QTL mapping in MAGIC populations with R/qtl2

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman
@kwbroman
Slides: bit.ly/msu2019-12
Intercross

P₁

×

P₂

F₁

×

F₁

F₂
QTL mapping

![Diagram showing LOD scores across different chromosomes.](image)
Congenic line/NIL
Improving precision

- more recombinations
- more individuals
- more precise phenotype
- lower-level phenotypes
 - transcripts, proteins, metabolites
Genome-scale phenotypes
Advanced intercross lines

P
A
B
F₂
F₃
F₄
F₇
F₁₀
Recombinant inbred lines

P₁

F₁

F₂

F₃

F₄

F∞

P₂

F₁

F₂

F₃

F₄

F∞
Recombinant inbred lines
Collaborative Cross

G_0

G_1

G_2

G_3

G_4

\vdots

G_∞
Heterogeneous stock
MAGIC is magic

- Genetic diversity
- High-precision mapping
- Predictable linkage disequilibrium
- Phenotype replicates to reduce individual variation
- Pool phenotypes from multiple labs, environments, treatments
- Genotype once
MAGIC is magic

- Genetic diversity
- High-precision mapping
- Predictable linkage disequilibrium
- Phenotype replicates to reduce individual variation
- Pool phenotypes from multiple labs, environments, treatments
- Genotype once
- Cool name
MAGIC lines

Valdar et al., Genetics 172:1783, 2006
MAGIC lines

Valdar et al., Genetics 172:1783, 2006
MAGIC lines

Valdar et al., Genetics 172:1783, 2006
MAGIC lines

- How many?
- Which?

Valdar et al., Genetics 172:1783, 2006
MAGIC lines

Valdar et al., Genetics 172:1783, 2006
MAGIC lines

Valdar et al., Genetics 172:1783, 2006

How many?
Which?
How long?
How?

Valdar et al., Genetics 172:1783, 2006
The goal

Identify QTL

▶ Power
▶ Mapping precision
The goal

Identify QTG

- Power
- Mapping precision
The goal

Identify QTG

- Power
- Mapping precision
- Estimate QTL allele frequencies
Principles

▶ Avoid population structure
▶ Tradeoff between power for *de novo* discovery and mapping precision
▶ More QTL to find \Rightarrow more QTL getting in the way?
▶ More QTL alleles \Rightarrow less information about each
▶ Are QTL alleles common or rare?
How many founders?

More
- More general use
- More QTL
- Greater precision
- Estimate allele frequencies
- Haplotype analysis in founders

Fewer
- Lower residual variance
- Greater power for a particular QTL?
- Better power for epistasis
- Rare alleles are less rare
Which founders?

- Diverse
- Interesting
- No breeding problems
- Balanced: star phylogeny
How much mixing?

- More mixing ⇒ Greater mapping precision
- ...but lower power for de novo mapping
- Potential for population structure, missing alleles
- Random mating or curated mating?
- Start with many random cross directions?
Selfing or DH?

- Inbreeding gives added recombination
- But not so much as at the mixing stage
- If doubled haploids are feasible, use them
Sharing is also key

- The greatest power of MAGIC comes from sharing
 - Pooling data, exploring multiple environments/treatments
- Common software needs
 - Analysis software, database infrastructure
- Many students need to learn the same stuff
 - Joint training opportunities
19 years of R/qtl

Year

Lines of code

idea svn git

R
C
doc
R/qtl cross types

- backcross, doubled haploids, haploid
- intercross
- 2-way RIL by selfing or sibling mating
- phase-known 4-way cross
R/9t12
Now in 3D
R/qtl2 cross types

