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ABSTRACT Advanced intercross populations, in which multiple inbred strains are mated at random for
many generations, have the advantage of greater precision of genetic mapping because of the
accumulation of recombination events across the multiple generations. Related designs include heteroge-
neous stock and the diversity outcross population. In this article, I derive the two-locus haplotype
probabilities on the autosome and X chromosome with these designs. These haplotype probabilities
provide the key quantities for developing hidden Markov models for the treatment of missing genotype
information. I further derive the map expansion in these populations, which is the frequency of
recombination breakpoints on a random chromosome.
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Advanced intercross populations, in which multiple inbred strains are
mated at random for many generations, have the advantage of greater
precision of genetic mapping because of the accumulation of recom-
bination events across the multiple generations. The most commonly
used form, which begins with two inbred strains, was formally in-
troduced by Darvasi and Soller (1995) and called advanced intercross
lines (AIL). A closely related design is that of heterogeneous stock
(HS; see Mott et al. 2000), in which eight inbred strains are randomly
mated for many generations. Svenson et al. (2012) developed the
diversity outcross population (DO), which was formed with progen-
itors that were partially inbred individuals drawn from intermediate
generations in the development of the Collaborative Cross (so-called
pre-CC mice; see Aylor et al. 2011).

The mapping of quantitative trait loci in such populations, whether
by interval mapping (Lander and Botstein 1989) or Haley-Knott regres-
sion (Haley and Knott 1992), generally requires conditional genotype
probabilities at putative quantitative trait loci, given the available marker
genotype data. Such probabilities are often calculated using a hidden

Markov model (HMM; see Broman and Sen 2009, App. D). An HMM
for this purpose formally requires the calculation of two-locus diplotype
probabilities, although if the populations are formed with a large number
of mating pairs, the two haplotypes within an individual are indepen-
dent, and so it is sufficient to calculate two-locus haplotype probabilities.

Darvasi and Soller (1995) derived the two-locus haplotype probabil-
ities for the autosome in AIL. I am not aware of any work considering
the X-chromosome. In this article, I derive the two-locus haplotype
probabilities for the autosome and X-chromosome in AIL, HS, and
the DO. The calculations for the DO rely on recent results on haplotype
probabilities in pre-CC mice (Broman 2012). Throughout, I assume an
effectively infinite set of mating pairs at each generation, no sex differ-
ence in recombination, and no selection or mutation.

Let us first revisit the two-locus autosomal haplotype probabilities
in AIL, as they serve as a simple example of the technique used in
these calculations (see also Bulmer 1980, Ch. 3). Let ps denote the
frequency of the AA haplotype at generation Fs. Then p1 5 1

2 and we
have the recurrence relation

ps1 1 5 ð12 rÞps 1 r � 1
2
� 1
2

(1)

where r is the recombination fraction (in one meiosis) between the
two loci. Equation (1) is derived by noting that an AA haplotype
drawn from generation Fs11 is either an intact AA haplotype at gen-
eration Fs, transmitted without recombination, or it is a recombinant
haplotype bringing two independent A alleles together. Note that the
frequency of the A allele is 1

2 at every generation.
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The solution of this recurrence relation (see Graham et al. 1994) is,
for s $ 2,

ps 5
1
4

�
11 ð12 2rÞð12 rÞs22�: (2)

The frequency of recombinant haplotypes at generation Fs is 1 2 2ps.
For the X-chromosome in AIL, I will first consider a balanced case,

begun with equal proportions of F1 individuals from reciprocal
crosses, A · B and B · A, so that the F1 males are equally likely to
be hemizygous A or B. Let ms and fs denote the frequency of the AA
haplotype in males and females, respectively, at generation Fs. Then
m1 5 f1 5 1

2 and we have

ms1 1 5 ð12 rÞfs1 r
4

fs1 1 5

�
1
2

�
ms 1

�
12 r
2

�
fs 1

r
8

(3)

This recurrence relation is derived in a similar way to that for the
autosome, noting that the male haplotype was drawn from his mother,
with a chance for recombination, and a random female haplotype is
equally likely to have been drawn from her father, without recombina-
tion, or from her mother, with the potential for recombination. I again
make use of the fact that the frequency of the A allele is 1

2 in both males
and females at every generation. The solution to this relation is, for s$ 2,

ms 5
1
8

�
21 ð12 2rÞ�ws2 2 1 ys2 2�1

�
32 5r1 2r2

z

��
ws2 2 2 ys2 2�	

fs 5
1
8

�
21 ð12 2rÞ�ws2 2 1 ys2 2�1

�
32 6r1 r2

z

��
ws2 2 2 ys2 2�	

(4)

where z 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið12rÞð92rÞp

, w ¼ (1 2 r 1 z)/4, and y ¼ (1 2 r 2 z)/
4. Note that the frequencies of recombinant haplotypes in males and
females are 1 2 2ms and 1 2 2fs, respectively, and that the overall
frequency is 1 2 (2ms 14fs)/3.

