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"I tried it, and it worked."
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"It's not that we don't test our code, it's that we don't store
our tests so they can be re-run automatically."

– Hadley Wickham

R Journal 3(1):5–10, 2011
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http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf


Types of tests

▶ Check inputs
– Stop if the inputs aren't as expected.

▶ Unit tests
– For each small function: does it give the right results in

specific cases?

▶ Integration tests
– Check that larger multi-function tasks are working.

▶ Regression tests
– Compare output to saved results, to check that things that

worked continue working.
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Check inputs
winsorize <-
function(x, q=0.006)
{

if(!is.numeric(x)) stop("x should be numeric")

if(!is.numeric(q)) stop("q should be numeric")
if(length(q) > 1) {

q <- q[1]
warning("length(q) > 1; using q[1]")

}
if(q < 0 || q > 1) stop("q should be in [0,1]")

lohi <- quantile(x, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0) lohi <- rev(lohi)

x[!is.na(x) & x < lohi[1]] <- lohi[1]
x[!is.na(x) & x > lohi[2]] <- lohi[2]
x

}
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Check inputs

winsorize <-
function(x, q=0.006)
{

stopifnot(is.numeric(x))
stopifnot(is.numeric(q), length(q)==1, q>=0, q<=1)

lohi <- quantile(x, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0) lohi <- rev(lohi)

x[!is.na(x) & x < lohi[1]] <- lohi[1]
x[!is.na(x) & x > lohi[2]] <- lohi[2]
x

}

6



assertthat package

#' import assertthat
winsorize <-
function(x, q=0.006)
{

if(all(is.na(x)) || is.null(x)) return(x)

assert_that(is.numeric(x))
assert_that(is.number(q), q>=0, q<=1)

lohi <- quantile(x, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0) lohi <- rev(lohi)

x[!is.na(x) & x < lohi[1]] <- lohi[1]
x[!is.na(x) & x > lohi[2]] <- lohi[2]
x

}
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http://github.com/hadley/assertthat


Tests in R packages

▶ Examples in .Rd files
▶ Vignettes
▶ tests/ directory

– some_test.R and some_test.Rout.save

R CMD check is your friend.
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An example example

#' @examples
#' x <- sample(c(1:10, rep(NA, 10), 21:30))
#' winsorize(x, 0.2)
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A tests/ example

library(qtl)

# read data
csv <- read.cross("csv", "", "listeria.csv")

# write
write.cross(csv, "csv", filestem="junk")

# read back in
csv2 <- read.cross("csv", "", "junk.csv",

genotypes=c("AA", "AB", "BB",
"not BB", "not AA"))

# check for a change
comparecrosses(csv, csv2)

unlink("junk.csv")
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testthat package
▶ Expectations

expect_equal(10, 10 + 1e-7)
expect_identical(10, 10)
expect_equivalent(c("one"=1), 1)
expect_warning(log(-1))
expect_error(1 + "a")

▶ Tests
test_that("winsorize small vectors", { ... })

▶ Contexts
context("Group of related tests")

▶ Store tests in tests/testthat
▶ tests/testthat.R file containing

library(testthat)
test_check("mypkg")
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http://github.com/hadley/testthat


Example testthat test

context("winsorize")

test_that("winsorize works for small vectors", {

x <- c(2, 3, 7, 9, 6, NA, 5, 8, NA, 0, 4, 1, 10)
result1 <- c(2, 3, 7, 9, 6, NA, 5, 8, NA, 1, 4, 1, 9)
result2 <- c(2, 3, 7, 8, 6, NA, 5, 8, NA, 2, 4, 2, 8)

expect_identical(winsorize(x, 0.1), result1)
expect_identical(winsorize(x, 0.2), result2)

})
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Example testthat test
test_that("winsorize works for a long vector", {

set.seed(94745689)
n <- 1000
nmis <- 10
p <- 0.05
input <- rnorm(n)
input[sample(1:n, nmis)] <- NA
quL <- quantile(input, p, na.rm=TRUE)
quH <- quantile(input, 1-p, na.rm=TRUE)

result <- winsorize(input, p)
middle <- !is.na(input) & input >= quL & input <= quH
low <- !is.na(input) & input <= quL
high <- !is.na(input) & input >= quH

expect_identical(is.na(input), is.na(result))
expect_identical(input[middle], result[middle])
expect_true( all(result[low] == quL) )
expect_true( all(result[high] == quH) )

})
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Workflow

▶ Write tests as you're coding.
▶ Run test()

with devtools, and working in your package directory

▶ Consider auto_test("R", "tests")
automatically runs tests when any file changes

▶ Periodically run R CMD check
also R CMD check --as-cran
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What to test?

▶ You can't test everything.
▶ Focus on the boundaries

– (Depends on the nature of the problem)
– Vectors of length 0 or 1
– Things exactly matching
– Things with no matches

▶ Test handling of missing data.
NA, Inf, -Inf

▶ Automate the construction of test cases
– Create a table of inputs and expected outputs
– Run through the values in the table
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Another example
test_that("running mean with constant x or position", {

n <- 100
x <- rnorm(n)
pos <- rep(0, n)

expect_equal( runningmean(pos, x, window=1), rep(mean(x), n) )
expect_equal( runningmean(pos, x, window=1, what="median"),

rep(median(x), n) )
expect_equal( runningmean(pos, x, window=1, what="sd"),

rep(sd(x), n) )

x <- rep(0, n)
pos <- runif(n, 0, 5)

expect_equal( runningmean(pos, x, window=1), x)
expect_equal( runningmean(pos, x, window=1, what="median"), x)
expect_equal( runningmean(pos, x, window=5, what="sd"),

rep(0, n))
})
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Debugging tools

▶ cat, print

▶ traceback, browser, debug

▶ RStudio breakpoints
▶ Eclipse/StatET
▶ gdb
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http://www.rstudio.com/ide/docs/debugging/overview
http://www.eclipse.org/eclipse
http://www.walware.de/goto/statet
http://www.sourceware.org/gdb/


Debugging

Step 1: Reproduce the problem

Step 2: Turn it into a test
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Debugging

Isolate the problem: where do things go bad?
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Debugging

Don't make the same mistake twice.
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The most pernicious bugs

The code is right, but your thinking is wrong.

You were mistaken about what the code would do.

→ Write trivial programs to test your understanding.
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Summary

▶ If you don't test your code, how do you know it works?
▶ If you test your code, save and automate those tests.
▶ Check the input to each function.
▶ Write unit tests for each function.
▶ Write some larger regression tests.
▶ Turn bugs into tests.
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