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Systems genetics is all about associations between different datasets. It’s critical, then, that
the sample labels are correct for all data sets. As projects become larger and involve more
groups of scientists, there’s a greater chance for the introduction of errors in the sample
labels.

Sample duplicates, mixtures, and mix-ups will all weaken associations and so reduce the
quality of the study results.

On the other hand, with high-throughput genomic phenotypes, there is often the opportunity
to both identify sample mix-ups and correct them.
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Here’s an example of a set of mix-ups in the DNA samples for a project. In a mouse intercross
with about 500 samples, there were nearly 20% mix-ups. The dots indicate that the correct
sample was in the correct place. The arrows point from where a sample should have been
to where it was actually found.

In this project, we had gene expression microarray data from six different tissues; that
allowed us to identify and correct these errors.



More sample mix-ups
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The mRNA samples had mix-ups, too. There were errors in each of the six tissues.



Westra et al. (2011)

Westra et al. (2011) doi:10.1093/bioinformatics/btr323
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Westra et al. (2011) was among the first to identify this potential problem and suggest a
formal solution. They applied their approach to a number of public data sets and identified
problems in most of them, including a study with 20% mix-ups.



Outline

▶ Sample duplicates
▶ Sex verification
▶ Sample mix-ups:
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– mRNA ↔ DNA
– protein ↔ DNA
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If you have high-throughput, low-level phenotypes, you should at least attempt to identify
potential sample mix-ups. My goal in this talk is to make it clear how to do this, to help
ensure that this becomes a routine part of the data cleaning procedures in eQTL analyses.



But first

Missing Data
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Before you do anything, you should look at the amount of missing data, as this is often an
important indication of sample quality.
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Here’s a diversity outbred mouse project with 500 mice. Five samples had > 25% missing
data and almost surely need to be omitted. A couple of samples have around 10% missing
data and might be recoverable but are still worth watching.

Note that I’ll be using a variety of data in this talk, but I won’t be explaining where it’s
from. But I thank my collaborators for the data.
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I’m considering two datasets here. I won’t say anything about where they’re from, but
they’re both on diversity outbred mice, one with about 500 individuals and the other with
800 (though only about 500 with gene expression data and 200 with proteomics data).

You maybe can tell the sources, but let’s not talk about the particular datasets right now.
I’m working on a tutorial on identifying sample mix-ups but have agreed to wait to post it;
I’ll post it once an article correction appears.



Sample duplicates
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The next thing to look for is sample duplicates. Are there pairs of individuals with too-
similar genotypes?

These are pretty common. I don’t know anything about monozygotic twins among mice,
but we’ve always assumed that these are cases of sample duplication or contamination.
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It’s simple to look for duplicate DNA samples: just calculate the proportion of matching
genotypes for each pair of samples, and look for pairs that have very similar data.

Here, we see no close matches. There’s a group with rather low sharing, which are due to a
couple of bad DNA samples, plus a group with somewhat above-normal sharing, which are
likely siblings (these are again diversity outbred mice).

This technique only works well for organisms with a lot of chromosomes. It would be hard
to do this in Drosophila, because the variation in the “just by chance” sharing would be
really high and cover the full rather 0–100%.



Correlation between mRNA samples
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It seems like you should be able to do the same thing with mRNA or protein samples: just
look at the correlation between samples, or perhaps the RMS difference. But I’ve not had
much success finding duplicate samples this way. You maybe need to exclude genes that
appear to not be expressed (and so are just noise).

These are histograms of the correlation between mRNA expression samples. The two sexes
are anti-correlated. The lower histogram is for correlation between measurements after
controlling for sex.



Correlation between protein samples
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This is similar as the last slide, but with mass-spec-based protein measurements. The anti-
correlation between sexes is not as strong but still present.



Sex verification
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One way to identify sample mislabelings is by comparing the annotated sex to what you can
infer from the genotypes or expression data.
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Historically, I would look at heterozygosity on the X chromosome to verify sex. But even
better, for verifying sex in the genotype data, is to look at the dosage of X and Y chromosome
markers (average intensity for microarray-based genotypes, or frequency of mapped reads
for sequencing-based genotypes).