Now I turn to the unbalanced case for the X-chromosome, in
which all F1 individuals are derived from the cross female A · male B,
so that all F1 males are hemizygous A. This appears to be widely used
in practice (e.g., Norgard et al. 2008; Kelly et al. 2010). The calcula-
tions are more difficult, because the allele frequencies are different in
males and females and across generations.

I first calculate the single-locus allele frequencies. Let qs be the
frequency of the A allele in females at generation Fs. Note that the
frequency in males at Fs is qs21. The initial values are q0 ¼ 1 and
q1 5 1

2, and we have the recurrence relation qs11 5 1
2 qs1

1
2 qs21, which

comes from the fact that a random allele drawn from the female at
generation Fs11 is equally likely to be an allele from the female or male
at generation Fs, and the allele in the male at Fs is a random allele from
the female at Fs21. The solution of the recurrence relation is
qs 5 2

31ð13Þð21
2Þs, for s $ 0.

I now turn to the two-locus haplotype probabilities. Let m9s and f 9s
denote the frequencies of the AA haplotype on the X chromosome in
males and females at generation Fs in an unbalanced AIL, and note
that m91 5 1 and f 91 5

1
2. The haplotype probabilities satisfy a recur-

rence relation similar to that in equation (3):

m9s1 1 5 ð12 rÞf 9s 1 rqs2 1qs2 2

f 9s1 1 5

�
1
2

�
ms9 1

�
12 r
2

�
f 9s 1

�r
2

�
qs2 1qs2 2

(5)

Note the distinction between equations (3) and (5): if a recombinant
haplotype is transmitted from the Fs female, the chance that it brings

two A alleles together depends on the frequency of the A allele in
males and females in the Fs21 generation. In the balanced case, these
are each 1

2 ; in the unbalanced case, they are different from each other
and vary across generations.

I have been unable to obtain closed-form solutions for m9s and f 9s.
However, the values can be quickly calculated numerically, using
equation (5). Note that lims/Nf 9s 5 lims/Nm9s 5

4
9.

Haplotype probabilities in the DO are calculated similarly. The
progenitors for the DO were pre-CC mice. I assume a large number of
progenitors, that they were drawn from independent lines, and that
the order of the crosses that generated the different lines were random,
giving complete balance across the eight alleles.

In a potential abuse of notation, I will redefine the q, p, m, and f
variables used previously. Let qk denote the frequency of the AA hap-
lotype at generation G2:Fk in the pre-CC; this is 12r

2 times the haplo-
type probability in Table 4 of Broman (2012). Let ps be the probability
of the AA haplotype at generation s of the diversity outcross.

The pre-CC progenitors of the DO were drawn from in-
dependent lines at a variety of different generations along the
course to inbreeding. Let ak denote the proportion of the pre-CC
progenitors that were at generation G2: Fk, and note that a pre-CC
progenitor at generation G2: Fk will transmit the AA haplotype
with frequency qk11 (that is, the frequency of the AA haplotype
at generation G2: Fk). Thus, the frequency of the AA haplotype at
the first generation of the DO is p1 5

P
kakqk11.

The recurrence relation for the ps is like that in equation (1): ps11 ¼
(1 2 r)ps 1 r/64. The solution is

ps5
1
64

1 ð12 rÞs2 1
�
p1 2

1
64

�
(6)

Note that the recombinant haplotypes are all equally likely, due to
the random order of the initial crosses, and so each has probability (12
8ps)/56.

HS corresponds to the DO with a1 ¼ 1 (that is, k [ 1), in which
case p1 ¼ q2 ¼ 7 2 24r 1 24r2 2 8r3.

I now turn to the X-chromosome. Let ms and fs denote the fre-
quency of the AA haplotype on the X chromosome in males and
females in the DO at generation s. Assuming random orders of crosses
to generate the pre-CC progenitors,

f15
X

k
ak

�
1
8

��ð22 rÞhAAk1 1 1 ð12 rÞhCCk1 1

�
(7)

where hAAk11 and hCCk11 are the frequencies of the AA and CC haplo-
types, respectively, on the X-chromosome in females at generation
G1: Fk11 in the construction of four-way RIL by sibling mating (see
Broman 2012, Table 4). m1 is calculated in the same way. The re-
currence relations are much like equation (3):

ms11 5 ð12 rÞfs1 r
64

fs11 5

�
1
2

�
ms 1

�
12 r
2

�
fs 1

r
128

(8)

The solutions are the following:

ms 5
1
128



21

��
64m1 2 256f1 1 3

�ð12 rÞ
z

	�
ys2 1 2ws2 1�2 ð12 64m1Þ

�
ws2 1 1 ys2 1��

fs 5
1
128



21

�
2 64f1ð12 rÞ2 128m1 1 32 r

z

	�
ys2 1 2ws2 1�2 �

12 64f1
��
ws2 1 1 ys2 1��

(9)

where w, y, and z are as in equation (4).
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Again, HS corresponds to DO with a1 ¼ 1, in which case f1 ¼
(4 2 5r 1 r2)/32 and, m1 ¼ (2 2 3r 1 r2)/16.

