
Version control
with git and GitHub

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman
Course web: kbroman.org/Tools4RR

Slides prepared with Sam Younkin

http://kbroman.org
http://kbroman.org
https://github.com/kbroman
https://twitter.com/kwbroman
http://kbroman.org/Tools4RR
https://github.com/syounkin

http://www.phdcomics.com/comics/archive.php?comicid=1531

2

http://www.phdcomics.com/comics/archive.php?comicid=1531

Methods for tracking versions

▶ Don’t keep track

– good luck!

▶ Save numbered zip files

– Unzip versions and diff

▶ Formal version control

– Easy to study changes back in time
– Easy to jump back and test

3

Suppose it stops working…

▶ Don’t keep track
– good luck!

▶ Save numbered zip files
– Unzip versions and diff

▶ Formal version control
– Easy to study changes back in time
– Easy to jump back and test

3

Why use formal version control?

▶ History of changes
▶ Able to go back
▶ No worries about breaking things that work
▶ Merging changes from multiple people

4

Example repository

5

Example repository

5

Example history

6

Example commit

7

What is git?

▶ Formal version control system
▶ Developed by Linus Torvalds (developer of Linux)

– used to manage the source code for Linux

▶ Tracks any content (but mostly plain text files)
– source code
– data analysis projects
– manuscripts
– websites
– presentations

8

Why use git?

▶ It’s fast
▶ You don’t need access to a server
▶ Amazingly good at merging simultaneous changes
▶ Everyone’s using it

9

What is GitHub?

▶ A home for git repositories
▶ Interface for exploring git repositories
▶ Real open source

– immediate, easy access to the code

▶ Like facebook for programmers
▶ Free 2-year ”micro” account for students

– education.github.com

▶ (Bitbucket.org is an alternative)
– free private repositories

10

http://education.github.com

Why use GitHub?

▶ It takes care of the server aspects of git
▶ Graphical user interface for git

– Exploring code and its history
– Tracking issues

▶ Facilitates:
– Learning from others
– Seeing what people are up to
– Contributing to others’ code

▶ Lowers the barrier to collaboration
– ”There’s a typo in your documentation.” vs.

”Here’s a correction for your documentation.”

11

Basic use
▶ Change some files
▶ See what you’ve changed

git status
git diff
git log

▶ Indicate what changes to save
git add

▶ Commit to those changes
git commit

▶ Push the changes to GitHub
git push

▶ Pull changes from your collaborator

git fetch
git merge

12

Basic use
▶ Change some files
▶ See what you’ve changed

git status
git diff
git log

▶ Indicate what changes to save
git add

▶ Commit to those changes
git commit

▶ Push the changes to GitHub
git push

▶ Pull changes from your collaborator

git fetch
git merge

12

Basic use
▶ Change some files
▶ See what you’ve changed

git status
git diff
git log

▶ Indicate what changes to save
git add

▶ Commit to those changes
git commit

▶ Push the changes to GitHub
git push

▶ Pull changes from your collaborator
git pull

git fetch
git merge

12

Basic use
▶ Change some files
▶ See what you’ve changed

git status
git diff
git log

▶ Indicate what changes to save
git add

▶ Commit to those changes
git commit

▶ Push the changes to GitHub
git push

▶ Pull changes from your collaborator
git fetch
git merge

12

Initialize repository

▶ Create (and cd to) a working directory
– For example, ~/Docs/Talks/Graphs

▶ Initialize it to be a git repository
– git init
– Creates subdirectory ~/Docs/Talks/Graphs/.git

$ mkdir ~/Docs/Talks/Graphs
$ cd ~/Docs/Talks/Graphs
$ git init
Initialized empty Git repository in ~/Docs/Talks/Graphs/.git/

13

Produce content

▶ Create a README.md file

Talk on “How to display data badly”

These are slides for a talk that I give as often as possible,
because it's fun.

This was inspired by Howard Wainer's article, whose title I
stole: H Wainer (1984) How to display data badly.
American Statistician 38:137-147

A recent PDF is
[here](
http://www.biostat.wisc.edu/~kbroman/talks/graphs2013.pdf).