The x-axis is average intensity of SNPs on the X chromosome; the y-axis is average intensity
of SNPs on the Y chromosome.

The green ball in the lower-right are females with two X chromosomes and no Y. The purple
ball in the upper-left are males with one X and one Y. The points in the lower-left are maybe
XO females.

We are looking for females in the upper-left (and there is one such) or males in the lower-
right.



Sex and gene expression
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We should be able to do the same sort of thing, to verify the sex of the mRNA samples.

We could think hard about genes that should show a big sex difference (for example, Xist),
or we could just do t-tests to identify a set of genes that have big sex differences. These are
the top six genes, in terms of sex difference in expression. Of course, Xist is the first.

We could choose the top say 100 genes and use them to form a classifier for sex from gene
expression. We want a method that can handle some misclassified samples.



Sex and gene expression
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What I ended up doing was just pick the top 100 genes and then calculate the mean in males
and females, and then for each sample, look at the RMS difference from the male means
and from the female means. This is a plot of those.

Most of the samples have well-differentiated sex by this approach, but there are a bunch of
samples in the middle, maybe due to batch differences that I’ve not accounted for?

Anyway, while there are a number of samples in the middle that are unclear, there’s also a
set of males that look like females and one female that looks like male.



Sex and proteins
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Protein levels also show big sex differences, so we can do the same thing again with proteins.



Sex and proteins
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I did the same thing as with the mRNA data: pick the top 100 proteins by their sex difference,
calculate the average for males and for females, and then take the RMS difference for each
sample from the male means and the female means.

For this particular data set, there are a few females deep within the males.



Sample mix-ups
mRNA ↔ protein
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We now turn to the question of sample mix-ups more directly. We’ll start by comparing a
set of mRNA expression data to a set of proteomics data.



mRNA ↔ protein method
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We have two rectangles of data where some of the rows are supposed to correspond.

We first look for gene/protein pairs that are highly correlated. We then focus on those and
calculate the correlation between rows, among the highly correlated gene/protein pairs.

The between-sample correlations can be viewed as a similarity matrix. We’re hoping to see
a single large value in each row, for the samples that are supposed to correspond.
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For a set of gene expression data and proteomics data, I considered each protein and found
the most-correlated gene, adjusting for sex. (Whether to adjust for sex is not totally clear
to me, but it makes the subsequent figures easier to understand.)

I show the top protein/gene pair (which all correspond to an mRNA and its protein product).



mRNA ↔ protein similarity matrix
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We take the top 100 gene/protein pairs and use them to calculate the correlation between
samples. This is that correlation matrix. There are not quite 200 protein samples and a bit
over 400 mRNA samples.

Black means more similar, and white less similar. The checkboard pattern is probably some
sort of batch effects. If I hand’t controlled for sex, there would be two big squares here, for
the two sexes.

You can see a couple of diagonal lines, for the samples that correspond.



mRNA ↔ protein similarities
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If we separate the values for samples that are supposed to correspond and the values for
samples that are not supposed to, we ideally would have two non-overlapping distributions.

The bulk of the samples are like that: large values for the self-self similarities, and small
values for the self-nonself similarities. But there are a bunch of self-self values that are small,
and a few self-nonself values that are large.



mRNA ↔ protein: closest vs self
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Here’s a scatterplot where for each protein sample I find the maximum similarity in that
row and plot it against the similarity for the mRNA sample that is supposed to correspond.

For most samples, these two values are the same, and they are large. (That’s the diagonal
line in the top-right.)

But there are a bunch of samples where the self-similarity is small, indicating that it seems
to have the wrong label. Many of these are largely similar to some other sample, but a few
are not similar to anything.



mRNA ↔ protein: selected samples
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Here I have focused on a selected set of six protein samples, and just plot all of the values in
that row of the similarity matrix. For each of these protein samples, I highlight the closest
mRNA sample.

The pair on the left looks like a sample swap: M348 is closest to M410 and vice versa.
Similarly, the pair in the middle looks like a sample swap, with F371 being closest to M349
and vice versa. The two samples on the right look to be correctly labeled.

Overall, there were about 9 sample swaps and then a few other protein samples that didn’t
seem to correspond to any mRNA sample.