In Figure 1, the probabilities of recombinant two-locus haplotypes are
displayed for the different populations. For the DO, I used the distribu-
tion of k as in Figure 1 of Svenson et al. (2012) and s ¼ 5. For HS and
AIL, I used s ¼ 10 and 12, respectively, to match the total number of
generations with recombination—the average k in Svenson et al. (2012)
was six. Recombinant haplotypes are more frequent on the autosome,
and are more frequent in HS than in the DO; inbreeding in the pre-CC
progenitors of the DO is accompanied by a loss of recombinants.

It is particularly interesting to consider the map expansion in these
populations, which is the frequency of recombination breakpoints on
a random chromosome. Let R denote the probability of a recombinant
haplotype; then the map expansion is dR

dr jr 5 0 (see Teuscher and Bro-
man 2007). The map expansion on an autosome in AIL is s/2. For the
DO, on an autosome, the map expansion satisfiesMs 5 7

8 ðs21Þ1M1,
where M1 is the weighted average (with weights ak) of the map
expansion in the pre-CC at generation G2: Fk11 (see Broman 2012,
Table 4). For the particular progenitors detailed in Svenson et al.
(2012, Figure 1), this is approximately (7s 137)/8. For HS, we have
M1 ¼ 3 and Ms 5 7s117

8 .
For the X-chromosome in balanced AIL, HS and DO, the map

expansion is 2
3 that of the autosome. For the case of the X-chromo-

some in unbalanced AIL, in which all F1 males are hemizygous A, I
cannot derive a closed-form solution, but taking the derivatives of the
recurrence relations in equation (5), I can derive a simple recurrence
relation for the map expansion. (Note that the overall map expansion
on the X-chromosome can be obtained as the average of the sex-
specific map expansions, with 2

3 weight given to the female, since
two-thirds of the X-chromosomes are in females.) Let M9s denote
the map expansion at Fs, and again let qs be the frequency of the A
allele in females at Fs. Then we have

M9s1 1 5M9s1
4
3

�
qs 2 qs2 1qs2 2

�
(10)

with the initial conditions M91 5 0 and M92 5
2
3. Although I have

not been able to derive a closed-form solution for M9s, it is easily
calculated numerically.

The aforementioned haplotype probabilities provide the key
quantities for developing HMMs for advanced intercross popula-
tions. However, it should be noted that there are other approaches
to handling such data. For example, Besnier et al. (2011) used
a variance components model to analyze outbred chicken AIL data,
with identity-by-descent probabilities calculated using a modified
version of the method of Pong-Wong et al. (2001), for general
pedigree data.

The aforementioned result for HS differs from that in Mott
et al. (2000) and incorporated into the HAPPY software. They
had assumed that the map expansion in HS was 7

8 ðs12Þ, whereas
I show it to be 7

8 ðs21Þ13. In the first three of generations with
recombination, individuals are fully heterozygous, and so all re-
combination events can be seen; in the subsequent s 2 1 gener-
ations, there is a 1/8 chance of homozygosity and so only 7/8 of
recombination events can be seen.

Mott et al. (2000) further assumed that the transition probabilities
along an HS chromosome are a function of genetic distance, but that
requires knowledge of the map function. It is more direct to express the
transition probabilities in terms of the recombination fraction at meiosis.

The green curve in Figure 1 displays the probability of a recombi-
nant haplotype assumed in Mott et al. (2000) for HS with s¼ 10 when
the map function corresponding to the gamma model with the level of
crossover interference estimated for the mouse in Broman et al. (2002)
is used. The probability is slightly smaller than that from my calcu-
lations; at r ¼ 0.01, the equation in Mott et al. (2000) gives 0.099,
whereas I obtain 0.103.

I have assumed an effectively infinite number of mating pairs at
each generation. In practice, with a finite number of mating pairs,
there will be some inbreeding and so an increased frequency of
homozygosity and a decreased frequency of recombination. In
addition, the individuals at the final generation will include siblings,
and the relationships among individuals might be used to improve the
genotype reconstruction. In practice, for computational efficiency,
both the inbreeding and the relationships among individuals would
probably be ignored in the genotype reconstruction, and with dense
genotype data, there will be little loss of information.
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