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ABSTRACT The high mapping resolution of multiparental populations, combined with technology to measure
tens of thousands of phenotypes, presents a need for quantitative methods to enhance understanding of the
genetic architecture of complex traits. When multiple traits map to a common genomic region, knowledge of the
number of distinct loci provides important insight into the underlying mechanism and can assist planning for
subsequent experiments. We extend the method of Jiang and Zeng (1995), for testing pleiotropy with a pair of
traits, to the case of more than two alleles. We also incorporate polygenic random effects to account for
population structure. We use a parametric bootstrap to determine statistical significance. We apply our methods
to a behavioral genetics data set from Diversity Outbred mice. Our methods have been incorporated into the
R package qtl2pleio.
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Complex trait studies in multiparental populations present new
challenges in statistical methods and data analysis. Among these
is the development of strategies for multivariate trait analysis. The
joint analysis of two or more traits allows one to address additional
questions, such as whether two traits share a single pleiotropic locus.

Previous research addressed the question of pleiotropy vs. sepa-
rate QTL in two-parent crosses. Jiang and Zeng (1995) developed

a likelihood ratio test for pleiotropy vs. separate QTL for a pair of
traits. Their approach assumed that each trait was affected by a single
QTL. Under the null hypothesis, the two traits were affected by a
common QTL, and under the alternative hypothesis the two traits
were affected by distinct QTL. Knott and Haley (2000) used linear
regression to develop a fast approximation to the test of Jiang and
Zeng (1995), while Tian et al. (2016) used the methods from Knott
and Haley (2000) to dissect QTL hotspots in a F2 population.

Multiparental populations, such as the Diversity Outbred (DO)
mouse population (Churchill et al. 2012), enable high-precision map-
ping of complex traits (de Koning andMcIntyre 2014). The DOmouse
population began with progenitors of the Collaborative Cross (CC)
mice (Churchill et al. 2004). Each DO mouse is a highly heterozygous
genetic mosaic of alleles from the eight CC founder lines. Random
matings among non-siblings have maintained the DO population for
more than 23 generations (Chesler et al. 2016).

Several limitations of previous pleiotropy vs. separate QTL tests
prevent their direct application in multiparental populations. First,
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multiparental populations can have complex patterns of relatedness
among subjects, and failure to account for these patterns of relatedness
may lead to spurious results (Yang et al. 2014). Second, previous tests
allowed for only two founder lines (Jiang and Zeng 1995). Finally, Jiang
and Zeng (1995) assumed that the null distribution of the test statistic
follows a chi-square distribution.

We developed a pleiotropy vs. separate QTL test for two traits in
multiparental populations. Our test builds on research that Jiang and
Zeng (1995), Knott and Haley (2000), Tian et al. (2016), and Zhou and
Stephens (2014) initiated. Our innovations include the accommodation
of k founder alleles per locus (compared to the traditional two founder
alleles per locus) and the incorporation of multivariate polygenic ran-
dom effects to account for relatedness. Furthermore, we implemented
a parametric bootstrap test to assess statistical significance (Efron 1979;
Tian et al. 2016). We focus on the case that two traits are measured
in the same set of subjects (Design I in the notation of Jiang and
Zeng (1995)).

Below,wedescribe our likelihood ratio test forpleiotropy vs. separate
QTL. In simulation studies, we find that it is slightly conservative, and
that it has power to detect two separate loci when the univariate LOD
peaks are strong.We further illustrate our approachwith an application
to data on a pair of behavior traits in a population of 261 DO mice
(Logan et al. 2013; Recla et al. 2014).

METHODS
Our strategy involves first identifying two traits that map to a
common genomic region. We then perform a two-dimensional,
two-QTL scan over the genomic region, with each trait affected by
one QTL of varying position. We identify the QTL position that
maximizes the likelihood under pleiotropy (that is, along the di-
agonal where the two QTL are at a common location), and the
ordered pair of positions that maximizes the likelihood under the
model where the two QTL are allowed to be distinct. The logarithm
of the ratio of the two likelihoods is our test statistic. We determine
statistical significance with a parametric bootstrap.