- backcross, doubled haploids, haploid
- intercross
- 2-, 4-, 8-, 16-way RIL by selfing
- 2-, 4-, 8-way RIL by sibling mating
- 2-, 3-, 8-way advanced intercross
- 6- and 19-way MAGIC
- Diversity Outbred (DO) mice
- F_1 of DO \times inbred
- general RIL or AIL
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>id</td>
<td>bolting_days</td>
<td>seed_weight</td>
<td>seed_area</td>
<td>ttl_seeds_per_fruit</td>
<td>branches</td>
<td>height</td>
</tr>
<tr>
<td>2</td>
<td>MAGIC.1</td>
<td>15.33</td>
<td>17.15</td>
<td>0.64</td>
<td>45.11</td>
<td>10.5</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>MAGIC.2</td>
<td>22</td>
<td>22.71</td>
<td>0.75</td>
<td>49.11</td>
<td>4.33</td>
<td>42.33</td>
</tr>
<tr>
<td>4</td>
<td>MAGIC.3</td>
<td>23</td>
<td>21.03</td>
<td>0.68</td>
<td>57</td>
<td>4.67</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>MAGIC.4</td>
<td>18.67</td>
<td>22.45</td>
<td>0.74</td>
<td>54.33</td>
<td>6.33</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>MAGIC.5</td>
<td>18.67</td>
<td>25.36</td>
<td>0.82</td>
<td>38.33</td>
<td>5.67</td>
<td>42.25</td>
</tr>
<tr>
<td>7</td>
<td>MAGIC.6</td>
<td>25</td>
<td>21.53</td>
<td>0.71</td>
<td>52</td>
<td>4.33</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>MAGIC.7</td>
<td>15.33</td>
<td>20.92</td>
<td>0.71</td>
<td>39</td>
<td>4</td>
<td>37.35</td>
</tr>
<tr>
<td>9</td>
<td>MAGIC.8</td>
<td>14.33</td>
<td>24.2</td>
<td>0.79</td>
<td>50.56</td>
<td>7.33</td>
<td>43.23</td>
</tr>
<tr>
<td>10</td>
<td>MAGIC.9</td>
<td>16.33</td>
<td>18.86</td>
<td>0.63</td>
<td>75.78</td>
<td>5.33</td>
<td>42.4</td>
</tr>
<tr>
<td>11</td>
<td>MAGIC.10</td>
<td>30</td>
<td>30.46</td>
<td>0.91</td>
<td>56.33</td>
<td>3</td>
<td>48.5</td>
</tr>
<tr>
<td>12</td>
<td>MAGIC.11</td>
<td>14</td>
<td>20.58</td>
<td>0.66</td>
<td>41.56</td>
<td>5.67</td>
<td>36.25</td>
</tr>
<tr>
<td>13</td>
<td>MAGIC.12</td>
<td>21.33</td>
<td>19.05</td>
<td>0.67</td>
<td>52.33</td>
<td>4.67</td>
<td>49.35</td>
</tr>
<tr>
<td>14</td>
<td>MAGIC.14</td>
<td>18.67</td>
<td>21.14</td>
<td>0.72</td>
<td>49.78</td>
<td>6</td>
<td>48.5</td>
</tr>
<tr>
<td>15</td>
<td>MAGIC.15</td>
<td>15</td>
<td>21.71</td>
<td>0.73</td>
<td>49</td>
<td>6.33</td>
<td>41.9</td>
</tr>
<tr>
<td>16</td>
<td>MAGIC.16</td>
<td>18.33</td>
<td>21.37</td>
<td>0.71</td>
<td>66.67</td>
<td>3.33</td>
<td>18.17</td>
</tr>
</tbody>
</table>
Data files