14

Incorporate into repository

▶ Stage the changes using git add

$ git add README.md

15

Incorporate into repository

▶ Now commit using git commit

$ git commit -m "Initial commit of README.md file"
[master (root-commit) 32c9d01] Initial commit of README.md file
1 file changed, 14 insertions(+)
create mode 100644 README.md

▶ The -m argument allows one to enter a message
▶ Without -m, git will spawn a text editor
▶ Use a meaningful message
▶ Message can have multiple lines, but make 1st line

an overview

16

A few points on commits

▶ Use frequent, small commits
▶ Don’t get out of sync with your collaborators
▶ Commit the sources, not the derived files

(R code not images)

▶ Use a .gitignore file to indicate files to be ignored
*~
manuscript.pdf
Figs/*.pdf
.RData
.RHistory
*.Rout
*.aux
*.log
*.out

17

Using git on an existing project

▶ git init

▶ Set up .gitignore file
▶ git status (did you miss any?)

▶ git add . (or name files individually)

▶ git status (did you miss any?)

▶ git commit

18

Removing/moving files

For files that are being tracked by git:

Use git rm instead of just rm
Use git mv instead of just mv

$ git rm myfile
$ git mv myfile newname
$ git mv myfile SubDir/
$ git commit

19

First use of git

$ git config --global user.name "Jane Doe"
$ git config --global user.email "janedoe@wisc.edu"

$ git config --global color.ui true

$ git config --global core.editor emacs

$ git config --global core.excludesfile ~/.gitignore_global

20

Set up GitHub repository

▶ Get a GitHub account
▶ Click the ”Create a new repo” button
▶ Give it a name and description
▶ Click the ”Create repository” button
▶ Back at the command line:

git remote add origin https://github.com/username/repo
git push -u origin master

21

Set up GitHub repository

21

Set up GitHub repository

21

Configuration file

Part of a .git/config file:
[remote "origin"]

url = https://github.com/kbroman/qtl.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]
remote = origin
merge = refs/heads/master

[remote "brian"]
url = git://github.com/byandell/qtl.git
fetch = +refs/heads/*:refs/remotes/brian/*

22

Branching and merging

▶ Use branches to test out new features without
breaking the working code.

git branch devel
git branch
git checkout devel

▶ When you’re happy with the work, merge it back into
your master branch.

git checkout master
git merge devel

23

Issues and pull requests

▶ Problem with or suggestion for someone’s code?
– Point it out as an Issue

▶ Even better: Provide a fix
– Fork
– Clone
– Modify
– Commit
– Push
– Submit a Pull Request

24

Suggest a change to a repo

▶ Go to the repository:
http://github.com/someone/repo

▶ Fork the repository
Click the ”Fork” button

▶ Clone your version of it
git clone https://github.com/username/repo

▶ Change things locally, git add, git commit
▶ Push your changes to your GitHub repository

git push

▶ Go to your GitHub repository
▶ Click ”Pull Requests” and ”New pull request”

25

Pulling a friend’s changes

▶ Add a connection
git remote add friend git://github.com/friend/repo

▶ If you trust them, just pull the changes
git pull friend master

▶ Alternatively, fetch the changes, test them, and then
merge them.

git fetch friend master
git branch -a
git checkout remotes/friend/master
git checkout -b friend
git checkout master
git merge friend

▶ Push them back to your GitHub repo
git push

26

Merge conflicts

Sometimes after git pull friend master
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

Inside the file you’ll see:
<<<<<<< HEAD
A line in my file.
=======
A line in my friend's file
>>>>>>> 031389f2cd2acde08e32f0beb084b2f7c3257fff

Edit, add, commit, push, submit pull request.

27

git/GitHub with RStudio

See GitPrimer.pdf or RStudio page

28

http://www.biostat.wisc.edu/~kbroman/presentations/GitPrimer.pdf
http://www.rstudio.com/ide/docs/version_control/overview

Delete GitHub repo

29

Git at Statistics, UW-Madison

▶ Easy to use, free infinite private repositories.
▶ Not as nice of interface to review code: Rely on GUI

or private web page.
▶ When your ssh account expires, your access to them

expires.

30

Git at Statistics, UW-Madison

Setup (on server):

▶ Connect to server
ssh bigmem01.stat.wisc.edu
Consider using kinit + aklog if logging on frequently

▶ Make Folder
cd Repositories
mkdir NewRepository

▶ Initialize Server Repository
cd NewRepository
git init

31

Git at Statistics, UW-Madison

Usage (on client, e.g. laptop):

▶ Clone/Pull onto other systems
git clone ssh:\\bigmem01.stat.wisc.edu\~[user]\Repositories\NewRepository

▶ Make changes, and commit
git add -i
git commit -m 'An informative message here.'

▶ Push changes back
git push origin

32

Open source means everyone can see my stupid
mistakes.

Version control means everyone can see every stupid
mistake I’ve ever made.

bit.ly/stupidcode
33

http://bit.ly/stupidcode