Data structures
The data consist of three objects. The first is an n by k by m array of
allele probabilities for n subjects with k alleles andmmarker positions
on a single chromosome [derived from the observed SNP genotype
data by a hidden Markov model; see Broman et al. (2019)]. The
second object is an n by 2 matrix of phenotype values. Each column
is a phenotype and each row is a subject. The third object is an n by c
matrix of covariates, where each row is a subject and each column is a
covariate.

One additional object is the genotype-derived kinshipmatrix, which
isused in the linearmixedmodel toaccount forpopulation structure.We
are focusingonadefinedgenomic interval, andweprefer touseakinship
matrix derived by the “leave one chromosome out” (LOCO) method
(Yang et al. 2014), in which the kinship matrix is derived from the
genotypes for all chromosomes except the chromosome under test.

Statistical Models
Focusing on a pair of traits and a particular genomic region of interest,
the next step is a two-dimensional, two-QTL scan (Jiang and Zeng
1995). We consider two QTL with each affecting a different trait, and
consider all possible pairs of locations for the two QTL. For each pair
of positions, we fit the multivariate linear mixed effects model defined
in Equation 1. Note that we have assumed an additive genetic model
throughout our analyses, but extensions to design matrices that include
dominance are straightforward.

vecðYÞ ¼ XvecðBÞ þ vecðGÞ þ vecðEÞ (1)

where Y is the n by 2 matrix of phenotypes values; X is a 2n by 2ðkþ cÞ
matrix that contains the k allele probabilities for the two QTL positions
and the c covariates in diagonal blocks; B is a ðkþ cÞ by 2 matrix of
allele effects and covariate effects;G is a n by 2matrix of random effects;
and E is a n by 2 matrix of random errors. n is the number of mice. The
‘vec’ operator stacks columns from a matrix into a single vector. For
example, a 2 by 2 matrix inputted to ‘vec’ results in a vector with length
4. Its first two entries are the matrix’s first column, while the third and
fourth entries are the matrix’s second column.

We also impose distributional assumptions on G and E:

G � MNnx2
�
0;K;Vg

�
(2)

and

E � MNnx2ð0; I;VeÞ (3)

where MNnx2ð0;Vr;VcÞ denotes the matrix-variate (n by 2) normal
distribution with mean being the n by 2 matrix with all zero entries
and row covariance Vr and column covariance Vc. We assume that
G and E are independent.

Parameter inference and log likelihood calculation
Inference for parameters in multivariate linear mixed effects models is
notoriously difficult and can be computationally intense (Meyer 1989,
1991). Thus, we estimate Vg and Ve under the null hypothesis of no
QTL, and then take them as fixed and known in our two-dimensional,
two-QTL genome scan. We use restricted maximum likelihood
methods to fit the model:

vecðYÞ ¼ X0vecðBÞ þ vecðGÞ þ vecðEÞ (4)

where X0 is a 2n by 2ðcþ 1Þ matrix whose first column of each di-
agonal block in X0 has all entries equal to one (for an intercept); the
remaining columns are the covariates.

We draw on our R implementation (Boehm 2018) of the GEMMA
algorithm for fitting a multivariate linear mixed effects model with
expectation-maximization (Zhou and Stephens 2014). We use restricted
maximum likelihood fits for the variance components Vg and Ve in
subsequent calculations of the generalized least squares solution B̂.

B̂ ¼ �
XT Σ̂

21X
�21

XT Σ̂
21vecðYÞ (5)

where

Σ̂ ¼ V̂g5K þ V̂e5In (6)

where 5 denotes the Kronecker product, K is the kinship matrix,
and In is a n by n identity matrix. We then calculate the log likelihood
for a normal distribution with mean XvecðB̂Þ and covariance Σ̂ that
depends on our estimates of Vg and Ve (Equation 6).

