
Testing and debugging
Tools for Reproducible Research

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman
Course web: kbroman.org/Tools4RR

http://kbroman.org
http://kbroman.org
http://github.com/kbroman
https://twitter.com/kwbroman
http://kbroman.org/Tools4RR

"I tried it, and it worked."

2

"It's not that we don't test our code, it's that we don't store
our tests so they can be re-run automatically."

– Hadley Wickham

R Journal 3(1):5–10, 2011
3

http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf

Types of tests

▶ Check inputs
– Stop if the inputs aren't as expected.

▶ Unit tests
– For each small function: does it give the right results in

specific cases?

▶ Integration tests
– Check that larger multi-function tasks are working.

▶ Regression tests
– Compare output to saved results, to check that things that

worked continue working.

4

Types of tests

▶ Check inputs
– Stop if the inputs aren't as expected.

▶ Unit tests
– For each small function: does it give the right results in

specific cases?

▶ Integration tests
– Check that larger multi-function tasks are working.

▶ Regression tests
– Compare output to saved results, to check that things that

worked continue working.

4

Check inputs
winsorize <-
function(x, q=0.006)
{

if(!is.numeric(x)) stop("x should be numeric")

if(!is.numeric(q)) stop("q should be numeric")
if(length(q) > 1) {

q <- q[1]
warning("length(q) > 1; using q[1]")

}
if(q < 0 || q > 1) stop("q should be in [0,1]")

lohi <- quantile(x, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0) lohi <- rev(lohi)

x[!is.na(x) & x < lohi[1]] <- lohi[1]
x[!is.na(x) & x > lohi[2]] <- lohi[2]
x

}

5

Check inputs

winsorize <-
function(x, q=0.006)
{

stopifnot(is.numeric(x))
stopifnot(is.numeric(q), length(q)==1, q>=0, q<=1)

lohi <- quantile(x, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0) lohi <- rev(lohi)

x[!is.na(x) & x < lohi[1]] <- lohi[1]
x[!is.na(x) & x > lohi[2]] <- lohi[2]
x

}

6

assertthat package

#' import assertthat
winsorize <-
function(x, q=0.006)
{

if(all(is.na(x)) || is.null(x)) return(x)

assert_that(is.numeric(x))
assert_that(is.number(q), q>=0, q<=1)

lohi <- quantile(x, c(q, 1-q), na.rm=TRUE)
if(diff(lohi) < 0) lohi <- rev(lohi)

x[!is.na(x) & x < lohi[1]] <- lohi[1]
x[!is.na(x) & x > lohi[2]] <- lohi[2]
x

}

7

http://github.com/hadley/assertthat

Tests in R packages

▶ Examples in .Rd files
▶ Vignettes
▶ tests/ directory

– some_test.R and some_test.Rout.save

R CMD check is your friend.

8

An example example

#' @examples
#' x <- sample(c(1:10, rep(NA, 10), 21:30))
#' winsorize(x, 0.2)

9

A tests/ example

library(qtl)

read data
csv <- read.cross("csv", "", "listeria.csv")

write
write.cross(csv, "csv", filestem="junk")

read back in
csv2 <- read.cross("csv", "", "junk.csv",

genotypes=c("AA", "AB", "BB",
"not BB", "not AA"))

check for a change
comparecrosses(csv, csv2)

unlink("junk.csv")

10

testthat package
▶ Expectations

expect_equal(10, 10 + 1e-7)
expect_identical(10, 10)
expect_equivalent(c("one"=1), 1)
expect_warning(log(-1))
expect_error(1 + "a")

▶ Tests
test_that("winsorize small vectors", { ... })

▶ Contexts
context("Group of related tests")

▶ Store tests in tests/testthat
▶ tests/testthat.R file containing

library(testthat)
test_check("mypkg")

11

http://github.com/hadley/testthat

Example testthat test

context("winsorize")

test_that("winsorize works for small vectors", {

x <- c(2, 3, 7, 9, 6, NA, 5, 8, NA, 0, 4, 1, 10)
result1 <- c(2, 3, 7, 9, 6, NA, 5, 8, NA, 1, 4, 1, 9)
result2 <- c(2, 3, 7, 8, 6, NA, 5, 8, NA, 2, 4, 2, 8)

expect_identical(winsorize(x, 0.1), result1)
expect_identical(winsorize(x, 0.2), result2)

})

12

Example testthat test
test_that("winsorize works for a long vector", {

set.seed(94745689)
n <- 1000
nmis <- 10
p <- 0.05
input <- rnorm(n)
input[sample(1:n, nmis)] <- NA
quL <- quantile(input, p, na.rm=TRUE)
quH <- quantile(input, 1-p, na.rm=TRUE)

result <- winsorize(input, p)
middle <- !is.na(input) & input >= quL & input <= quH
low <- !is.na(input) & input <= quL
high <- !is.na(input) & input >= quH

expect_identical(is.na(input), is.na(result))
expect_identical(input[middle], result[middle])
expect_true(all(result[low] == quL))
expect_true(all(result[high] == quH))

})

13

Workflow

▶ Write tests as you're coding.
▶ Run test()

with devtools, and working in your package directory

▶ Consider auto_test("R", "tests")
automatically runs tests when any file changes

▶ Periodically run R CMD check
also R CMD check --as-cran

14

What to test?

▶ You can't test everything.
▶ Focus on the boundaries

– (Depends on the nature of the problem)
– Vectors of length 0 or 1
– Things exactly matching
– Things with no matches

▶ Test handling of missing data.
NA, Inf, -Inf

▶ Automate the construction of test cases
– Create a table of inputs and expected outputs
– Run through the values in the table

15

Another example
test_that("running mean with constant x or position", {

n <- 100
x <- rnorm(n)
pos <- rep(0, n)

expect_equal(runningmean(pos, x, window=1), rep(mean(x), n))
expect_equal(runningmean(pos, x, window=1, what="median"),

rep(median(x), n))
expect_equal(runningmean(pos, x, window=1, what="sd"),

rep(sd(x), n))

x <- rep(0, n)
pos <- runif(n, 0, 5)

expect_equal(runningmean(pos, x, window=1), x)
expect_equal(runningmean(pos, x, window=1, what="median"), x)
expect_equal(runningmean(pos, x, window=5, what="sd"),

rep(0, n))
})

16

Debugging tools

▶ cat, print

▶ traceback, browser, debug

▶ RStudio breakpoints
▶ Eclipse/StatET
▶ gdb

17

http://www.rstudio.com/ide/docs/debugging/overview
http://www.eclipse.org/eclipse
http://www.walware.de/goto/statet
http://www.sourceware.org/gdb/

Debugging

Step 1: Reproduce the problem

Step 2: Turn it into a test

18

Debugging

Step 1: Reproduce the problem

Step 2: Turn it into a test

18

Debugging

Isolate the problem: where do things go bad?

19

Debugging

Don't make the same mistake twice.

20

The most pernicious bugs

The code is right, but your thinking is wrong.

You were mistaken about what the code would do.

→ Write trivial programs to test your understanding.

21

The most pernicious bugs

The code is right, but your thinking is wrong.

You were mistaken about what the code would do.

→ Write trivial programs to test your understanding.

21

The most pernicious bugs

The code is right, but your thinking is wrong.

You were mistaken about what the code would do.

→ Write trivial programs to test your understanding.

21

Summary

▶ If you don't test your code, how do you know it works?
▶ If you test your code, save and automate those tests.
▶ Check the input to each function.
▶ Write unit tests for each function.
▶ Write some larger regression tests.
▶ Turn bugs into tests.

22

