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ABSTRACT
A common departure from the usual normality assumption in QTL mapping concerns a spike in the

phenotype distribution. For example, in measurements of tumor mass, some individuals may exhibit no
tumors; in measurements of time to death after a bacterial infection, some individuals may recover from
the infection and fail to die. If an appreciable portion of individuals share a common phenotype value
(generally either the minimum or the maximum observed phenotype), the standard approach to QTL
mapping can behave poorly. We describe several alternative approaches for QTL mapping in the case of
such a spike in the phenotype distribution, including the use of a two-part parametric model and a
nonparametric approach based on the Kruskal-Wallis test. The performance of the proposed procedures
is assessed via computer simulation. The procedures are further illustrated with data from an intercross
experiment to identify QTL contributing to variation in survival of mice following infection with Listeria
monocytogenes.

THE standard approach for mapping the genetic the binary trait, defined by whether or not an individual
has the null phenotype, and the quantitative trait, forloci (quantitative trait loci, QTL) contributing to

variation in a quantitative trait makes use of the assump- those individuals having a strictly positive phenotype.
We develop a parametric, two-part model that allows ustion that the residual environmental variation follows a

normal distribution (Lander and Botstein 1989). A to combine these two analyses. In this single-QTL model,
an individual with QTL genotype g has probability �gcommon departure from this assumption is to observe

a spike in the phenotype distribution. For example, in of having a nonzero phenotype; if its phenotype is non-
zero, the value is assumed to follow a normal distribu-Figure 1, the survival time (in hours) following infection

with Listeria monocytogenes is displayed, for 116 female tion with mean �g and standard deviation (SD) �.
We also describe an extension of the Kruskal-Wallisintercross mice (from Boyartchuk et al. 2001). Approx-

imately 30% of the mice recovered from the infection test statistic for nonparametric interval mapping in an
intercross (exactly analogous to the extension of theand survived to the end of the study (264 hr). Other

examples include the density of metastatic tumors, with rank-sum test described in Kruglyak and Lander 1995,
which was suitable for a backcross). While Kruglyaksome individuals exhibiting no metastasis (Hunter et

al. 2001), and gallstone weight, with some individuals and Lander (1995) had randomized the rank of any
tied phenotypes, we assign the average rank to tied phe-having no gallstones (Wittenburg et al. 2002).

Let us assume, without loss of generality, that the notypes and apply a standard correction factor. A possi-
ble advantage of the nonparametric approach is thatspike in the distribution is at 0 (which we call the null

phenotype) and that all other phenotype values are the statistical test concerns 2 d.f., while the test derived
from use of the two-part model concerns 4 d.f. and sostrictly positive. QTL mapping under a normal model

can work reasonably well in this situation if the propor- has a larger null threshold.
tion of individuals with the null phenotype is not large We illustrate the use of these procedures with data
and the remainder of the phenotype distribution is not on survival time of mice, following infection with Listeria
far above 0. However, when this is not the case, maxi- monocytogenes (Boyartchuk et al. 2001). We further
mum-likelihood estimation under a normal mixture study their performance via computer simulations.
model can occasionally produce spurious LOD peaks in
regions of low genotype information (e.g., widely spaced

METHODSmarkers).
A simple method of analysis is to consider separately Consider n F2 progeny from an intercross between

two inbred strains. Let yi denote the quantitative pheno-
type for individual i. We assume, without loss of general-

1Address for correspondence: Department of Biostatistics, Johns Hop-
ity, that the spike in the phenotype distribution is at 0.kins University, 615 N. Wolfe St., Baltimore, MD 21205–2179.

E-mail: kbroman@jhsph.edu Let zi � 0 if yi � 0 and zi � 1 if yi � 0. Consider data on
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a set of genetic markers, with a known genetic map. Let We next calculate a LOD score for the test of H0: �j �
�. First note that the MLE, under H0, of the commonmi denote the multipoint marker data for individual i.

