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2.1 Introduction

Geneticists must learn to program: for efficiency, to avoid introducing errors into

data, and to make simple what would otherwise be unfeasible. If a geneticist were

to learn just one programming language, Perl would be an excellent choice; it is

especially valuable for the manipulation of text files, which are the input and output

of most statistical genetic software.

Our ability to learn from data relies upon the accuracy and integrity of such data.

Thus, it is critical that data be stored and managed with great care. The continual

growth in the size and complexity of genetic data has led to an increasing need for a

formal approach to data management.

Many data are in the form of a rectangle: many individuals measured at many

variables. Genetic data, however, are generally of more complex form, including

pedigree information and genetic maps. Moreover, no standard data format has

emerged, nor does there exist a comprehensive statistical genetic software package.

The analysis of genetic data generally requires the use of multiple computer programs,

each having a unique data input format.

A fundamental task in statistical genetic analyses is thus the manipulation of

data files in order to conform to the variety of input formats required by the va-

riety of software tools that must be used. Such data manipulation is cumbersome,
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time-consuming, and error-prone, if not impossible, without the ability to program

in a language like Perl. Programming also provides the ability to automate analyses

and to perform computer simulations.

In this chapter, we describe the essential issues in the management and manip-

ulation of genetic data, focusing on the case of human linkage data, although the

basic principles apply to all types of data. Towards the end of the chapter, we provide

some sample snippets of Perl code, to give the reader a flavour of the language and to

emphasize certain features of Perl that are especially valuable for this type of work.

We include examples of code with some trepidation, as we fear that readers will run

in fright from learning to program. And so we hope that if the code frightens readers,

they will ignore it, initially, and focus on the essential ideas. But we also hope that

readers will be persuaded by our argument that geneticists must learn to program

(or hire a programmer).

2.2 Basic principles

We begin with a brief set of guiding principles for the manipulation of genetic data.

Our goals are, first, to maintain the integrity of the data; second, to be as efficient as

possible; and third, to ensure that results are reproducible.

2.2.1 Never modify data ‘by hand’

If certain genotypes are to be removed as likely to be in error, create a file of such, and

write a program that creates a new version of the data with those genotypes removed.

If the data must be reformatted for a particular software package, do not edit the

files directly; write a program to do so. Why? One then avoids the introduction of

errors, results can be easily reproduced, and the process can be automated so that, if

the primary data should change, essentially no further effort must be expended to

get back to the same point. Moreover, the computer program provides a record of

what was done.

We would like to emphasize the value of command-line programs over point-and-

click programs for this reason. Pointing and clicking can be useful for the occasional

user of software, or for preliminary, interactive analyses, but if automation is needed,

pointing and clicking is far too cumbersome, and if the analysis is to be repeated (and

it usually is), how much easier is the repeated run of a program than repeated pointing

and clicking!

2.2.2 Be organized; keep notes

When one leaves the laboratory and sits down in front of a computer, the importance

of a laboratory notebook should not be forgotten. The procedures in data analysis
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are not unlike those of a laboratory experiment: there are often many steps to be

taken and many choices to be made at each step. Careful account must be taken of

the particular steps and the particular choices, so that the results obtained may be

understood, trusted, and reproduced. Such organization requires the investment of

some effort, but this is made in order to minimize future effort.

Computer programs can serve as a useful record of one’s analyses. However, it

is often the case that multiple short programs are written, and that each includes

some flexibility (and, indeed, we will emphasize the importance of both of these

features subsequently). And so further notes on the particulars of one’s analyses will

be desired. If copious printouts are to be avoided, a short electronic notebook might

be recommended.

It is unfortunate that statisticians have not adopted the laboratory notebook tra-

dition, especially given the growth in the size and complexity of their computer

simulations. (Statisticians’ simulation results are notoriously irreproducible.) We

hope that they soon do.

2.2.3 Reuse code

Few tasks are performed just once in a career, and so in writing a computer program,

one should consider the possibility that it may be of some use in the future. Programs

should be written in a modular and reasonably general form, and explanations

(‘comments’) should be included in order to clarify any aspects of the program that

are not obvious.

One must balance current versus future effort. If a program is written that is quite

specific to the current task, it cannot be reused without modification. If the program

is made somewhat more general (so that, for example, file names and parameter

values are specified on the command line rather than within the program), there is a

greater chance that it will be reused without modification in the future. But to write

the program in more complete generality may require considerably more current

effort without any guarantee that the added features will ever be put to use.

