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The bootstrap, like the jackknife, is a technique for es- 
timating standard errors. The idea is to use Monte Carlo 
simulation based on a nonparametric estimate of the un- 
derlying error distribution. The main object of this article 
is to present the bootstrap in the context of an econo- 
metric equation describing the demand for energy by in- 
dustry. As it turns out, the conventional asymptotic for- 
mulas for estimating standard errors are too optimistic 
by factors of nearly three, when applied to a particular 
finite-sample problem. In a simpler context, this finding 
can be given a mathematical proof. 
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1. INTRODUCTION 

This article is mainly concerned with estimating stan- 
dard errors for regression coefficients obtained by con- 
strained generalized least squares with an estimated 
covariance matrix. Existing methods are largely 
asymptotic, and may not apply with finite samples. We 
use “the bootstrap,” a computer-based methodology, to 
check the accuracy of the asymptotics and to make al- 
ternative estimates of the standard errors that are more 
reliable. This article is the first application of the boot- 
strap to generalized least squares. 

The bootstrap is a relatively new statistical technique, 
which permits the assessment of variability in an estimate 
using just the data at hand (see Efron 1979). The idea is 
to resample the original observations in a suitable way, 
to construct “pseudo-data” on which the estimator of 
interest is exercised. More specifically, the theoretical 
distribution of a disturbance term is approximated by the 
empirical distribution of a set of residuals. Measures of 
variability, confidence intervals, and even estimates of 
bias may then be calculated. 

In the regression case, the bootstrap is useful for in- 
vestigations when mathematical analysis can give only 
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asymptotic results. Within the scope of the bootstrap are ’ 
nonnormal errors, lag structures, and generalized least 
squares with estimated covariance matrices. This article 
compares the performance of conventional asymptotic 
estimates of standard error to the performance of a boot- 
strap procedure in the setting of a single econometric equa- 
tion. The main finding is that for generalized least squares 
with estimated covariance matrices, the asymptotic for- 
mulas for standard errors can be too optimistic, some- 
times by quite large factors. The bootstrap procedure is 
appreciably better than the conventional asymptotics, 
when applied to the finite-sample situation. For a partial 
explanation, see Beran (1983) or Singh (1981). 

This study is mainly empirical; however, in very simple 
contexts, a mathematical reason for the findings is given 
(Section 5) .  As a simple illustration of those results, take 
for instance the one-way analysis of variance model, with 
Gaussian errors, equal numbers of observations per cell, 
but different variances. Constrain the theoretical cell 
means to equality. If the variances are known, the gen- 
eralized least squares (gls) estimators hds for the common 
theoretical mean weight the sample means by the recip- 
rocals of the cell variances; var hglS is proportional to the 
harmonic mean of these variances. If the variances are 
unknown, they can be estimated by the sample variances, 
leading to the approximate gls estimator & q ~ s ;  the a in 
the subscript stands for “approximate.” The variance of 
has would be estimated as proportional to the harmonic 
mean of the sample variances. Call this estimated vari- 
ance vir. Then vir is systematically too small: 

var &=Is > var &Is > E(V&). 

An extension is made to the general multivariate linear 
model. 

This article is organized as follows: Section 2 gives a 
brief review of the bootstrap idea, in the context of linear 
econometric models. Section 3 gives an even briefer re- 
view of generalized least squares, and pinpoints the tech- 
nical issue to be addressed by the bootstrap. Section 4 
applies these ideas to an econometric model and presents 
a simulation experiment to assess the validity of the 
bootstrap. Some mathematical results are presented in 
Section 5 ,  while Section 6 reports some computational 
details, and discusses estimates of the stability of the 
Monte Carlo results. Finally, Section 7 reports a boot- 
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strap experiment on a formula of Srivastava and Dwivedi 
(1979). 

The approach may be distinguished from the classical 
work of Brown (1954), or Goldberger, Nagar, and Odeh 
(l%l): the bootstrap uses simulation rather than asymp- 
totics based on Taylor series. The work of Fair (1979 and 
1980) is closer in spirit to the bootstrap, but somewhat 
different in detail: Fair assumes that the disturbance 
terms follow a multivariate normal distribution, and that 
the parameter estimates follow their multivariate normal 
limiting distribution. The bootstrap is distribution-free, 
and develops the appropriate finite-sample behavior for 
the estimates. Of course, the bootstrap has problems of 
its own, as will be seen later. 