Conditional and binary trait analyses: A simple ap- probability � is the overall proportion, �̂0 � �izi/n. Let-
ting �̂0 � (�̂0, �̂0, �̂0), the LOD score is LOD � log10proach for QTL mapping in this situation is to first

analyze the quantitative phenotype, yi, using only the {L(�̂)/L(�̂0)}.
As with standard interval mapping, the likelihood un-individuals for which yi � 0, by standard interval map-

ping using a normal model (Lander and Botstein der H0 is calculated once, while the EM algorithm is
performed at each position in the genome (in practice,1989), and then separately analyze the binary trait zi.

The analysis of the binary trait deserves further expla- at 1-cM steps), producing a LOD curve for each chromo-
some.nation. Xu and Atchley (1996) described maximum-

likelihood estimation for a binary trait in the context Two-part model: The two separate analyses described
above suggest the following two-part, single-QTL model.of composite interval mapping (Zeng 1993, 1994).

Visscher et al. (1996) and McIntyre et al. (2001) de- We again consider n F2 progeny and some fixed position
in the genome as the location of a putative QTL. Letscribed approximate methods for analysis of binary

traits. We prefer the approach of Xu and Atchley yi, zi, gi, and mi be defined as above, and again let pij �
Pr(gi � j |mi).(1996). We briefly describe the special case of no marker

covariates. We assume that the (mi, yi, zi) are mutually indepen-
dent, that Pr(zi � 1|gi � j) � �j, and that yi|(gi � j, zi �We consider some fixed position in the genome as

the location of a putative QTL and let gi � 1, 2, or 3, 1) � normal(�j, �2). In other words, the probability
that an individual with QTL genotype j has the nullaccording to whether individual i has genotype AA, AB,

or BB, respectively, at the QTL. Let us assume that the phenotype is 1 � �j; if this individual’s phenotype is
nonnull, it follows a normal distribution with mean �j,binary phenotypes, zi, are independent, and let �j �

Pr(zi � 1|gi � j). Given the marker data, mi, but not depending on the QTL genotype, and with SD �, inde-
pendent of genotype.knowing the QTL genotypes gi, the zi follow mixtures

of Bernoulli distributions (analogous to the mixtures This model contains seven parameters, � � (�1, �2,
�3, �1, �2, �3, �). The likelihood function isof normals that arise in standard interval mapping).

We assume that we may calculate pij � Pr(gi � j |mi),
L(�) � �

i
�

j
pij(1 � �j)1�zi{�j f(yi; �j, �)}zi ,the QTL genotype probabilities, given the observed

multipoint marker data. Under no crossover interfer-
where f(y; �, �) is the density function for a normalence and no genotyping errors, the distribution de-
distribution with mean � and SD �.pends only on the nearest flanking typed markers, but

We may again obtain MLEs with a form of the EMone may also use the approach of Lincoln and Lander
algorithm. Assume at iteration s � 1 we have estimates(1992) to take account of the presence of genotyping
�̂ (s ). In the E-step, we calculate weights for each individ-errors.
ual and each genotype:The likelihood for the parameters � � (�j), given

the observed data {(mi,zi)}, is then
w(s�1)

ij � Pr(gi � j |yi, zi, mi, �̂(s ))
L(�) � �

i
�

j
pij(�j)zi(1 � �j)(1�zi) .

� �
pij(1 � �̂(s )

j )

�kpik(1 � �̂(s )
k )

if zi � 0

pij�̂
(s )
j f(yi; �̂(s )

j , �̂(s ))

�kpik�̂
(s )
k f(yi; �̂(s )

k , �̂(s ))
if zi � 1.