Modularity of software can increase the chance that one’s programming effort will

be put to future use. All of one’s tasks might be solved by a single long, strung-out

program, but it is unlikely that the same long sequence will be required unchanged

in the future. If the long program is split into many small, independent modules, it

is much more likely that some individual module will be of future use, unchanged.

Documentation of software is critical, even for code that is intended only for

the programmer’s own use. Think of yourself 3 months or 3 years hence; will you

remember what you did and be able to modify or fix your code? That the program

is written with some clarity is as important as proper documentation. If extensive

explanations are required, perhaps it is best that the code be rewritten so that its

use is more transparent. It is important that the documentation describe not only

the operation of the program, but also the assumptions that the program makes about

the input data. It is all too easy to write a program, that relies on a particular feature
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of a data set (for example, that the records are sorted, or that the columns in the data

file are in a particular order). If the software is subsequently reused on new data that do

not have this feature, the results will be incorrect. Ideally, programs should perform

extensive checking of any input data, particularly if the programs are intended for

reuse, but further comparisons of input and output data are recommended to ensure

that the data have not become garbled due to some subtle change in data format.

2.2.4 There’s probably an easier way, but . . .

The first priority in programming should be to write code that works. There are

generally many approaches to any program; do not concern yourself initially (if at all)

with finding the optimal solution. Another trade-off arises here: time to construct the

program versus time to run the program. For tasks in data manipulation, efficiency

of computation is seldom of much importance. First solve the problem. If it is later

seen to be important to reduce computation time, seek a more optimal solution, but

retain your initial solution as a benchmark.

2.3 Data entry and storage

Data seldom begin their life within a computer; ideally, they are transmitted directly

from the measuring instrument to the computer. If data are to be entered into the

computer by hand, it is best done independently by at least two people, in order to

reduce the possibility of errors. Any discrepancies between the two data sets may be

checked against the original data.

Data sets of small or moderate size can reasonably be stored in an office spreadsheet

program, such as Microsoft Excel. It is best to insert a value in every cell, using a

standardized code (such as NA) in any cells for which the data are missing, rather

than leave some cells empty. Empty cells are ambiguous: was the value missing, or

was an error in data entry made? It is best not to use special fonts (such as boldface)

or colours to encode important information, as such codes will be difficult to extract

from the software. Consistency in the coding throughout the data will, of course,

simplify its later use.

We routinely receive data as Excel files, but convert them to comma- or tab-

delimited text files prior to their use, as such text files are easily manipulated via

computer programs and are generally needed for input into statistical genetic soft-

ware. For much of our work, it is sufficient to maintain the data in such text files.

The increasing size and complexity of genetic data argue for the abandonment

of Excel or other spreadsheets as a solution for data storage, especially as Excel is

limited in the number of columns (256) and rows (about 65 000) that are allowed.

We continue to use plain text files for storing extremely large data sets (e.g. genotype

data on 500K SNPs), but for complex data (particularly for the maintenance of
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multiple projects whose data may be pooled, or for a project with a large number

of individuals measured at many phenotypes longitudinally), a formal database may

be preferred. The choice of database software depends on the size and complexity

of the data (as well as the budget). For smaller projects, open-source solutions, such

as MySQL or PostgreSQL, can work very well. For very large collections of data,

however, it might be better to use one of the commercial offerings, such as Oracle or

Sybase. In any case, if data storage and handling requirements are such that a database

is required, it will generally be necessary either to hire a dedicated employee who is

proficient in the design, implementation, and maintenance of databases, or to buy a

complete solution where the database application has already been developed. The

advantage of the latter solution is that these packages generally come with support

from the supplier. The disadvantage is the cost, which in many cases can be substantial

(although the cost of hiring a database programmer for the first solution must not

be forgotten).

We hope it is unnecessary to emphasize that all data should be backed up regularly

(and automatically), with backups kept off site so that, should a catastrophe occur,

minimal data are lost.

2.4 Data manipulation

The analysis of genetic linkage data involves a sequence of tasks: verify and correct

relationships between individuals, identify and resolve genotyping errors, identify

and resolve errors in the phenotypes and any covariates, and perform the actual

analysis. Sometimes one may then conduct computer simulations to assess the per-

formance of the statistical methods or to obtain P values that properly account for

test multiplicity.

