 AA|AA 0 ac|ad 16 AB|AB 0

aa|bb 4 AA|AA 0 ac|bd 8 AB|AB 0

ab|ab 8 AA|AA r
2 ac|ae 128 AB|AC 1

8

ab|ba 4 AA|AA 0 ac|be 128 AB|AC 0

aa|ac 32 AA|AB 1−r
4 ac|ca 8 AB|BA (1−r)2

4

aa|bc 32 AA|AB 0 ac|cb 16 AB|BA r(1−r)
4

ab|ac 32 AA|AB r
4 ac|db 8 AB|BA r2

4

ab|bc 32 AA|AB 0 ac|ce 128 AB|BC 1−r
8

aa|ae 64 AA|AC 1−r
4 ac|de 128 AB|BC r

8

aa|be 64 AA|AC 0 ac|eg 64 AB|CD 1
16

ab|ae 64 AA|AC r
4 ae|ae 32 AC|AC 1

4

ab|be 64 AA|AC 0 ae|af 32 AC|AC 0

aa|cc 8 AA|BB (1−r)2

4 ae|bf 16 AC|AC 0

aa|cd 16 AA|BB r(1−r)
4 ae|ag 64 AC|AD 1

8

ab|cd 8 AA|BB r2

4 ae|bg 64 AC|AD 0

aa|ce 128 AA|BC 1−r
8 ae|cg 64 AC|BD 1

16

ab|ce 128 AA|BC r
8 ae|ea 16 AC|CA (1−r)2

4

aa|ee 16 AA|CC (1−r)2

4 ae|eb 32 AC|CA r(1−r)
4

aa|ef 32 AA|CC r(1−r)
4 ae|fb 16 AC|CA r2

4

ab|ef 16 AA|CC r2

4 ae|ec 64 AC|CB 1−r
8

aa|eg 64 AA|CD 1−r
8 ae|fc 64 AC|CB r

8

ab|eg 64 AA|CD r
8 ae|gc 64 AC|DB 1

16
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Table S23 n PrescripƟon for the calculaƟon of two-locus X chromosome female diplotype probabiliƟes at
intermediate generaƟons in the construcƟon of 8-way RIL, from the corresponding probabiliƟes for 4-way RIL.
Only the states with non-zero probability are shown.

4-way Probability 4-way Probability
Prototype No. states state mulƟplier Prototype No. states state mulƟplier

aa|aa 2 AA|AA 1−r
2 ac|ef 8 AB|CC r

4

ab|ab 2 AA|AA r
2 ae|ae 8 AC|AC 1

4

aa|ac 4 AA|AB 1−r
2 ae|cc 8 AC|BB 1

4

ab|ac 4 AA|AB r
2 ae|ce 8 AC|BC 1

4

aa|ae 8 AA|AC 1−r
4 ae|ea 4 AC|CA (1−r)2

4

ab|ae 8 AA|AC r
4 ae|eb 4 AC|CA r(1−r)

4

aa|cc 2 AA|BB 1−r
2 ae|fa 4 AC|CA r(1−r)

4

ab|cc 2 AA|BB r
2 ae|fb 4 AC|CA r2

4

aa|ce 8 AA|BC 1−r
4 ae|ec 8 AC|CB 1−r

4

ab|ce 8 AA|BC r
4 ae|fc 8 AC|CB r

4

aa|ee 4 AA|CC (1−r)2

4 ae|ee 8 AC|CC 1−r
4

aa|ef 4 AA|CC r(1−r)
4 ae|fe 8 AC|CC r

4

ab|ee 4 AA|CC r(1−r)
4 cc|cc 1 BB|BB 1

ab|ef 4 AA|CC r2

4 cc|ce 4 BB|BC 1
2

ac|ac 4 AB|AB 1
2 cc|ee 2 BB|CC 1−r

2

ac|ae 8 AB|AC 1
4 cc|ef 2 BB|CC r

2

ac|ca 2 AB|BA 1−r
2 ce|ce 4 BC|BC 1

2

ac|cb 2 AB|BA r
2 ce|ec 2 BC|CB 1−r

2

ac|cc 4 AB|BB 1
2 ce|fc 2 BC|CB r

2

ac|ce 8 AB|BC 1
4 ce|ee 4 BC|CC 1−r

2

ac|ea 8 AB|CA 1−r
4 ce|fe 4 BC|CC r

2

ac|eb 8 AB|CA r
4 ee|ee 2 CC|CC 1−r

2

ac|ec 8 AB|CB 1
4 ef |ef 2 CC|CC r

2

ac|ee 8 AB|CC 1−r
4
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