Pleiotropy vs. separate QTL hypothesis
testing framework
Our test applies to two traits considered simultaneously. Below, l1 and
l2 denote putative locus positions for traits one and two. We quanti-
tatively state the competing hypotheses for our test as:

H0 : l1 ¼ l2

HA : l1 6¼ l2 (7)
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Our likelihood ratio test statistic is:

LOD ¼ log10

�
maxl1;l2LðB;Σ; l1; l2Þ
maxlLðB;Σ; l; lÞ

�
(8)

where L is the likelihood for fixed QTL positions, maximized over all
other parameters. The denominator concerns the likelihood for the
null hypothesis of pleiotropy, where l ¼ l1 ¼ l2.

Visualizing profile LOD traces
The output of the above analysis is a two-dimensional log10 likelihood
surface. To visualize these results, we followed an innovation of Zeng
et al. (2000) and Tian et al. (2016), and plot three traces: the results
along the diagonal (corresponding to the null hypothesis of pleiotropy),
and then the profiles derived by fixing one QTL’s position and
maximizing over the other QTL’s position.

We define the LOD score for our test:

LODðl1; l2Þ ¼ ll10ðl1; l2Þ2max
l

  ll10ðl; lÞ (9)

where ll10 denotes log10 likelihood.
We follow Zeng et al. (2000) and Tian et al. (2016) in defining

profile LOD by the equation

profile LOD1ðl1Þ ¼ max
l2

  LODðl1; l2Þ (10)

We define profile LOD2ðl2Þ analogously. The profile LOD1 and profile
LOD2 traces have the samemaximum value, which is non-negative and
gives the overall LOD test statistic.

We construct the pleiotropy trace by calculating the log-likelihoods
for the pleiotropic models at every position.

LODpðlÞ ¼ ll10ðl; lÞ2max
l

  ll10ðl; lÞ (11)

By definition, the maximum value for this pleiotropy trace is zero.

Bootstrap for test statistic calibration
We use a parametric bootstrap to determine statistical significance
(Efron 1979). While Jiang and Zeng (1995) used quantiles of a chi-
squared distribution to determine p-values, this does not account for
the two-dimensional search over QTL positions. We follow the ap-
proach of Tian et al. (2016), and identify the maximum likelihood
estimate of the QTL position under the null hypothesis of pleiotropy.
We then use the inferred model parameters under that model and with
theQTL at that position to simulate bootstrap data sets according to the
model in equations 1–3. For each of b bootstrap data sets, we perform a
two-dimensional QTL scan (over the genomic region of interest) and
derive the test statistic value. We treat these b test statistics as the
empirical null distribution, and calculate a p-value as the proportion
of the b bootstrap test statistics that equal or exceed the observed one,
with the original data, p ¼ #fi : LOD�

i $ LODg=b where LOD�
i de-

notes the LOD score for the ith bootstrap replicate and LOD is the
observed test statistic.

Data & Software Availability
Our methods have been implemented in an R package, qtl2pleio,
available at GitHub: https://github.com/fboehm/qtl2pleio

Custom R code for our analyses and simulations are at GitHub:
https://github.com/fboehm/qtl2pleio-manuscript-clean

The data fromRecla et al. (2014) andLogan et al. (2013) are available at
the Mouse Phenome Database: https://phenome.jax.org/projects/Chesler4

and https://phenome.jax.org/projects/Recla1. They are also available
in R/qtl2 format at https://github.com/rqtl/qtl2data. Supplemental
material available at FigShare: https://doi.org/10.25387/g3.8126930.

SIMULATION STUDIES
We performed two types of simulation studies, one for type I error rate
assessment and one to characterize the power to detect separate QTL.
To simulate traits, we specified X, B, Vg , K, and Ve matrices (Equations
1–3). For both we used the allele probabilities from a single genomic
region derived empirically from data for a set of 479 Diversity Outbred
mice from Keller et al. (2018).

Type I error rate analysis
To quantify type I error rate (i.e., false positive rate), we simulated
400 pairs of traits for each of eight sets of parameter inputs (Table 1).
We used a 23 factorial experimental design with three factors: allele
effects difference, allele effects partitioning, and genetic correlation,
i.e., the off-diagonal entry in the 2 by 2 matrix Vg .