As the different tasks involve the use of different programs, and as each such

program may have its own data input format, the central problem concerns the

manipulation of the data files to conform to the necessary input formats. The program

Mega2 (Mukhopadhyay et al., 2005) can be useful in this regard: once the data are

put into Mega2, the program can be used to create files conforming to most, if not

all, statistical genetic software of interest. We, however, have not made use of Mega2,

but instead have written our own Perl programs to convert data between formats.

It is essential, for the manipulation of genetic data files, to define a single standard

format for one’s work. For almost every linkage project we are involved in, the primary

data arrive in a unique format. One might be tempted to write new Perl programs

to convert data from each such format into that needed for each analysis program of

interest. If we are involved in 20 projects and there are 12 analysis programs we wish

to use, we would then need to write 240 different Perl programs. A better approach

is to define our own standard format, and write Perl programs to convert data from

that format to each of the 12 analysis programs, and then for each project, we write

just one Perl program to convert the data to our standard form. With 20 projects
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and 12 analysis programs, we then have 32 Perl programs. And for each additional

project, we write just one new Perl program, rather than 12.

A second important use of Perl in genetics is the automation of analyses. A partic-

ularly important example of this concerns single-marker linkage analysis (so-called

two-point analysis), in which each of about 400 markers is investigated, one at a

time, for linkage to a putative disease gene. We are aware of cases in which an in-

vestigator created, ‘by hand’, 400 input files (one for each marker), and then ran a

linkage program 400 times, again ‘by hand’, writing down the one or two numbers

that characterize the results for each marker. The problem with this approach should

be obvious. More important than the enormous waste of effort is that the manual

manipulation of data files, and the transcription of the results, can be extremely

error-prone. With proficiency in Perl, it is a simple matter to write a program that

reads all of the genetic data, steps through the markers one at a time, creates the

required input files, runs the linkage program and extracts the essential pieces of

information, and finally produces a table of the results for all markers.

Finally, Perl is extremely valuable for performing computer simulations with other

genetic software, either to explore the performance of an analysis method or to

obtain P values that make proper adjustment for the multiplicity of tests performed.

This task is much like that of automating analyses: one simulates data (either with

Perl or someone else’s program), sends it through an analysis program, extracts

the interesting bits from the output, and repeats the entire process many times. The

greatest advantage of Perl for simulations is in the extraction and tabulation of the

one or two interesting numbers at each replicate from the copious output produced

by most analysis programs. This approach can be applied to essentially any statistical

genetic software.

2.5 Examples of code

In this section, we provide some examples of Perl code, in order to give the reader a

flavour of the language and to emphasize certain features of Perl that are especially

useful for our work. We are unsure of the value of this section for a reader with no

prior Perl programming experience; such readers may wish to skip this section.

Perl programs are generally run from a terminal window in Mac OS X or Unix,

or from a command shell in Windows. The Perl interpreter will be pre-installed in

Mac OS X and most Unix distributions. A Windows version of Perl may be obtained

from http://www.activestate.com/ActivePerl.

2.5.1 The traditional first example

A traditional first example, and closest to the simplest possible Perl program, is

displayed in Figure 2.1. This program simply prints ‘Hello, world!’ to the screen. The
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#!/usr/bin/perl -w

print("Hello, world!\n");

Figure 2.1 A simple but complete Perl program

first line is necessary for Unix and MacOS, and indicates where the Perl interpreter is

located. The -w indicates that the Perl interpreter should provide warnings regarding

various constructions in Perl that, while being strictly legal, are more likely than not

to be errors.

The second line prints the desired phrase. Note that \n is the ‘newline’ character.

The semicolon indicates the end of the Perl statement.

One must create a text file containing the above code. To run the program in Unix

or MacOS, the file must be made ‘executable’, by typing, from a terminal window,

chmod +x filename, where filename is the name of the file. The program is then

run by typing the name of the file. In Windows, chmod is not needed. Instead, the

program file must be given a name of the form filename.pl. The program is

then run from a command shell by typing the name of that file or by typing perl

filename.pl.

2.5.2 Combining marker data

A common issue in genetic data manipulation is the combination of genotype data

from multiple input files. In an extreme case, one may be confronted with a single file

for each genetic marker. In Figure 2.2, we present a Perl program for reading all files

in a directory in order to combine genotype data. We are imagining here that there

is a single directory containing one file for each marker, with each file having a name

like D10S1123.txt, where D10S1123 is the marker. The files are in LINKAGE PRE

format, that is to say, each line contains the family identifier, individual identifier,

dad, mom, sex, and disease status and then the two alleles for that subject at that

marker. The aim of the first program is to read in all of the data, to store them in such

a way that we can easily work with them. This may not appear so useful in itself, but

we will show in subsequent examples how the program can be extended to perform

recoding of marker alleles, estimation of allele frequencies and generation of input

files for the LINKAGE programs.