We obtain maximum-likelihood estimates (MLEs), �̂j,
using a form of the expectation-maximization (EM) al-
gorithm (Dempster et al. 1977). At iteration s � 1, we
have estimates of the parameters, �̂(s ). In the E-step, In the M-step, we obtain revised estimates of the parame-
we calculate weights for each individual and for each ters according to the following equations:
genotype:

�̂(s� 1)
j � �iw

(s�1)
ij zi

�iw
(s�1)
ijw(s�1)

ij � Pr(gi � j |zi , mi , �̂(s )) �
pij(�̂(s )

j )zi(1 � �̂(s )
j )(1�zi)

�kpik(�̂(s )
k )zi(1 � �̂(s )

k )(1�zi)
.

�̂(s�1)
j � �iyiw

(s�1)
ij zi

�iw
(s�1)
ij zi

In the M-step, we reestimate the probabilities �j as
�̂(s�1) � ��i �j(yi � �̂(s�1)

j )2w(s�1)
ij zi

�izi

.weighted proportions using the weights, w(s�1)
ij :

�̂(s�1)
j � �iziw

(s�1)
ij

�iw
(s�1)
ij

. We again start the algorithm by taking w(0)
ij � pij and

iterate until the estimates converge, producing the
MLEs, �̂.We begin the algorithm by taking w(0)

ij � pij and iterate
until the estimates converge, giving the MLE, �̂. We may calculate a LOD score for the test of H0: �j �
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1171Two-Part Model for QTL Mapping

�, �j � �. We first note that, under H0, the MLEs of
the three parameters, �, �, and �, are

�̂0 � �izi

n

�̂0 � �iziyi

�izi

�̂0 � ��i(yi � �̂0)2zi

�izi

.
Figure 1.—Histogram of survival time, following infection

with Listeria monocytogenes, of 116 intercross mice. Approxi-
In other words, �̂0 is the proportion of individuals with mately 30% of the mice recovered from the infection and
a positive phenotype, and �̂0 and �̂0 are the sample mean survived to the end of the experiment (264 hr).
and SD, among individuals with positive phenotypes.
Letting �̂0 � (�̂0, �̂0, �̂0, �̂0, �̂0, �̂0, �̂0), the LOD score
is LOD � log10{L(�̂)/L(�̂0)}. the null hypothesis of no linkage, considering the pij as

Note that in the case of complete QTL genotype infor- fixed. After some algebra, we obtain the formula
mation (i.e., when the putative QTL is at a marker that
has been fully typed), the pij are all either 1 or 0, and H �

12
n(n � 1)�j

(n � �ipij)(�ipij)2

n�ip2
ij � (�ipij)2 ��ipijRi

�ipij

�
n � 1

2 �
2

.
the two parts of the model separate fully. As a result,
the MLEs under the two-part model are exactly those In the case that the putative QTL is at a fully typed
obtained by the two separate analyses (the analysis of genetic marker, the pij will all be 0 or 1, and the above
the binary trait and the conditional analysis of the quan- statistic reduces to the Kruskal-Wallis test statistic.
titative trait, for those individuals with nonzero pheno- Kruglyak and Lander (1995) had randomized any
type). Further, the LOD score for the two-part model is tied phenotypes, a reasonable approach in the case of
simply the sum of the LOD scores from the two separate very few ties. In our application, however, a large propor-
analyses. tion of the individuals share a common phenotype.

Nonparametric analysis: Kruglyak and Lander (1995) Thus, rather than randomizing ties, we assign the aver-
described an extension of the Wilcoxon rank-sum test age rank to each individual within a set of tied pheno-
for nonparametric interval mapping in a backcross. The types. A standard correction for the case of ties is to use
rank-sum test is a nonparametric version of the two- the statistic H � � H/D, where D � 1 � �k(t 3

k � tk)/(n3 �
sample t-test. In the case of an intercross, they suggested n), with tk being the number of values in the kth group
tests for the additive or dominant effects at a putative of ties. Note that if there are no ties, D � 1 and so
QTL. An alternative approach is to extend the Kruskal- H � � H. [Of course, if one uses a permutation test
Wallis test statistic, a nonparametric version of a one- (Churchill and Doerge 1994) to obtain the genome-
way analysis of variance, for the comparison of two or wide significance threshold, as we recommend, the cor-
more samples (e.g., see Lehmann 1975). We describe rection factor is unnecessary.] As the nonparametric
such an extension below. statistic H � follows, approximately, a 	2 distribution un-