We chose two strong allele effects difference values, 6 and 12.
These ensured that the univariate phenotypes mapped with high
LOD scores to the region of interest. For the allele partitioning
factor, we used either equally frequent QTL alleles, or a private allele
in the CAST strain (F). For the residual genetic correlation (the off-
diagonal entry in Vg), we considered the values 0 and 0.6. The
marginal genetic variances (i.e., the diagonal entries in Vg) for each
trait were always set to one.

We performed 400 simulation replicates per set of parameter inputs,
and each used b ¼ 400 bootstrap samples. For each bootstrap sample,
we calculated the test statistic (Equation 8). We then compared the test
statistic from the simulated trait against the empirical distribution of its
400 bootstrap test statistics. When the simulated trait’s test statistic
exceeded the 0.95 quantile of the empirical distribution of bootstrap
test statistics, we rejected the null hypothesis. We observed that the test
is slightly conservative over our range of parameter selections (Table 1),
with estimated type I error rates , 0.05.

Power analysis
We also investigated the power to detect the presence of two distinct
QTL. We used a 2 · 2 · 5 experimental design, where our three
factors were allele effects difference, allele effects partitioning, and
inter-locus distance. The two levels of allele effects difference were
1 and 2. The two levels of allele effects partitioning were as in the
type I error rate studies, ABCD:EFGH and F:ABCDEGH (Table S1).
The five levels of interlocus distance were 0, 0.5, 1, 2, and 3 cM.
Vg and Ve were both set to the 2 by 2 identity matrix in all power
study simulations.

We simulated 400 pairs of traits per set of parameter inputs. For
each simulation replicate, we calculated the likelihood ratio test
statistic. We then applied our parametric bootstrap to determine
the statistical significance of the results. For each simulation repli-
cate, we used b ¼ 400 bootstrap samples. Because the bootstrap test
statistics within a single set of parameter inputs followed approxi-
mately the same distribution, we pooled the 400 · 400 ¼ 160; 000
bootstrap samples per set of parameter inputs and compared each
test statistic to the empirical distribution derived from the 160,000
bootstrap samples. However, for parameter inputs with interlocus
distance equal to zero, we did not pool the 160,000 bootstrap samples;
instead, we proceeded by calculating power (i.e., type I error rate,
in this case), as we did in the type I error rate study above.

We present our power study results in Figure 1. Power increases as
interlocus distance increases. The top two curves correspond to the case
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where the QTL effects are largest. For each value for the QTL effect,
power is greater when the QTL alleles are equally frequent, and smaller
when a QTL allele is private to one strain. One can have high power to
detect that the two traits have distinct QTL when they are separated
by . 1 cM and when the QTL have large effect. We provide example
profile LOD plots from the power analysis in Figure S3.

APPLICATION
To illustrate our methods, we applied our test to data from Logan
et al. (2013) and Recla et al. (2014), on 261 DO mice measured for a
set of behavioral phenotypes. Recla et al. (2014) identified Hydin as
the gene that underlies a QTL on Chromosome 8 at 57 cM for the
“hot plate latency” phenotype (a measure of pain tolerance). The
phenotype “percent time in light” in a light-dark box (a measure of
anxiety) was measured on the same set of mice (Logan et al. 2013)
and also shows a QTL near this location, which led us to ask whether
the same locus affects both traits. The two traits show a correlation
of 20:15 (Figure S1).

QTL analysis with the LOCO method, and using sex as an
additive covariate, showed multiple suggestive QTL for each
phenotype (Figure S2; Table S2). For our investigation of pleiot-
ropy, we focused on the interval 53–64 cM on Chromosome 8.
Univariate analyses showed a QTL in this region for both traits
(Figure 2).

The estimated QTL allele effects for the two traits are quite different
(Figure 3). With the QTL placed at 55 cM, for “percent time in light”,
the WSB and PWK alleles are associated with large phenotypes and
NOD with low phenotypes. For “hot plate latency”, on the other hand,
CAST andNZO show low phenotypes andNODandPWKare near the
center.