The first line is the usual first line for a Perl program. The second and third lines

instruct Perl to be stricter in terms of what it accepts and to issue warnings for unsafe

code. This is highly recommended, as without these it is very easy to make errors

that can be very difficult to detect.

The main inconvenience of this is that it is now necessary to declare each variable

before use using the my command. For example, in line 5, my $dir declares that $dir
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1 #!/usr/bin/perl
use strict;
use warnings;

5 my $dir = "data";
opendir DIR, $dir or die "Cannot open directory $dir:$!\n";
my (%ped, %gtypes, @markers);
while(my $file=readdir(DIR)) {

next unless $file =˜ /(.+)\.txt$/;
10 my $mark = $1;

push @markers, $mark;
my $idx = $#markers;
my $infile = "$dir/$file";
open IN, $infile or die "Cannot open $infile:$!\n";

15 my $line = 0;
while(<IN>) {

$line++;
my @v=split;
if(@v<8) {

20 print "Short line at $line!\n";
next;

}
my ($fam,$ind,$father,$mother,$sex,$status,$g1,$g2)=@v;
my $id="$fam\_$ind";

25 $ped{$ind} = [$fam,$ind,$father,$mother,$sex,$status];
$gtypes{$ind}[$idx] = "$g1 $g2";

}
close IN;

}

Figure 2.2 A Perl program to read data from all data files with a .txt extension

is a scalar variable, indicated by the dollar sign, which is here assigned the character

string data. The content will be just the bit between the double quotation marks.

The advantage of having Perl enforce pre-declaration of variables is that it is very easy

to mistype a variable name, and, by default, Perl will not complain but silently create

a new variable with the mistyped name. This can lead to some extremely subtle and

difficult to track down bugs in programs. For all but very short programs, therefore,

it is generally advised to follow the practice here of adding the use strict; and

use warnings; statements to the start of your programs.

In line 6, we open a directory using a ‘directory handle’ DIR. This allows us, from

line 8, to ‘loop’ through each file in the directory; within this while loop, we read one

file name at a time from the directory until there are no files remaining to be read.

Note that if the opendir command fails, the die statement will be executed, which

stops the program and prints the message Could not open directory $dir:

$!. The variable $dir is expanded in the message to give the value we assigned in

line 5. The odd-looking variable $! is a system variable, which gives the last error

message from a system command, in this case opendir.
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In line 9, we use pattern matching to check that the file name ends in .txt;

otherwise, that file is skipped. (This is important, because the directories ‘ . ’ and ‘ . . ’

will be included, but should be skipped.) The code for the pattern matching is a bit

complicated at first glance. The first thing to note is that a period (.) matches any

character and a plus sign (+) means one or more of the previous match. To match a

literal period, it is necessary to escape the period with a backslash. The dollar sign at

the end of the pattern matches the end of the string. If we ignore the brackets for the

moment, the code in line 9 will therefore match one or more characters terminated

by .txt. The brackets around the first part .+ direct Perl to store the part of the

input string which matched this part of the pattern, and store it in the variable $1,

which is assigned to the variable $mark in line 10.

In line 11, the marker name is appended to the end of an array of all marker names,

@markers. The @ symbol indicates an array: an ordered list of values, indexed by 0,

1, 2, . . . . The index of the last item in an array is given by $#name of array, so line

12 sets $idx to the index of the last marker added, i.e., the current marker.

In line 13, $infile is assigned the full file name: the directory name followed by

a / followed by the simple part of the file name. Note how we can use variables inside

a quoted string, and they will be expanded to give the resulting string. We then open

this file in line 14, producing a ‘file handle’, IN.

In line 15, we initialize the variable $line to zero; this will be used to track the

line number of the input file, so that errors can be reported.

From line 16, we loop through each line in the input file. In a similar way to the

while loop starting at line 8, this loop will exit when there are no more lines to be

read.

In lines 17–18, we increment the line number and split the line into fields separated

by white space (any combination of non-printing characters such as spaces or tabs),

storing the results in the array @v. Lines 19–22 then check that there are at least eight

columns of data; if there are fewer, we print an error message and skip to the next

line.

