
geekandpoke.typepad.com

http://geekandpoke.typepad.com/geekandpoke/2008/02/the-art-of-prog.html

Writing clear code

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman

https://kbroman.org
https://kbroman.org
https://github.com/kbroman
https://twitter.com/kwbroman

Basic principles

▶ Code that works
No bugs; efficiency is secondary (or tertiary)

▶ Readable
Fixable; extendible

▶ Reusable
Modular; reasonably general

▶ Reproducible
Re-runnable

▶ Think before you code
More thought =⇒ fewer bugs/re-writes

▶ Learn from others’ code
R itself; key R packages

3

Write programs for people, not computers

Wilson et al. (2014) PLoS Biol 12:e1001745

4

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

Write functions

fac2num <-
function(x)
{

nam <- names(x)
x <- as.numeric(as.character(x))
names(x) <- nam
x

}

5

Another example

rmvn: simulate from multivariate normal distribution
rmvn <-
function(n, mu=0, V=diag(rep(1, length(mu))))
{

p <- length(mu)

if(any(dim(V) != p))
stop("Dimension problem!")

D <- chol(V)

matrix(rnorm(n*p),ncol=p) %*% D + rep(mu,each=n)
}

6

Further examples

colors from blue to red
revrainbow <-
function(n=256, ...)

rev(rainbow(start=0, end=2/3, n=n, ...))

move values above/below quantiles to those quantiles
winsorize <-
function(vec, q=0.006)
{

lohi <- quantile(vec, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0)

lohi <- rev(lohi)

vec[!is.na(vec) & vec < lohi[1]] <- lohi[1]
vec[!is.na(vec) & vec > lohi[2]] <- lohi[2]

vec
}

7

Writing functions

▶ Break large tasks into small units.
– Make each discrete unit a function.

▶ If you write the same code more than once,
make it a function.

▶ If a line/block of code is complicated,
make it a function.

8

Don’t repeat yourself (or others)

▶ Avoid having repeated blocks of code.
▶ Create functions, and call those functions repeatedly.
▶ This is easier to maintain.

– If something needs to be fixed/revised, you just have to do
it the one time.

▶ Look at others’ libraries/packages.
– Don’t write what others have already written (especially if

they’ve done it better than you would have).

9

Don’t make things too specific

▶ Write code that is a bit more general than your
specific data

– Don’t assume particular data dimensions.
– Don’t forget about the possibility of missing values

(even if your data doesn’t have any).
– Aim for re-use.

▶ Use function arguments
– Don’t assume particular data file names
– Don’t hard-code tuning parameters
– R scripts can take command-line arguments:

Rscript myscript.R input_file
output_file
args <- commandArgs(TRUE)

10

http://stackoverflow.com/questions/2151212/how-can-i-read-command-line-parameters-from-an-r-script

No global variables, ever!

▶ Don’t refer directly to objects in your workspace.
▶ If a function needs something, pass it as an

argument.
▶ (But what about really big data sets?)

11

No magic numbers

▶ Name numbers and use the names
max_iter <- 1000
tol_convergence <- 0.0001

▶ Even better: include them as function arguments

12

Indent!

move values above/below quantiles to those quantiles
winsorize <-
function(vec, q=0.006)
{
lohi <- quantile(vec, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0)
lohi <- rev(lohi)
vec[!is.na(vec) & vec < lohi[1]] <- lohi[1]
vec[!is.na(vec) & vec > lohi[2]] <- lohi[2]
vec
}

13

Use white space

move values above/below quantiles to those quantiles
winsorize<-function(vec,q=0.006)
{lohi<-quantile(vec,c(q,1-q),na.rm=TRUE)
if(diff(lohi)<0)lohi<-rev(lohi)
vec[!is.na(vec)&vec<lohi[1]]<-lohi[1]
vec[!is.na(vec)&vec>lohi[2]]<-lohi[2]
vec}

14

Don’t let lines get too long

get_grid_index <-
function(vec, step)
{

grid <- seq(min(vec), max(vec), by=step)
index <- match(grid, vec)

if(any(is.na(index)))
index <- sapply(grid, function(a,b) { d <- abs(a-b); sampleone(which(d == min(d))) }, vec)

index
}

15

Use parentheses to avoid ambiguity

if((ndraws1==1) && (ndraws2>1)) {

...