The bootstrap can also be used to attach standard er- 
rors to multiperiod forecasts, and to choose among com- 
peting forecasting equations; it can also be applied to si- 
multaneous equation models. These extensions will be 
discussed elsewhere. In other models, not on the face of 
things too dissimilar from the one studied here, the con- 
ventional asymptotics do rather well. We hope later to 
explore the reasons for such differences. 

The generalized least squares procedure we study is 
often called the two-stage Aitken estimator (2SAE). For 
a particular class of models- “seemingly unrelated 
regression equations”-Zellner (1962) shows that 2SAE 
is asymptotically valid. Maddala (1971) studies the 
asymptotics in a more general setting. Some theoretical 
results for finite samples have been obtained for special 
cases. Zellner (1963) analyzes two “seemingly unrelated 
regression equations” where the “independent varia- 
bles” are assumed to be orthogonal by equations, and 
obtains exact first and second moments for the 2SAE in 
finite samples. Some of his work will be summarized in 
Section 5 .  

Phillips (1977) develops Edgeworth expansions for the 
distribution of the two-stage estimator in the “seemingly 
unrelated regressions” model with many equations. Tay- 
lor (1977) derives a second-order approximation to the 
covariance matrix of the two-stage estimator in finite 
samples. These investigations do not focus on the validity 
of the approximate standard error formulas in finite sam- 
ples, or on the sensitivity of the theoretical results to 
departures from assumptions. 

The bias in the standard errors SE’s is demonstrated 
by a simulation experiment, where the parameters are 
fixed at estimates from a real data set, and the error dis- 
tribution is chosen to be the empirical distribution of the 
residuals. These choices are by no means critical, and 
normal errors could be used. Fiebig and Theil(1983), for 
example, have results similar to ours for demand equa- 
tions with normal errors. Theil, Finke, and Rosalsky 
(1983) also have such results, for maximum likelihood 
estimates, the asymptotic standard errors being com- 
puted from the information matrix in the usual way. These 
two articles have useful reviews of previous work. Mik- 
hail (1975) also reports bias in standard errors, but only 
in the range from 5% to 30%. For similar results in the 

context of seemingly unrelated nonlinear regressions, see 
Gallant (1975). For additional details and other related 
results, see Peters (1983b) or Freedman and Peters (1983, 
1984). 

2. THE BOOTSTRAP 

The bootstrap is described by Efron (1979,1982). Re- 
lated papers are by Bickel and Freedman (1981,1983) and 
Freedman (1981,1982). The bootstrap is a procedure for 
estimating standard errors by resampling the data in a 
suitable way. This idea can be applied to econometric 
models, where the technical difficulties include simul- 
taneity, correlated errors, heteroscedasticity, and dy- 
namics. First, we give an informal overview of the idea. 
In brief, the model has been fitted to data by some sta- 
tistical procedure; and there are residuals, namely the 
difference between observed and fitted values. Some sto- 
chastic structure was imposed on the stochastic disturb- 
ance terms, explicitly or implicitly, in the fitting. The key 
idea is to resample the residuals, preserving this sto- 
chastic structure, so the standard errors are generated 
using the model’s own assumptions. Assuming the model 
and the estimated parameters to be right, the resampling 
generates “pseudo-data.” Now the model can be refitted 
to the pseudo-data. In this artificial world, the errors in 
the parameter estimates are directly observable. The 
Monte Car10 distribution of such errors can be used to 
approximate the distribution of the unobservable errors 
in the real parameter estimates. This approximation is the 
bootstrap: it gives a measure of the statistical uncertainty 
in the parameter estimates. 

A more explicit, but still informal, description is as 
follows. Consider a dynamic linear model, of the form 

In this equation, B and C are coefficient matrices of un- 
known parameters, to be estimated from the data, subject 
to identifying restrictions; Yr is the, vector of “endogen- 
ous” variables at time t ;  X, is the vector of “exogenous” 
variables at time t; and Er is the vector of disturbances at 
time t .  The endogenous variables are determined within 
the model, the exogenous variables by some external 
process: technically , endogenous variables may be cor- 
related with E, exogenous variables that are not correlated 
with E. The following standard condition is imposed on 
the error distribution: given the X’s, the E’S are indepen- 
dent and identically distributed with mean 0. Linearity is 
assumed to simplify the exposition; the method is easily 
adapted to cover nonlinear models, although the com- 
putational costs may be prohibitive. The form (1) is gen- 
eral enough to cover the case of “seemingly unrelated 
regressions” (see Zellner 1962). 

