
Writing R packages

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman

R packages and the Comprehensive R Archive Network (CRAN) are
important features of R. R packages provide a simple way to distribute
R code and documentation. And they really are rather simple to create.

Write an R package to keep track of the misc. R functions that you write
and reuse. Write an R package to distribute the data and software that
accompany a paper.

The most painful part of writing an R package is the construction of the
documentation files, which are in a special .Rd format. But the Roxy-
gen2 tool makes this rather easy: you write comments preceding each
R function, in a specially structured way, and then use the Roxygen2
tool to create the .Rd files for you.

Why write an R package?

▶ To distribute R code and documentation
▶ To keep track of the misc. R functions you write and

reuse
▶ To distribute data and software accompanying a

paper.

2

R packages can be big and important.

But that shouldn’t scare you off. Assembling a few R functions within
a package will make it vastly easier for you to use them regularly. You
don’t even need to distribute the package.

And really, the R package system is an incredibly important feature
of R. Packages on CRAN are basically guaranteed to be installable, as
they are regularly built, installed, and tested on multiple systems.

3

The Writing R Extensions manual is the key source for the specifica-
tions of R packages. It’s rough going in parts, but if you want to get a
package on CRAN, you should read it.

A simple example: RSkittleBrewer

alyssafrazee.com/RSkittleBrewer.html 4

I was going to write a short example R package, but Alyssa Frazee
saved me the effort. Her package is a perfect little example to illustrate
how to write a package.

It’s also a great example of a small but really useful package. One small
function could be widely useful; you just need to package it and tell
people about it.

R package contents

RSkittleBrewer/

DESCRIPTION
NAMESPACE

R/RSkittleBrewer.R
R/plotSkittles.R
R/plotSmarties.R

man/RSkittleBrewer.Rd
man/plotSkittles.Rd
man/plotSmarties.Rd

5

In the simplest form, an R package is a directory containing: a
DESCRIPTION file (describing the package), a NAMESPACE file (indicating
which functions are available to users), an R/ directory containing R
code in .R files, and a man/ directory containing documentation in .Rd
files.

DESCRIPTION file

Package: RSkittleBrewer
Version: 1.1
Author: Alyssa Frazee
Maintainer: Alyssa Frazee <afrazee@jhsph.edu>
License: MIT + file LICENSE
Title: fun with R colors
Description: for those times you want to make plots with...
URL: https://github.com/alyssafrazee/RSkittleBrewer

6

The DESCRIPTION file is pretty self-explanatory. It just contains basic
information about the package and its author.

The simplest way to create this sort of file is to copy and edit one from
some other package.

The only part that might be unclear is the License field. You need
to choose a license. We’ll talk about this on the very last day of the
course.

For now, I’d suggest choosing between the GPL-3 (the GNU Public
License v3) and MIT licenses. GPL-3 has a “pass-through” provision:
software that incorporates GPL-3 code must also be licensed as GPL-
3. This is a good but restrictive thing. The MIT license is the most
bare-bones license possible: it basically just says “Do what you want,
but don’t blame me.”

An R package with the MIT license needs to also include a LICENSE
file or R will complain; copy and edit the one from the RSkittleBrewer
package.

NAMESPACE file

export(RSkittleBrewer)
export(plotSkittles)
export(plotSmarties)

7

The NAMESPACE file is a bit technical: it tells R what functions that will
be accessible to users.

The point of this is to keep different packages from stepping on each
others’ toes.

An .Rd file

\name{RSkittleBrewer}
\alias{RSkittleBrewer}
\title{Candy-based color palettes}
\description{Vectors of colors corresponding to different

candies.}
\usage{RSkittleBrewer(flavor = c("original", "tropical",

"wildberry", "M&M", "smarties"))
}
\arguments{

\item{flavor}{Character string for candy-based color
palette.}

}
\value{Vector of character strings representing the chosen

set of colors.}
\examples{
plotSkittles()
plotSmarties()
}
\keyword{hplot}
\seealso{ \code{\link{plotSkittles}},

\code{\link{plotSmarties}} }
8

The R documentation format is very LaTeX-like.