}

leftval <- which((map - start) <=0)

16

Names: meaningful

▶ Make names descriptive but concise
▶ Avoid tmp1, tmp2, ...
▶ Only use i, j, x, y in the simplest situations
▶ If a function is named fv, what might it do?
▶ If an object is called nms, what could it be?
▶ Functions as verbs; objects as nouns

17

Names: consistent

▶ markers vs mnames

▶ camelCase vs. pothole_case

▶ nind vs n.var

▶ If a function/object has one of these, there shouldn’t
be a function/object with the other.

18

Names: avoid confusion

▶ Don’t use both total and totals

▶ Don’t use both n.cluster and n.clusters

▶ Don’t use both result and results

▶ Don’t use both Mat and mat

▶ Don’t use both g and gg

19

Comments

▶ Comment the tricky bits and the major sections
▶ Don’t belabor the obvious
▶ Don’t comment bad code; rewrite it
▶ Document the input/output and purpose, not the

mechanics
▶ Don’t contradict the code

– this happens if you revise the code but don’t revise the
related comments

▶ Comment code as you are writing it (or before)
▶ Plan to spend 1/4 of your time commenting

20

Error/warning messages

▶ Explain what’s wrong (and where)
– error("nrow(X) != nrow(Y)")

▶ Suggest corrective action
– "You need to first run calc.genoprob()."

▶ Give details
– "nrow(X) (", nrX, ") != nrow(Y) (", nrY, ")"

▶ Don’t give error/warning messages that users won’t
understand.

– X'X is singular.

▶ Don’t let users do something stupid without warning

▶ Include error checking even in personal code.

21

Check data integrity

▶ Check that the input is as expected, or give
warnings/errors.

▶ Write these in the first pass (though they’re dull).
– You may not remember your assumptions later

▶ These are useful for documenting the assumptions.

22

Program organization

▶ Break code into separate files (say 300 lines?)
▶ Each file includes related functions
▶ Files should be named meaningfully
▶ Include a brief comment at the top.

23

Create an R package!

▶ Make a personal package with bits of your own code
▶ Mine is R/broman, github.com/kbroman/broman

qqline corresponding to qqplot
qqline2 <- function(x, y, probs = c(0.25, 0.75), qtype = 7, ...)
{

stopifnot(length(probs) == 2)
x <- quantile(x, probs, names=FALSE, type=qtype, na.rm = TRUE)
y <- quantile(y, probs, names=FALSE, type=qtype, na.rm = TRUE)
slope <- diff(y)/diff(x)
int <- y[1L] - slope*x[1L]
abline(int, slope, ...)
invisible(c(intercept=int, slope=slope))

}

24

https://github.com/kbroman/broman

Complex data objects

▶ Keep disparate data together in a more complex
structure.

– lists in R
– I also like to hide things in object attributes

▶ It’s easier to pass such objects between functions
▶ Consider object-oriented programming

25

Avoiding bugs

▶ Learn to type well.
▶ Think before you type.
▶ Consider commenting before coding.
▶ Code defensively

– Handle cases that ”can’t happen”

▶ Code simply and clearly
▶ Use modularity to advantage
▶ Think through all special cases
▶ Don’t be in too much of a hurry

26

Basic principles

▶ Code that works
No bugs; efficiency is secondary (or tertiary)

▶ Readable
Fixable; extendible

▶ Reusable
Modular; reasonably general

▶ Reproducible
Re-runnable

▶ Think before you code
More thought =⇒ fewer bugs/re-writes

▶ Learn from others’ code
R itself; key R packages

27

Summary

▶ Get the correct answers.
▶ Find a clear style and stick to it.
▶ Plan for the future.
▶ Be organized.
▶ Don’t be too hurried.
▶ Learn from others.

28