Rank the phenotypes, yi, from 1, . . . , n, and let Ri der the null hypothesis of no linkage, we convert the
denote the rank for individual i. In the case of ties, use statistic to the LOD scale by taking LOD � H�/(2 ln 10).
the average rank within each group of ties. We again
consider some fixed position in the genome as the loca-
tion of a putative QTL and let pij � Pr(gi � j |mi), the EXAMPLE
QTL genotype probabilities for individual i, given the

To illustrate our methods, we consider the data ofavailable multipoint marker data. Whereas, in the Kruskal-
Boyartchuk et al. (2001), on the time to death follow-Wallis test statistic, one considers the sum of the ranks
ing infection with L. monocytogenes in 116 F2 mice fromwithin each group, here the exact assignment of individ-
an intercross between the BALB/cByJ and C57BL/6ByJuals to QTL genotype groups is not known; rather, indi-
strains. The mice were typed at 133 markers, includingvidual i has prior probability pij of belonging to group
2 on the X chromosome. A histogram of the survivalj. We follow the approach of Kruglyak and Lander
times (in hours) appears in Figure 1. Note that �30%

(1995) and consider the expected rank sum, Sj � �ipijRi. of the mice recovered from the infection and survived
We then consider the statistic

to 264 hr.
We applied each of the four methods described above

H � �
j
�n � �ipij

n 	�(Sj � E0j)2

V0j
� , to these data: analysis of the binary trait, survived/died

(“binary”); standard interval mapping with the log time
to death, with only those mice that died (“QT”); use ofwhere E0j and V0j are the mean and variance of Sj under
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1172 K. W. Broman

Figure 2.—Results of four QTL map-
ping methods for data on survival time
following infection with Listeria monocyto-
genes in 116 intercross mice. The four
methods are analysis of the binary trait,
survived/died (binary); standard inter-
val mapping using the log time to death
for the nonsurviving individuals (QT);
use of the two-part model (2-part); and
nonparametric interval mapping (NP).
LOD scores were converted to experi-
ment-wise P values derived from permu-
tation tests; �log10P is plotted as a func-
tion of genomic position. A horizontal
line is plotted at �log10(0.05).

our two-part model (“two-part”); and the nonparametric 1300 cM. Genetic markers were equally spaced on each
chromosome, with a marker spacing of 10–12 cM. (Theinterval-mapping method based on the Kruskal-Wallis

test statistic (“NP”). intermarker spacing was slightly different for each chro-
mosome, so that the chromosomal lengths could matchGenome-wide LOD thresholds were obtained by per-

mutation tests (Churchill and Doerge 1994), using those in the genetic maps of Rowe et al. 1994.) A random
10% of the marker genotype data was missing. We simu-11,000 permutation replicates. The estimated 95% ge-

nome-wide LOD thresholds for the four methods, bi- lated a phenotype that was independent of the marker
data. Each individual had probability 25% of having anary, QT, two-part, and NP, were 3.54, 3.96, 4.91, and

3.27, respectively. The estimated standard errors (SEs) null phenotype; otherwise their phenotype was drawn
from a normal distribution with mean 10 and SD 1.for these thresholds were �0.02.

Because of the large differences in the LOD thresh- For each of 10,000 replicates, we simulated such data
under the null hypothesis of no QTL, applied each ofolds for the four methods, we converted the LOD curves

to a common scale, the estimated experiment-wise P the four methods, and recorded the maximum LOD
score, genome-wide, for each method. The 95th percen-values derived from the permutation tests. The results

indicated evidence for QTL on chromosomes 1, 5, 13, tiles of the maximum LOD score, for the four methods,
binary, QT, two-part, and NP, were 3.55, 3.53, 4.64, andand 15. In Figure 2, the statistic �log10P for each meth-