It describes what the function does, what its arguments are, and what
output it produces.

You can further provide examples (which can also serve as tests) and
links to related functions. The examples need to be fast (≪ 5 sec),
because they’re run frequently. (CRAN checks every package every
day on multiple systems.)

Writing these help files is tedious! That’s where Roxygen2 comes in.

Building, installing, and checking

R CMD build RSkittleBrewer
R CMD INSTALL RSkittleBrewer_1.1.tar.gz
R CMD check RSkittleBrewer_1.1.tar.gz

R CMD check --as-cran RSkittleBrewer_1.1.tar.gz

R CMD INSTALL --library=~/Rlibs RSkittleBrewer_1.1.tar.gz
(~/.Renviron file contains R_LIBS=~/Rlibs)

On windows:
R CMD INSTALL --build RSkittleBrewer_1.1.tar.gz

also consider (within R):
library(devtools)
build()
build(binary=TRUE)
install()
check()

9

To install your package, you first need to build it. R CMD build creates
the .tar.gz source file that you’d distribute.

You then use R CMD INSTALL to install the package. You may want to
use --library=/some/dir to install to a different directory, in which
case you need to set R_LIBS in your ~/.Renviron file.

R CMD check runs extensive checks of the package, including running
all of the examples in the help files. Pay attention to any errors, warn-
ings, or notes, and revise the package to avoid them. This is particularly
true if you want to submit the package to CRAN.

Before submitting to CRAN, be sure to run R CMD check with the
lesser-known --as-cran flag, which checks further things.

On Windows, use R CMD INSTALL --build to create a .zip file of the
“compiled” package. You can also use the build() function from the
devtools package.

Roxygen2 comments

RSkittleBrewer
#' Candy-based color palettes
#'
#' Vectors of colors corresponding to different candies.
#'
#' @param flavor Character string for candy-based color palette.
#'
#' @export
#' @return Vector of character strings representing the chosen...
#'
#' @examples
#' plotSkittles()
#' plotSmarties()
#'
#' @seealso \code{\link{plotSkittles}},
#' \code{\link{plotSmarties}}
#' @keywords hplot
RSkittleBrewer <-
...

10

The .Rd files are a pain to create and maintain. Plus, you’ll end up
writing documentation in two places: in the R code, and then in the
separate .Rd files.

Roxygen2 is a system for writing structured comments in the R code
that get converted to .Rd files. You just maintain the documentation
in one place: in the R code. The Roxygen comments start with #'.
The first line is the title; the second is the description.

The individual \item’s within arguments become @param. The \value
field becomes @return.

You still need to know a bit about the .Rd format; for example, the
\code{\link{blah}}.

Roxygen2 will across create the NAMESPACE file. That’s what @export
is for.

You may also be interested in the Rd2roxygen package, for converting
a package with hand-written .Rd files to the Roxygen2 system.

To build docomentation

devtools::document()

11

To build the documentation, use the devtools function document().

Include a README or README.md file

fun with R Colors
=================

If you want high-quality , scientifically -researched color
schemes for your R plots, check out
[RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer).
If you want your plots to be colored the same way as packs of
Skittles (or M&Ms), then this package (RSkittleBrewer) is the
way to go.

install
with `devtools `:

```S
devtools::install_github('RSkittleBrewer', 'alyssafrazee')
```

use
There are only three functions in this package.

Call `RSkittleBrewer ` on a flavor to get a vector of R color
names that correspond to that Skittle flavor.
...

12

Include a README or README.md file; R will ignore it, but it will show
up on GitHub.

You can use ReadMe or ReadMe.md, but then you need to include it in
the .Rbuildignore file or R will complain.

That’s it!

13

That’s all you need to make a package.

There’s more, but you should start with just that stuff.