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>id</td>
<td>bolting_days</td>
<td>seed_weight</td>
<td>seed_area</td>
<td>ttl_seedspfruit</td>
<td>branches</td>
<td>height</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>marker</td>
<td>MAGIC.1</td>
<td>MAGIC.10</td>
<td>MAGIC.100</td>
<td>MAGIC.101</td>
<td>MAGIC.102</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>MN1_29291</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>MN1_29716</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>MN1_112907</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>MASC03771</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>MN1_197787</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>MN1_340810</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>MN1_395107</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>MN1_444820</td>
<td>A</td>
<td>A</td>
<td>–</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>MN1_494205</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>MN1_592863</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>MN1_592760</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>BKN118</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>MN1_1042427</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>CRY2_1021</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>CRY2_429</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>id</td>
<td>bolting_days</td>
<td>seed_weight</td>
<td>seed_area</td>
<td>ttl_seedspfruit</td>
<td>branches</td>
<td>height</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>marker</td>
<td>MAGIC.1</td>
<td>MAGIC.10</td>
<td>MAGIC.100</td>
<td>MAGIC.101</td>
<td>MAGIC.102</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAGIC.103</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>id</td>
<td>bolting_days</td>
<td>seed_weight</td>
<td>seed_area</td>
<td>ttl_seedsfruit</td>
<td>branches</td>
<td>height</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>marker</td>
<td>MAGIC.1</td>
<td>MAGIC.10</td>
<td>MAGIC.100</td>
<td>MAGIC.101</td>
<td>MAGIC.103</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>MN1_29291</td>
<td>1</td>
<td>marker</td>
<td>chr</td>
<td>pos</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>MN1_29764</td>
<td>2</td>
<td>MN1_29291</td>
<td>1</td>
<td>0.029291</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>MN1_112313</td>
<td>3</td>
<td>MN1_29716</td>
<td>1</td>
<td>0.029757</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>MASC03771</td>
<td>4</td>
<td>MN1_112907</td>
<td>1</td>
<td>0.112907</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>MN1_340810</td>
<td>5</td>
<td>MASC03771</td>
<td>1</td>
<td>0.174605</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>MN1_395170</td>
<td>6</td>
<td>MN1_197787</td>
<td>1</td>
<td>0.197787</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>MN1_444200</td>
<td>7</td>
<td>MN1_340810</td>
<td>1</td>
<td>0.340810</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>MN1_494205</td>
<td>8</td>
<td>MN1_395170</td>
<td>1</td>
<td>0.395107</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>BKN118</td>
<td>9</td>
<td>MN1_444200</td>
<td>1</td>
<td>0.444764</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>CRY2_1021</td>
<td>10</td>
<td>MN1_494205</td>
<td>1</td>
<td>0.494205</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>MASC07014</td>
<td>11</td>
<td>MN1_592863</td>
<td>1</td>
<td>0.592867</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>MN1_129634</td>
<td>12</td>
<td>MN1_592760</td>
<td>1</td>
<td>0.592984</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>BKN118</td>
<td>13</td>
<td>BKN118</td>
<td>1</td>
<td>0.761584</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>CRY2_429</td>
<td>14</td>
<td>MN1_1042427</td>
<td>1</td>
<td>1.042428</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td>CRY2_1021</td>
<td>15</td>
<td>CRY2_429</td>
<td>1</td>
<td>1.187841</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>MASC07014</td>
<td>16</td>
<td>MASC03609</td>
<td>1</td>
<td>1.189374</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>MASC07014</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>MASC03609</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control file (json or yaml)

{
 "description": "Arabidopsis MAGIC data, Gnan et al (2014)",
 "crosstype": "magic19",
 "sep": ",",
 "na.strings": ["-", "NA"],
 "comment.char": "#",
 "geno": "arabmagic_geno.csv",
 "founder_geno": "arabmagic_foundergeno.csv",
 "gmap": "arabmagic_pmap_tair9.csv",
 "pmap": "arabmagic_pmap_tair9.csv",
 "pheno": "arabmagic_pheno.csv",
 "genotypes":
 "A": 1
 "H": 2
 "B": 3
 }
 "geno_transposed": true,
 "founder_geno_transposed": true
}
Control file (json or yaml)

```json
{
   "description": "Arabidopsis MAGIC data, Gnan et al (2014)",
   "crosstype": "magic19",
   "sep": ",",
   "na.strings": ["-", "NA"],
   "comment.char": "#",
   "geno": "arabmagic_geno.csv",
   "founder_geno": "arabmagic_foundergeno.csv",
   "gmap": "arabmagic_pmap_tair9.csv",
   "pmap": "arabmagic_pmap_tair9.csv",
   "pheno": "arabmagic_pheno.csv",
   "genotypes":
      {
         "A": 1,
         "H": 2,
         "B": 3
      },
   "geno_transposed": true,
   "founder_genotype_transposed": true
}
```
Control file (json or yaml)

```json
{
    "description": "Arabidopsis MAGIC data, Gnan et al (2014)",
    "crosstype": "magic19",
    "sep": ",",
    "na.strings": ["-", "NA"],
    "comment.char": "#",
    "geno": "arabmagic_geno.csv",
    "founder_geno": "arabmagic_foundergeno.csv",
    "gmap": "arabmagic_pmap_tair9.csv",
    "pmap": "arabmagic_pmap_tair9.csv",
    "pheno": "arabmagic_pheno.csv",
    "genotypes":
        "A": 1
        "H": 2
        "B": 3
    },
    "geno_transposed": true,
    "founder_geno_transposed": true
}
Control file (json or yaml)

```json
{
"description": "Arabidopsis MAGIC data, Gnan et al (2014)",
"crosstype": "magic19",
"sep": ",",
"na.strings": ["-", "NA"],
"comment.char": "#",
"geno": "arabmagic_geno.csv",
"founder_geno": "arabmagic_foundergeno.csv",
"gmap": "arabmagic_pmap_tair9.csv",
"pmap": "arabmagic_pmap_tair9.csv",
"pheno": "arabmagic_pheno.csv",
"genotypes":
 "A": 1
 "H": 2
 "B": 3
},
"geno_transposed": true,
"founder_genotype_transposed": true
}
```
Control file (json or yaml)