Data are available for t = 1, . . . , n and Yo is available 
too. The coefficient matrices are estimated as B and 
by some well-defined statistical procedure, such as gen- 
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eralized least squares (Sections 3 and 4). When B and e As usual, 
are computed, residuals are defined: 

E(Bgls) = P, (5) 

(2) COV(figl,) = (xTX-'X)-'. (6) e, = Y, - Y , - l B  - xyc. 
These are estimates for the true disturbances eY in the 
model (1). Let p be the empirical distribution of the re- 
siduals, assigning mass lln to each of 61, . . . , &,. To 
avoid trivial complications, assume the equations have 
intercepts. See Freedman (1981, pp. 1220 and 1224) on 
centering. 

Some inflation of the residuals may prove desirable to 
compensate for the deflation of the residuals in fitting. 
However, there is no generally valid rule, except in the 
case of a standard regression model with homoscedastic 
errors where the factor [nl(n - P ) ] " ~  is appropriate. The 
residuals are linearly dependent, again due to the fitting. 
It may be appropriate to transform the residuals as in 
Theil's (1971, pp. 205-206) BLUS procedure. This is not 
done here. 

Consider next a model like (l), but where all the in- 
gredients are known: 

0 Set the coefficients at B and e respectively. 
0 Make the disturbance terms independent, with com- 

The exogenous X's are kept as before, as is Yo. Using 
this simulation model, pseudo-data can be generated. 
These will be denoted by stars: Yo*, . . . , Yn*. The con- 
struction is iterative: Yo* = Yo, and for all t = 1, . . . , 

mon distribution p. 

n,  
Y,* = Y,- ,*B + xye  + €,* 

the L* 's being independent with the common distribution 
P- 

Now pretend the pseudo-data Yo*, . . . , Yn* come from 
a model like (l), with unknown coefficient matrices. 
Using the previous estimation procedures, estimate these 
coefficients from the pseudo-data; denote the estimates 
by B* and &*. The distribution of the pseudo-errors B* 
- B, e* - e can be computed and used to approximate 
the distribution of the real errors B - B, - C. This 
approximation is the bootstrap. It is emphasized that the 
calculation assumes the validity of the model (1). The 
distribution of the pseudo-errors can be computed, for 
example, by Monte Carlo, simply repeating the procedure 
many times and seeing what happens. This article gives 
experimental evidence to show the approximation is 
good; for other experimental evidence, see Efron 
(1979,1982). For asymptotic results, see Freedman 
(1 98 1,1982). 

3. GENERALIZED LEAST SQUARES 
Consider the model 

Y = xp + E ,  E(E) = 0, cov(r) = 8. (3) 

With 8 known, the generalized least squares (gls) esti- 
mate is 

Cj& = (X~8--1X)--IXT~-'Y. (4) 

When Z is unknown, statisticians routinely use (4) and 
(6) with I: replaced by some estimate 2. Iterative pro- 
cedures are often used, as follows. Let fi(O) be some initial 
estimate for p, typically from a preliminary ordinary least 
squares (01s) fit. There are residuals ec0) = Y - XB'O). 
Suppose the procedure has been defined through stage k, 
with residuals 

g ( k )  = y - x(j (k). 
E'S 

Let ek be an estimator for 8, based on &(k): an example 
will be given below assuming a block diagonal structure 
for 8. Then 

BdS (k+') = (XTek-'X)-'XT$k-'ym (7) 
This procedure can be continued for a fixed number of 
steps, or until f i d s ( k )  settles down. Indeed, a convexity 
argument shows that ( j p l s ( k )  converges to the maximum 
likelihood estimate for p, assuming E is independent of X 
and multivariate Gaussian with mean 0. 

The covariance matrix for f i g l s ( k +  ') is usually estimated 
from (7), with 2, put in for 8: 

CbV(k+') = (xTek-'X)-'. (8) 
This may be legitimate, asymptotically. In finite-sample 
situations, all depends on whether 8, is a good estimate 
for 8 or not. If ek is a poor estimate for 8, the standard 
errors estimated from (8) may prove to be unduly opti- 
mistic: an example is given in Section 4. Unfortunately, 
approximate gls estimators are often used when there are 
too few data to offer any hope of estimating Z with rea- 
sonable accuracy. In such circumstances, the bootstrap 
is a useful diagnostic, and in cases like the present one 
it gives a more realistic estimate of the standard errors. 

To ease notation, &,J~(~) will be referred to as the (gls, 
k)-estimator. This article only considers the (gls, 1) es- 
timator, which in many situations has full asymptotic ef- 
ficiency (see Cox and Hinkley 1974, p. 308). In our ex- 
ample, further iteration seems to make the coefficient 
estimates better, but also exaggerates the optimism of the 
standard error estimates. In other cases, the approximate 
gls coefficient estimators may prove to be worse than 01s 
estimators, due to the variability of 2,; so iteration can 
hurt. 