In line 23, we assign the contents of the array @v to the individual variables, $fam,

$ind, etc.

In lines 24–26, we store the information on the individuals’ parents and sex, using

‘hashes’. (This is rather difficult for beginning Perl programmers, but hashes are

extremely valuable for this sort of work, as we will see in the next example.) A hash

is like an array, but the hash is keyed by an arbitrary character string rather than

indexed by numbers 0, 1, 2, . . . . Here we create a unique identifier for an individual

by concatenating the family and individual identifiers together with an underscore

character between them in line 24. Note here that we escape the underscore after

$fam because otherwise Perl would take it as part of the variable name. We then

store the pedigree information and genotype information in lines 25–26 keyed by his

unique identifier. Note that for the genotype, we also index with the variable $idx

(from line 8), which indicates which marker we are working on. We use braces {} for

the variable $id and square brackets [] for the marker index at line 26 to indicate
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to Perl that $id should be treated as a hash key and $idx should be treated as a

conventional numeric index. It is not important to understand the details of how the

data are stored in lines 25–26; the key point is that with the individuals’ identifiers,

we can access their pedigree information and genotype data.

We could avoid using hashes if we could assume that the same individuals appear

in each input file in the same order. We could then just index the data by the line

number. However, it is not always safe to make this assumption; in general, it is safer

to use hashes.

At line 28, the input file has all been read in, so we close the file, and continue with

the next file, if present.

2.5.3 Recoding alleles

The program in Figure 2.2 would be more useful if it could do some basic data ma-

nipulation. One such manipulation that is often required is allele recoding. Many

programs for genetic analysis expect marker alleles to be coded from 1 up to the

number of alleles present. The raw data, however, rarely come in this form. Mi-

crosatellite data come as allele sizes such as 180 or 225, and SNP data typically come

as a series of nucleic acid codes (A, C, G or T). It is simple to use hashes in Perl to

recode alleles, and this is a good illustration of the power of hashes. The strategy is to

use the original allele code as the key to the hash. We can use this to check whether

a numeric code has already been assigned to this allele and, if not, assign it the next

available code.

In Figure 2.3, we provide a modification of the program in Figure 2.2 which

will enable the program to recode the marker alleles into consecutive numeric codes

starting from 1. The key additions are from lines 26–37. We start at line 26 by checking

that the first allele is non-zero. (Zero typically indicates a missing value.) We then

check whether this allele has already been encountered for this marker by checking

the array @recode, which is indexed by the marker index $idx and the allele $g1.

If not, then at line 28 we assign the next available code for this marker (stored in

the array @n alleles, and then at line 29 we change the original allele code to the

numeric code. The same procedure is then followed for the second allele $g2. Note

that doing this procedure without hashes would be a much more complex operation

involving sorting and searching through the list of marker alleles.

2.5.4 Estimating allele frequencies

Another useful function of the program is to estimate allele frequencies, as most

genetic analysis programs require these, and good estimates matched with the data set

are not always available. In this case we can obtain allele estimates by simply counting

the alleles in observed individuals. While marker allele frequencies are best estimated

on the basis of unrelated individuals, such as the founding individuals in a set of

pedigrees, genotypes of such founders are sometimes not available, and simple allele
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1 #!/usr/bin/perl
use strict;
use warnings;

5 my $dir = "data";
opendir DIR, $dir or die "Cannot open directory $dir:$!\n";
my (%ped, %gtypes, @markers, @n_alleles, @recode);
while(my $file=readdir(DIR)) {

next unless $file =˜ /(.+)\.txt$/;
10 my $mark = $1;

push @markers, $mark;
my $idx = $#markers;
my $infile = "$dir/$file";
open IN, $infile or die "Cannot open $infile:$!\n";

15 my $line = 0;
while(<IN>) {

$line++;
my @v=split;
if(@v<8) {

20 print "Short line at $line!\n";
next;

}
my ($fam,$ind,$father,$mother,$sex,$status,$g1,$g2)=@v;
my $id="$fam\_$ind";

25 $ped{$ind} = [$fam,$ind,$father,$mother,$sex,$status];
if($g1 != 0) {

if(!$recode[$idx]{$g1}) {
$recode[$idx]{$g1} = ++$n_alleles[$idx];

}
30 $g1 = $recode[$idx]{$g1};

}
if($g2 != 0) {

if(!$recode[$idx]{$g2}) {
$recode[$idx]{$g2} = ++$n_alleles[$idx];

35 }
$g2 = $recode[$idx]{$g2};

}
$gtypes{$ind}[$idx] = "$g1 $g2";

}
40 close IN;

}

Figure 2.3 A Perl program to read data from all data files with a .txt extension and recode

marker alleles

counting provides unbiased estimates, without the great computational effort that

can be required to account for the relationships between individuals (Broman, 2001).