```json
{
 "description": "Arabidopsis MAGIC data, Gnan et al (2014)",
 "crosstype": "magic19",
 "sep": ",",
 "na.strings": ["-", "NA"],
 "comment.char":="#",
 "geno": "arabmagic_geno.csv",
 "founder_geno": "arabmagic_foundergeno.csv",
 "gmap": "arabmagic_pmap_tair9.csv",
 "pmap": "arabmagic_pmap_tair9.csv",
 "pheno": "arabmagic_pheno.csv",
 "genotypes":
 "A": 1
 "H": 2
 "B": 3

},
 "geno_transposed": true,
 "founder_genotype_transposed": true
}```
Reading data into R

```
library(qtl2)
arab <- read_cross2("arab_magic.json")
```
library(qtl2)
arab <- read_cross2("arab_magic.json")

19-way Arabidopsis MAGIC
Kover et al. (2009) PLoS Genet
Gnan et al. (2014) Genetics
github.com/rqtl/qtl2data
Data diagnostics

doi: 10.1534/g3.119.400165
Genotype reconstruction
Genotype reconstruction

Chr 3 position (Mbp)

Bur
Can
Col
Ct
Edi
Hi
Kn
Ler
Mt
No
Oy
Po
Rsch
Sf
Tsu
Wil
Ws
Wu
Zu

MAGIC.244

Edi

Wu
Genotype reconstruction

```r
# Import necessary packages

# Genotype reconstruction

gmap <- insert_pseudomarkers(arab$gmap, step=0.2, stepwidth="max")
pmap <- interp_map(gmap, arab$gmap, arab$pmap)
pr <- calc_genoprob(arab, gmap, error_prob=0.002, cores=24)
```
Genome scan

![Genome Scan Diagram]

- Chromosome
- LOD score
- Fruit length

The diagram shows a genome scan with LOD scores plotted against chromosome numbers. There is a notable peak around chromosome 2, indicating a region of interest for fruit length.
Genome scan

Chromosome

LOD score

fruit length

haley−knott

Imm

0 10 20 30 40

1 2 3 4 5

Chromosome
Genome scan

Chromosome
LOD score
fruit length

haley−knott
Imm
Imm w/loco
Genome scan

Chromosome
LOD score
seed weight

- haley-knott
- lmm
- lmm w/loco
out_hk <- scan1(pr, arab$pheno, cores=24)

operm_hk <- scan1perm(pr, arab$pheno, n_perm=1000, cores=24)

k <- calc_kinship(pr, cores=24)
out_lmm <- scan1(pr, arab$pheno, k, cores=24)

k_loco <- calc_kinship(pr, "loco", cores=24)
out_loco <- scan1(pr, arab$pheno, k_loco, cores=24)
SNP association scan

[Graph showing LOD scores against chromosome numbers with fruit length at the top right corner]
SNP association scan

Chromosome

LOD score

fruit length
SNP association scan

-\log_{10} \text{ p-value}

Chromosome

fruit length
SNP association scan
SNP association scan
SNP association scan

```r
snp_pr <- genoprob_to_snpprob(pr, arab)
out_snps <- scan1(snp_pr, arab$fruit, cores=24)
```
QTL effects

Fruit length (chr 2 @ 11.4 Mbp)
QTL effects

Fruit length (chr 2 @ 11.4 Mbp)

QTL effects

least squares
BLUP

Fruit length (chr 2 @ 11.4 Mbp)
QTL effects

Seed weight (chr 1 @ 21.4 Mbp)

- QTL effects
- BLUP
- least squares
QTL effects

```r
fl_peak <- max(out_hk, pmap, lodcolumn="fruit_length")
fl_pr <- pull_genoprobpos(pr, pmap, fl_peak$chr, fl_peak$pos)
fl_fit1 <- fit1(fl_pr, arab$pheno[, "fruit_length"])
fl_blup <- fit1(fl_pr, arab$pheno[, "fruit_length"], blup=TRUE)
```
Goals

- Genotype reconstructions from external software
- General models for RIL and AIL
- Sequencing-based genotype data
- Multiple-QTL models
- QTL \times environment interactions
- Interactive data visualization
Slides: bit.ly/msu2019-12

kbroman.org

kbroman.org/qtl2

github.com/kbroman

@kwgbroman