Package vignettes

▶ Include vignettes to show how to use your package.
▶ It’s simplest to use R Markdown.

– Create a vignettes/ subdirectory.
– Place a .Rmd file there.
– The name of the file becomes the name of the vignette.

▶ Include the following in the .Rmd file’s YAML header:
output: rmarkdown::html_vignette
vignette: >

%\VignetteIndexEntry{Intro to
RSkittleBrewer}

%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8](inputenc)

▶ Load the package in an initial chunk
library(RSkittleBrewer)

14

In my experience, people tend not to read detailed documentation, but
they like tutorials. This is what vignettes are for.

It’s easiest to write vignettes in R Markdown (allowed in R 3.0 on-
wards). You create a subdirectory vignettes/ and put the usual sort
of .Rmd files there. You just need to add a few special lines in the
YAML header for the file.

Also, in your .Rmd file, you’ll need to load the package before you start
using it.

Package vignettes

▶ In the DESCRIPTION file, include:
Suggests: knitr, rmarkdown
VignetteBuilder: knitr

▶ The following lists the vignettes for a package and
then opens a selected vignette.

library(RSkittleBrewer)
vignette(package="RSkittleBrewer")
vignette("RSkittleBrewer", "RSkittleBrewer")

15

There’s one other little detail: you need to mention knitr as the vignette
builder in your DESCRIPTION file. You also need to include knitr and
rmarkdown in Suggests:.

If you submit the package to CRAN, links to the vignettes will be
listed on web page for the package. You might also refer to them in
your README file.

Within R, you can use the vignette function to view the available
vignettes for a package and to open a particular vignette. (With R
Markdown vignettes, the compiled html file will be opened in your web
browser.)

Optional stuff

▶ NEWS file describing changes in each version of the
package.

▶ inst/CITATION file describing how to cite your
package.

▶ inst/doc/ directory any sort of misc. documentation
(e.g., pre-compiled computationally heavy vignettes)

▶ data/ directory containing data
▶ src/ directory containing C/C++/Fortran code
▶ demo/ directory with demonstrations (like vignettes,

but to be executed in real-time).
▶ tests/ and/or inst/tests/ containing tests. 16

We could go on and on about packages. Here are some of the key
additional things to consider adding to your package.

The inst/ subdirectory is ignored by R but its contents get moved
back to the root directory for the package when installed. If you want
your README file to be named ReadMe, you’d put it here.

It’s useful to include example data sets. Your package
could contain only data! You should document them. See
http://stackoverflow.com/questions/2310409

devtools

Get to know the devtools package.

▶ dev_mode()
▶ load_all()
▶ install_github(), install_bitbucket, …
▶ document()
▶ build()
▶ check()
▶ check_doc()
▶ run_examples()
▶ test() (next time)

17

I’ve tried to characterize package development as super simple, but all
coding involves considerable testing, debugging, and exploration, and
re-building and re-installing R packages can be tedious.

The devtools package reduces a lot of the hassle. Try it out!

dev_mode() puts you in “development mode” so that package installs
won’t affect your regular R package directory. load_all() does the
equivalent of installing and reloading a package. (Otherwise, you might
exit R, re-build the package, re-install, invoke R, and re-load the pack-
age.)

You can use install_github() to install a package directly from
GitHub.

On Mac OSX Mavericks (10.9), gnutar is gone, and devtools gives an
error. The simplest solution is to make a symbolic link from tar to
gnutar:

sudo ln -s /usr/bin/tar /usr/bin/gnutar

Summary

▶ R packages really aren’t that hard.
▶ R packages are really useful.

– Distributing software and data
– Organizing code for a paper
– Organizing your misc. R functions

▶ Look at others’ packages, and learn from them.
▶ Adopt the tools in the devtools package.

18

It’s surprising to me just how many plain R scripts are sitting on peo-
ple’s web pages. Getting them into a package is really not that hard
and would make the material much more useful.