4. BOOTSTRAPPING RDFOR 

The object of this section is to illustrate the bootstrap 
procedure for determining the variability of parameter 
estimates in a real example. The main experimental find- 
ing is that the conventional asymptotics can be off by 
factors of nearly three. The example is the Regional De- 
mand Forecasting Model (RDFOR). This is a system of 
econometric equations designed to forecast demand for 
energy through 1995. It is a component of the Midterm 
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Energy Forecasting System (MEFS). MEFS was the 
principal energy model used by the Department of Energy 
to make midterm forecasts for its annual report to Con- 
gress, through 1981. MEFS was a development of the 
Project Independence Evaluation System (PIES). 
RDFOR forecasts what demand would be in a future year 
for various fuel types by consumption sector and geo- 
graphical region, as a function of prices and other exo- 
genous variables. The focus here is on that part of the 
model concerned with the industrial sector demand for 
fuel. For more detailed discussions of RDFOR, see 
Freedman, Rothenberg, and Sutch (1983) or Kuh et al. 
(1982). 

The Department of Energy (DOE) distinguishes 10 geo- 
graphical regions, indexed here by r. The equation for 
total demand by the industrial sector in geographical re- 
gion r = 1, . . . , 10 and year t = 1961, . . . , 1978 is 
taken as 

qrr = a, + bc,, + ch,, + dp,, + eq,,,-l + fury + c r y ,  

(9) 

where in region r and year t: q,, is the log of an index of 
fuel consumption; cry is the log of cooling degree days; 
h,, is the log of heating degree days; prr is the log of a 
fuel price index; u,, is the log of value added in manu- 
facturing; E,, is a stochastic disturbance term; and a,, b, 
c, d, e, fare parameters to be estimated. This particular 
equation is the one reported by Kuh et al. (1982). The 
equation is dynamic in the sense that the lagged endo- 
genous variable qr,r-l  appears on the right side. Notice 
that the coefficients b, c, d, e, f a r e  constant across re- 
gions; however, the intercepts a, are region-specific. The 
constraint that b, c, d ,  e ,  f be constant across regions is 
a significant technical complication, not usually encoun- 
tered in treatments of Zellner’s method. 

The assumptions on the stochastic disturbance terms 
E,, are as follows: 

E(E,, ) ’  = 0 for all r and t .  

The E,! are stochastically independent of the 
cry ,  h,t, pry,  and Vrr. 

The vectors E, = (el,,, . . . , E ~ ~ . , )  are 
independent and identically distributed in time. 

( 104 

(lob) 

(1Oc) 

1960 through 1978. The fitting period, however, runs from 
1961 to 1978: a year of data is lost due to the lag term. 

in the no- 
tation in Section 3, starting from the 01s estimator b ( O )  = 

pols. The first column in Table 1 displays this (gls, 1) fit 
to the model. The standard errors (SE’s) are obtained 
from the conventional formula (8) using 2,; these are 
shown in the second column of Table 1, and will be called 
the “nominal” SE’s. The computation of SO may be de- 
scribed as follows. For the model (9-10) the distribution 
of E, = (el,, ,  . . . , E I ~ , , )  has an unknown interregional 
covariance matrix K; this 10 x 10 matrix is assumed con- 
stant over time. The covariance matrix Z for all the dis- 
turbances is a 180 x 180 block diagonal matrix with K 
repeated on the diagonal. Let 6 ) “ )  denote the 10-vector 

. . . , Z l o , , ( k ) )  of residuals at the kth stage of gls 
iteration; k = 0 corresponds to 01s. Let kk be the sample 
covariance matrix of these eighteen 10-vectors, with r, s 
entry given by 

Consider the one-step gls estimator, 

(1 1) 
1 - c 6,t(”)&s, (k) .  
18 r =  1961 

Then the estimate 2, is the 180 x 180 block-diagonal 
matrix with 8, repeated on the diagonal. 

The validity of the nominal standard errors shown in 
Table 1 is open to serious question, because 2, is not an 
accurate estimate of 8. This is because there are only 18 
years of data and 10 regions, from which must be esti- 
mated 10 intercepts, 5 coefficients, and the 10 x 10 var- 
iance-covariance matrix K. The bootstrap gives an alter- 
native method for approximating the standard errors, and 
a program for assessing the validity of the nominal stan- 
dard errors. 

To get started on the bootstrap, let &, 6, t ,  d, 8, and 
!be the (gls, 1)-parameter estimates reported in Table 1. 