od is displayed for these selected chromosomes. 3.41, respectively. Note that the binary, QT, and NP
methods have similar LOD thresholds. The LOD thresh-The locus on chromosome 1 appears to have an effect

only on the average time to death among the nonsurvi- old for the two-part model is much higher, due to the
fact that the corresponding statistical test concerns fourvors. The locus on chromosome 5 appears to have an

effect only on the chance of survival. The loci on chro- free parameters, rather than two.
We also considered a fifth approach, in which onemosomes 13 and 15 have an effect on both the chance

of survival and the average time to death among nonsur- takes the maximum of the LOD scores from the binary
and conditional quantitative trait analyses. For this ap-vivors. Note that the locus on chromosome 15 achieved

the 5% genome-wide significance level only with the proach, we used a Bonferroni correction and declared
significant linkage if the LOD scores for either the bi-nonparametric interval-mapping method.
nary trait analysis or the conditional quantitative trait
analysis exceeded the corresponding 97.5% genome-

SIMULATIONS wide LOD thresholds, which were estimated to be 3.88
and 3.86, respectively.To better understand the relative performance of

To investigate the power and precision of each ofthese approaches for QTL mapping in the case of a
these methods, we simulated data under the two-partspike in the phenotype distribution, we performed a
model described above, with a single QTL located be-small simulation study. We first estimated the 95% ge-
tween two markers near the center of chromosome 1nome-wide LOD threshold for each method, in the case
(of length 103 cM). The QTL was taken to have multipli-of 250 intercross individuals with 25% having the null
cative effect φ� on the probabilities �j and additive effectphenotype and an autosomal genome modeled after

� on the conditional means �j. The probabilities, �j,the genetic map for the mouse described in Rowe et al.

(1994), consisting of 19 autosomes with total length were chosen so that �2 � φ��1 and �3 � φ2
��1 and so
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1173Two-Part Model for QTL Mapping

Figure 3.—Estimated power (�2 SE) to detect a QTL, based on 4000 simulation replicates. An intercross with 250 individuals
was simulated, with an average of 25% of individuals having the null phenotype. The alleles at the QTL have an additive effect,

�, on the phenotype means, and a multiplicative effect, φ�, on the probability of having a positive phenotype. Five analysis
methods were studied: analysis of the binary phenotype (binary), standard interval mapping using only those individuals with a
positive phenotype (QT), the maximum of the binary and conditional quantitative trait analyses (max), use of the two-part model
(2-part), and a nonparametric analysis (NP).

that the overall proportion of individuals with positive the binary or the conditional quantitative trait LOD
score exceeded its corresponding 97.5% genome-widephenotypes was �1/4 � �2/2 � �3/4 � 75%. The means

were chosen so that �1 � �2 � 
� and �3 � �2 � 
�, LOD threshold.
The estimated power of the procedures appears inwith �2 � 10. The residual SD was � � 1. We considered

the values φ� � 1, 1.5, and 2 and 
� � 0, 0.4, and 0.6. Figure 3. In Figure 3, A and D, the QTL had effect only
on the probabilities, �j. In these cases, the conditional(Note that φ� � 1 and 
� � 0 correspond to no QTL

effect.) analysis of the quantitative trait had no power, and the
analysis of the binary trait had the greatest power. TheWe performed 4000 simulations of 250 intercross indi-

viduals, for all pairs of effects (φ�, 
�), except for the two-part model was somewhat inferior to the binary trait
analysis, but had greater power than the nonparametriccase φ� � 1, 
� � 0. The latter corresponds to the null

hypothesis of no QTL; simulations for this case were method. Use of the maximum of the binary and condi-
tional quantitative trait LOD scores (with correction forused to estimate the LOD thresholds (see above). In

each case, we applied the four methods to the simulated the use of two tests) had somewhat greater power than
the two-part model.data on chromosome 1 (containing the QTL), calcu-