With these sample swaps, we can’t tell, from these data alone, whether the problem is with
the mRNA samples, the protein samples, or some of each.



Sample mix-ups
DNA ↔ mRNA
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Let’s now turn to the same sort of thing, but comparing DNA-based genotypes to mRNA
expression.
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The approach we take starts similarly: we identify a set of expression traits with strong
eQTL, and then pull out the genotypes at those eQTL.

The simplest thing is to use the genotype/expression correspondence to get predected expres-
sion values for each trait, based on the observed eQTL genotypes. Basically just calculate
the average trait value for each genotype and assign that as the fitted value.

We can then take the root-mean-square (RMS) difference between the predicted expression
values for a DNA sample and the observed expression values for an mRNA sample, and used
that as a distance matrix, comparing the DNA and mRNA samples.
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For a set of RNA-seq based expression data, here are the LOD scores. For each expression
trait, I did a genome scan adjusting for the sex and picked out the single genome-wide
maximum value. There are 100 genes with LOD about 150 and higher.



DNA ↔ mRNA distance matrix
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Using those 100 genes, I calculated predicted expression values for each DNA sample, and
then calculated this distance matrix. Black again means close. You can see a few black
diagonal lines in here. There are about 450 mRNA samples and a bit over 800 DNA samples.
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Here, if I pull apart the self-self and self-nonself distances, I find that there’s almost no
overlap.



DNA ↔ mRNA: closest vs self
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If I calculate the minimum distance in each row and plot it against the self-self distance, I
found that each mRNA sample is actually closest to itself than to any other sample. There
don’t seem to be any problems here.



DNA ↔ mRNA: selected samples
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Here are those six selected samples again. In each case, the samples look to have the correct
labels.



Sample mix-ups
DNA ↔ protein
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Let’s turn to a comparison between DNA-based genotypes and proteomics data.
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The approach is the same as for the comparison of DNA and mRNA. For each protein, I
do a genome scan and look for the strongest pQTL, and I pull out the proteins that have
strong pQTL.

I then use the association between genotype and protein level to get predicted protein levels
for each DNA sample. I then calculate the RMS difference between the predicted protein
levels for a DNA sample and observed protein levels for some proteomics sample, and use
this as a distance matrix.
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There are many proteins with very strong pQTL. I’ll focus on the top 100 proteins, with
LOD scores about 30 and up.



DNA ↔ protein distance matrix
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Here’s the distance matrix comparing just under 200 proteomics samples to just over 800
DNA samples. Black means close; you can see two prominent diagonal lines.
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If we separate the self-self distances from the self-nonself ones, we again see a bunch of
self-self distances that are overly large, and self-nonself distances that are too small.



DNA ↔ protein: closest vs self
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Taking the minimum distance in each row and plotting that against the distance for the
sample with the same label, we see that most samples look to be correctly labeled, but
there’s a big group that are not close to the corresponding sample but are close to some
other sample.



DNA ↔ protein: selected samples
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Here are those six selected samples again. A couple of sample swaps and a pair that are
correct.

Combining what we’ve learned from the DNA/mRNA/protein, we can conclude that the
mislabeling problems were in the protein samples.

Overall, we identified 9 sample swaps and two additional mislabeled samples. There were
192 total samples, so this is just above 10% problems.
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In summary: sample mix-ups shouldn’t happen; we should do our best to avoid them. But
if the do happen, we should find them.

It’s not too hard to look for sample mix-ups. Pull out pairs of highly correlated variables
and then use them to establish the similarity or distance between samples.
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Here are some relevant references. The Lynch et al. (2012) paper has some useful comments
about experimental design.
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Here is where you can find me and my slides.



DNA ↔ protein: best vs 2nd-best
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Here’s an extra slide showing (on the right) the best distance vs the 2nd-best distance. The
panel on the left we’d seen before, of the best distance vs the minimum distance.

This is useful for assessing the evidence that the sample with the best distance is the real
sample identity. If the best distance is quite far from the second-best distance, than it
seems like we can identify the true sample. If they’re similar, we don’t have much evidence
to relabel the sample.

I’ve highlighted a couple of points in orange, where the second-best distance is quite close to
the best distance. But for both of these, the best distance is the same as the self distance,
and so there’s no reason to question their identity.