In applying our test for pleiotropy,weperformeda two-dimensional,
two-QTL scan for the pair of phenotypes.With these results, we created
a profile LOD plot (Figure 4). The profile LOD for “percent time in
light” (in brown) peaks near 55 cM, as was seen in the univariate
analysis. The profile LOD for “hot plate latency” (in blue) peaks near
58 cM, also similar to the univariate analysis. The pleiotropy trace
(in gray) peaks near 58 cM.

The likelihood ratio test statistic for the test of pleiotropy was 1.2.
Based on a parametric bootstrap with 1,000 bootstrap replicates, the
estimated p-value was 0.11. Thus, by our approach, the evidence for the
two traits having distinct QTL is weak.

DISCUSSION
We developed a test of pleiotropy vs. separate QTL for multipar-
ental populations, extending the work of Jiang and Zeng (1995) for
multiple alleles and with a linear mixed model to account for pop-
ulation structure (Kang et al. 2010; Yang et al. 2014). Our simula-
tion studies indicate that our test is slightly conservative, with type
I error rates below their nominal values (Table 1). Power is affected
by many factors (including sample size, effect size, and allele fre-
quencies). We studied the effects of interlocus distance and QTL
effect on power, and we showed that our test has power to detect
presence of separate loci, especially when univariate trait associa-
tions are strong (Figure 1).

In the application of our method to two behavioral phenotypes in a
study of 261 Diversity Outbred mice (Recla et al. 2014; Logan et al.
2013), the evidence for the presence of two distinct QTL, with one QTL
(which contains the Hydin gene) affecting only “hot plate latency” and
a second QTL affecting “percent time in light” was weak (P = 0.11,
Figure 4).

Founder allele effects plots provide further evidence for the
presence of two distinct loci. As Macdonald and Long (2007) and
King et al. (2012) have demonstrated in their analyses of multi-
parental Drosophila populations, a biallelic pleiotropic QTL would
result in allele effects plots that have similar patterns. While we
do not know that “percent time in light” and “hot plate latency”
arise from biallelic QTL, the dramatic differences that we observe

Figure 1 Pleiotropy vs. separate QTL power curves
for each of four sets of parameter settings. Factors
that differ among the four curves are allele effects
difference and allele partitioning. Red denotes high
allele effects difference, while black is the low allele
effects difference. Solid line denotes the even allele
partitioning (ABCD:EFGH), while dashed line de-
notes the uneven allele partitioning (F:ABCDEGH).

n Table 1 Type I error rates for all runs in our 23 experimental
design. We set (marginal) genetic variances (i.e., diagonal
elements of Vg ) to 1 in all runs. Ve was set to the 2 by 2 identity
matrix in all runs. We used allele probabilities at a single genetic
marker to simulate traits for all eight sets of parameter inputs. In
the column “Allele effects partitioning”, “ABCD:EFGH” means that
lines A–D carry one QTL allele while lines E–H carry the other allele.
“F:ABCDEGH” means the QTL has a private allele in strain F

Run
D(Allele
effects)

Allele effects
partitioning

Genetic
correlation

Type I error
rate

1 6 ABCD:EFGH 0 0.032
2 6 ABCD:EFGH 0.6 0.035
3 6 F:ABCDEGH 0 0.040
4 6 F:ABCDEGH 0.6 0.045
5 12 ABCD:EFGH 0 0.038
6 12 ABCD:EFGH 0.6 0.042
7 12 F:ABCDEGH 0 0.025
8 12 F:ABCDEGH 0.6 0.025
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in allele effects patterns further support the argument for two
distinct loci.

We have implemented our methods in an R package qtl2pleio,
but analyses can be computationally intensive and time consuming.

qtl2pleio is written mostly in R, and so we could likely obtain
improved computational speed by porting parts of the calcula-
tions to a compiled language such as C or C++. To accelerate
our multi-dimensional QTL scans, we have integrated C++

Figure 2 Chromosome 8 univariate LOD scores for
percent time in light and hot plate latency reveal
broad, overlapping peaks between 53 cM and
64 cM. The peak for percent time in light spans
the region from approximately 53 cM to 60 cM, with
a maximum near 55 cM. The peak for hot plate
latency begins near 56 cM and ends about 64 cM.