lated the maximum LOD score on that chromosome, In Figure 3, G and H, the QTL had effect only on
the conditional means, �j. In these cases, analysis of theand finally calculated the power of each test, as the

proportion of the simulation replicates for which the binary trait had no power, and the conditional analysis
of the quantitative trait had the greatest power. Themaximum LOD score exceeded the corresponding 95%

genome-wide LOD threshold. The power of the fifth results for the other methods were similar to the results
in Figure 3, A and D: the two-part model was superiorprocedure, taking the maximum of the binary and con-

ditional quantitative trait LOD scores, was estimated as to the nonparametric method, but inferior to either the
conditional quantitative trait analysis on its own or thethe proportion of the 4000 replicates in which either
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1174 K. W. Broman

Figure 4.—Estimated root-mean-square (RMS) error (�2 SE) of the estimated QTL location, among simulation replicates
showing significant evidence for the presence of a QTL.

maximum of the binary and conditional quantitative error), while those with the lowest power have the lowest
precision.trait analyses.

In Figure 3, B, C, E, and F, the QTL had effect on In summary, if a QTL has an effect only on the proba-
bilities, �j, or the conditional means, �j, greatest powerboth the probabilities, �j, and the conditional means,

�j. In these cases, the nonparametric method was best, to detect the QTL is obtained with the separate analysis
of that aspect of the data. If a QTL has an effect onalthough the use of the two-part model was competitive;

both of these approaches showed considerable gains both the probabilities, �j, and the conditional means,
�j, the nonparametric method performed best. In allover either of the two separate analyses and over the

maximum of the two separate analyses. cases, analysis under the two-part model (with which
the data were simulated) was second place, in terms ofFigure 4 contains the results on the precision of QTL

localization for the four basic methods. For each power. Note that further simulations, with 100 rather
than 250 intercross individuals and with the proportionmethod and for each setting of the parameter values

(φ�, 
�), the root-mean-square (RMS) of the error in the of individuals with the null phenotype taken to be 15 or
35% rather than 25%, gave qualitatively similar resultsestimated QTL location, among simulation replicates in

which there was significant evidence for the presence (data not shown).
of a QTL (i.e., in which the maximum LOD score ex-
ceeded the corresponding 95% genome-wide LOD

DISCUSSION
threshold), was calculated. Results for the conditional
quantitative trait analysis (QT) for Figure 4, A and D, We have considered the problem of QTL mapping

in the case of a spike in the phenotype distribution, aand for the binary trait analysis for Figure 4, G and H,
are not shown, since these methods have no power to common departure from the usual normality assump-

tion in standard interval mapping. Standard intervaldetect a QTL with the corresponding parameter set-
tings. The results in Figure 4 mirror those in Figure 3. mapping works reasonably well when the spike is not

too far from the rest of the phenotype distribution andThe methods with the highest power have the greatest
precision of QTL localization (i.e., the smallest RMS contains only a small proportion of the individuals.
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1175Two-Part Model for QTL Mapping

When the spike is well separated and contains an appre- the probabilities with a linear model for the conditional
means) deserve exploration.ciable proportion of the data, maximum-likelihood esti-

The methods described in this article have been im-mation under a normal mixture model has a tendency
plemented in the QTL mapping software, R/qtl (http://to produce spurious LOD score peaks in regions of low
www.biostat.jhsph.edu/�kbroman/qtl), an add-on pack-genotype information (e.g., widely spaced markers).
age for the general statistical software, R (Ihaka andWe developed a parametric, two-part model for QTL
Gentleman 1996).mapping in this situation and have described an exten-

sion of the Kruskal-Wallis test statistic for nonparametric The author thanks Victor Boyartchuk and William Dietrich for
providing the Listeria data. This work was supported in part by ainterval mapping in the case of an intercross. These
Faculty Innovation Fund grant from the Johns Hopkins Bloombergapproaches serve to combine the analysis of the binary
School of Public Health.trait with the conditional analysis of the quantitative

trait among individuals with positive phenotype.
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