Since we have already recoded the alleles to consecutive numbers in the previous

example, it is simple to add a section to the program in Figure 2.3 to accumulate allele

count information and to estimate allele frequencies. Figure 2.4 contains a snippet of

Perl code which should go at the end of the previous program. It will estimate allele

frequencies, and store them in the double indexed @freq so that $freq[$i][$j]

will have the estimated frequency of allele $j of marker $i.



OTE/SPH OTE/SPH

JWBK136-02 February 16, 2007 15:10 Char Count= 0

28 CH 2 MANAGING AND MANIPULATING GENETIC DATA

1 my (@freq, @count);
for my $ind(keys %ped) {

my $gt = $gtypes{$ind};
for my $i(0..$#markers) {

5 my $g=$$gt[$i] || "0 0";
my @all=split " ",$g;
for my $j(0..2) {

if($all[$j]) {
$freq[$i][$all[$j]]++;

10 $count[$i]++;
}

}
}

}
15 for my $i(0..$#markers) {

my @fq=@{$freq[$i]};
for my $j(1..$#fq) {

$fq[$j] /= $count[$i];
}

20 }

Figure 2.4 A snippet of Perl for calculating marker allele frequencies

The first line of the snippet simply declares the arrays @freq and @count, where

the former was described in the previous paragraph, and the latter will keep a count

of the number of alleles observed for a given marker.

In line 2, we loop through all individuals for whom we have pedigree information,

that is, every individual we read in previously, and then in line 4 we loop through the

genotypes for each marker for this individual. If an individual did not appear in all

of the input files, some of the genotypes will be undefined, and attempting to work

with them will give a warning. We avoid this in line 5 by using the string ‘0 0’ for

any undefined genotype.

In line 6, we split the genotype on spaces to get the two alleles, and in lines 7–12

we loop through the two alleles, accumulating the counts for all non-zero alleles,

and a total count for the marker. After this, it is just necessary to loop through each

marker, and for each allele at each marker, and divide the allele counts by the total

number of counts for that marker. This is done in lines 15–20.

We can see that the logic of the frequency estimation is very simple, but it is so

simple because we have already recoded the alleles numerically, using hashes in the

previous example. If we had not done this, the operation would have been much

more complicated.

2.5.5 Automating single-marker analyses

Now that we have the alleles recoded and have obtained allele frequency estimates,

there are many things we could do. For example, we could print out the number
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1 my @lod;
for my $i(0..$#markers) {

my $datfile = "datafile.dat";
open OUT, ">$datfile" or die "Cannot open $datfile for writing: $!\n";

5 print OUT "2 0 0 5\n0 0.0 0.0 0\n 1 2\n";
print OUT "1 2 # Trait locus (2 alleles)\n";
print OUT "0.999 0.001 # Disease allele frequency\n";
print OUT "1 # Liability class\n";
print OUT "0.0 0.0 1.0 # Recessive model\n";

10 print OUT "3 $n_alleles[$i] # $markers[$i]\n";
my @fq=@{$freq[$i]};
print OUT join (" ",@fq[1..$#fq]),"\n";
print OUT "0 0\n0.0\n";
print OUT "1 0.05 0.45 # Recombination varied, increment, last value\n";

15 close OUT;
my $pedfile = "pedfile.pre";
open OUT, ">$pedfile" or die "Cannot open $pedfile for writing: $!\n";
for my $ind(keys %ped) {

my $p = $ped{$ind};
20 print OUT join ("\t",@$p);

my $gt = $gtypes{$ind}[$i] || "0 0";
print OUT "\t$gt\n";

}
close OUT;

25 my $results_file = "tempout.txt";
system("makeped $pedfile pedfile.dat n > $results_file");
system("unknown >> $results_file");
system("mlink >> $results_file");
open IN, $results_file or die "Cannot open $results_file for input: $!\n";

30 my $theta;
while(<IN>) {

if(/ˆTHETAS\s+(\S+)/) {
$theta=$1;

} elsif(/LOD SCORE =\s+(\S+)/) {
35 $lod[$i]{$theta} = $1;

print "$markers[$i]\t$theta\t$1\n";
}

}
close IN;

40 }

Figure 2.5 A snippet of Perl for running MLINK for each of many markers

of observations per marker, and obtain estimates of the success rate per marker.