Figure 3 Chromosome 8 founder allele effects for
percent time in light and hot plate latency demon-
strate distinct allele patterns between 53cM and
64 cM.
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code into qtl2pleio, using the Rcpp package (Eddelbuettel et al.
2011).

Another computational bottleneck is the estimation of the variance
components Vg and Ve. To accelerate this procedure, especially for the
joint analysis of more than two traits, we will consider other strategies
for variance component estimation, including that described by Meyer
et al. (2018). Meyer et al. (2018), in joint analysis of dozens of traits,
implement a bootstrap strategy to estimate variance components for
lower-dimensional phenotypes before combining bootstrap estimates
into valid covariance matrices for the full multivariate phenotype. Such
an approach may ease some of the computational burdens that we
encountered.

We view tests of pleiotropy as complementary to mediation
tests and related methods that have become popular for inferring
biomolecular causal relationships (Chick et al. 2016; Schadt et al.
2005; Baron and Kenny 1986). A mediation test proceeds by in-
cluding a putative mediator as a covariate in the regression anal-
ysis of phenotype and QTL genotype; a substantial reduction in
the association between genotype and phenotype corresponds to
evidence of mediation.

Mediation analyses and our pleiotropy test ask distinct, but
related, questions. Mediation analysis seeks to establish causal
relationships among traits, including molecular traits, or depen-
dent biological and behavioral processes. Pleiotropy tests examine
whether two traits share a single source of genetic variation,whichmay
act in parallel or in a causal network. Pleiotropy is required for causal
relations among traits. In many cases, the pleiotropy hypothesis is the
only reasonable one.

Schadt et al. (2005) argued that both pleiotropy tests and causal
inference methods may contribute to gene network reconstruction.
They developed a model selection strategy, based on the Akaike
Information Criterion (Akaike 1974), to determine which causal
model is most compatible with the observed data. Schadt et al.
(2005) extended the methods of Jiang and Zeng (1995) to consider
more complicated alternative hypotheses, such as the possibility of
two QTL, one of which associates with both traits, and one of which
associates with only one trait. As envisioned by Schadt et al. (2005),
we foresee complementary roles emerging for our pleiotropy test

and mediation tests in the dissection of complex trait genetic
architecture.

Two related approaches for identifying and exploiting pleiotropy
deservemention. First, CAPE (Combined Analysis of Pleiotropy and
Epistasis) is a strategy for identifying higher-order relationships
among traits and marker genotypes (Tyler et al. 2013, 2016) and
has recently been extended for use with multiparental populations,
including DOmice (Tyler et al. 2017). CAPE exploits the pleiotropic
relationship among traits in order to characterize the underlying
network of QTL, and it can suggest possible pleiotropic effects,
but it does not provide an explicit test of pleiotropy. Second,
Schaid et al. (2016) described a test for pleiotropy in the context
of human genome-wide association studies (GWAS). Their ap-
proach is fundamentally different from ours, in that rather than
ask whether traits are affected by a common locus or distinct loci,
they ask whether the traits are all affected by a particular SNP or
only some are. The difference in these approaches may be attrib-
uted to the difference in mapping resolution between human GWAS
and experimental populations.

Technological advances inmass spectrometry and RNA sequenc-
ing have enabled the acquisition of high-dimensional biomolecular
phenotypes (Ozsolak and Milos 2011; Han et al. 2012). Multipar-
ental populations in Arabidopsis, maize, wheat, oil palm, rice, Dro-
sophila, yeast, and other organisms enable high-precision QTL
mapping (Yu et al. 2008; Tisné et al. 2017; Stanley et al. 2017;
Raghavan et al. 2017; Mackay et al. 2012; Kover et al. 2009;
Cubillos et al. 2013). The need to analyze high-dimensional pheno-
types in multiparental populations compels the scientific commu-
nity to develop tools to study genotype-phenotype relationships and
complex trait architecture. Our test, and its future extensions, will
contribute to these ongoing efforts.
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