We could equally well count the number of observations per individual, and check

whether a particular DNA sample appears to have worked less well than others. These

are all important steps in the quality control of the genotyping process. We are not

going to go into more details about these analyses, but instead we will finish with

a demonstration of how we could use the previous examples to automate single-

marker (i.e. two-point) linkage analysis with MLINK from the LINKAGE (Lathrop

et al., 1984) or FASTLINK (Cottingham et al., 1993) packages.

The snippet of Perl in Figure 2.5 should go at the end of the previous examples

in order to function properly. We first declare the array @lod, which will store the

calculated LOD scores for each marker at each theta value. We loop over all possible

markers (line 2), and then write the necessary information to a locus data file (lines
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3–15), and a pedigree file (lines 16–24). In line 4, the greater-than sign in ‘>$datfile’

is used to open the file for writing (as opposed to reading, as in Figure 2.2). In lines

13 and 20, join is used to write out each element of an array, in turn separated by a

space character at line 13, and a tab character at line 20.

In lines 26–28, system is used to request the operating system to execute the

specified commands; this is where the real work is done. Note that a greater-than

sign is used to have the program output sent to a file, and two greater-than signs

together indicate that the output should be appended to the file, rather than replace

the file.

In the remainder of this Perl snippet, we read through the output of MLINK,

pulling out the LOD score at each recombination fraction, and store this information

in a hash. Hence we can run MLINK for each marker, one at a time, and distil and

assemble the few essential numbers from its profuse output, which can then be

written to a file, or form a part of subsequent calculations, as, for example, in the

calculation of heterogeneity LOD scores.

We congratulate readers who have persevered through the sample Perl code and

our brief explanations. We hope that several of the techniques and idioms that we

have demonstrated in these examples can be adapted by readers for use in more

general situations. While the code looks quite complicated, the language is not as

difficult to learn as it may appear, and the great power that comes from knowledge

of Perl well justifies the effort that must be made to acquire it.

2.6 Resources

There are numerous books on Perl; we recommend those published by O’Reilly:

Learning Perl (Schwartz et al., 2005) for the novice, Programming Perl (Wall et al.,

2000) as a reference, and Perl Cookbook (Christiansen and Torkington, 2003) for

recipes encompassing many common tasks. These books, plus a couple of others,

may be purchased together on a CD at a very good price: the Perl CD Bookshelf.

There are numerous online tutorials on Perl; links to some are available at

http://www.biostat.jhsph.edu/∼kbroman/perlintro. This web page also contains a

sample Perl program for genetic data manipulation, with line-by-line explanations.

The Cold Spring Harbor Laboratory (CSHL) held a bioinformatics course in au-

tumn 2004 that included a great deal on Perl programming; all of the lecture notes

are available online at http://stein.cshl.org/genome informatics.

Enormous amounts of useful Perl code may be obtained from the Comprehen-

sive Perl Archive Network (CPAN) at http://cpan.perl.org. The CSHL lecture notes

(mentioned above) provide good explanations of how to find and install code from

CPAN. The reader may also be interested in Bioperl (http://www.bioperl.org): Perl

tools for bioinformatics and genomics research, mostly for sequence data. Readers

interested in the use of Perl for sequence data may wish to look at Tisdall (2001,

2003). Moorhouse and Barry (2004) will also be of interest.
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Mega2 (Mukhopadhyay et al., 2005), a program to facilitate the handling of genetic

linkage data, is available at http://watson.hgen.pitt.edu/register.

2.7 Summary

The ever-increasing size and complexity of genetic data has led to an increasing need

for geneticists to learn computer programming. As the most fundamental task for

the genetic data analysis involves the manipulation of data files, proficiency in a

computer language, such as Perl, with which such manipulation of text files is most

natural, is recommended. For large, complex data sets, the use of a formal database,

such as MySQL, in place of spreadsheet software, such as Microsoft Excel, may be

important for the maintenance of data integrity and fidelity. Never modify data by

hand, be organized and keep notes, and plan for the future but get the job done.

Learn Perl!
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