Table 1. Bootstrap Experiment for Equation (9). 
Estimation is by One-Step gls. There Are 100 

Bootstrap Replications 

GLS Bootstrap 

(3) (4) (5) (6) 
RMS RMS 

Esti- Nominal Nominal Boot 
mate SE Mean SD SE SE 

(1)  (2) 

This model is outside the framework of standard regres- 
sion theory because of the dynamics: q,, is correlated with 
E,,,- I .  It is outside the framework of standard multivar- 
iate theory because the coefficients are constrained to 
equality across regions. However, (9) does fit into the 
framework (1) with q = 10 and p = 5 x 10 + 1 = 51; 
the matrices are subject to numerous constraints. 

Historical data for estimating this regression relation 
were taken from the State Energy Data System (SEDS) 
data base. SEDS was previously called FEDS. This data 
base is reviewed in Freedman, Rothenberg, and Sutch 
(1983). It contains the annual data required for the period 

al -.95 .31 
a2 -1.00 .31 
a3 -.97 .31 

as -.98 .32 

a7 -.95 .32 

ag -.89 .29 
alo -.96 .31 

c.d.d. b ,022 .013 
h.d.d. c .10 .031 
price d -.056 .019 

lag e .684 .025 
v.a. f .281 .021 

-.92 .30 

& -.88 30 

& -.97 .32 

- .94 
- .99 
- .95 
- .90 
- .96 
- .87 
- .94 
- .96 
- .87 
- .94 

.021 
,099 

- .050 
,647 
,310 

5 4  
.55 
.55 
5 3  
.55 
53 
.55 
.55 
5 1  
5 4  
.025 
,052 
,028 
.042 
,039 

.19 

.19 

.19 

.18 

.19 

.18 

.19 

.19 

.18 

.19 

.0084 

.019 

.011 

.017 

.014 

.43 

.43 

.43 

.41 

.44 

.41 

.44 

.44 

.40 

.42 

.020 
,043 
.022 
.034 
.029 
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Consider the residuals .028, from Column 4. But the apparent variability, from 
the conventional asymptotics, is in a typical run only .011, 
from Column 5: this is i r r  = q r r  - a ,  - b c r r  - i.hrr - Zlprr - & q r , t - 1  - j v r r .  

Let t, be the 10-vector . . . , t 1 0 , r )  of residuals for 
year t .  Let p be the empirical distribution of { t t :  t = 1961, 
. . . , 1978). Note that p has mean 0, because (9) has 
region-specific intercepts. Now simulate Equation (9), 
where all the ingredients are known: where SEi is the nominal SE for the price coefficient com- 

puted from formula (8) applied to the ith starred data set. 
Typically, the conventional formula is off by a factor of 

terpreted in a similar way. This finding cannot be ex- 
plained by  specification The specification is 
built into the simulation procedure. The explanation was 

q r , 1 9 ~  and the exogenous are fixed. 
The parameters are set at their estimated values A r ,  nearly three. The other entries in Column 5 may be in- 6, i., d ,  2, and f. 

distribution p. 
The disturbance terms are independent with common 

More specifically, let {Lt* :  t = 1961, . . . , 1978) be the 
results of 18 draws made at random with replacement 
from the set of eighteen 10-vectors { t r :  t = 1961, . . . , 
1978). Thus ilSl may be drawn twice, but tlS2 not at all. 
On the other hand, the regional pattern of the disturb- 
ances does not change. Thus the simulation preserves the 
key stochastic assumptions: the disturbances are inde- 
pendent and identically distributed in time but show a 
geographic pattern. 

The pseudo-data can now be built up iteratively year 
by year: qr,lm* = qr,1960 and for t = 1961, . . . , 1978, 

qrr* = 8, + 6 C r t  + i .hr,  + d p r t  + 2 q r , r - 1 *  + fvrr + Err*. 

(12) 

Here Err* denotes the rth component of the 10-vector tit*. 

The bootstrap parameter estimates A,*, 6*, . . . ,p can 
now be obtained from the (gls, 1) regression of q r r *  on 

This procedure was repeated 100 times. On each rep- 
etition, a new set of starred disturbances was generated, 
hence a new set of pseudo-data, and therefore a new set 
of starred parameter estimates. Columns 3 and 4 in Table 
1 show for each parameter the sample mean and sample 
standard deviation (SD) for these 100 starred estimates. 
These SD’s are the bootstrap estimates of variability in 
the parameter estimates. They are appreciably larger than 
the nominal SE’s. 

It will now be shown that the nominal SE’s are sub- 
stantially too small. To do the bootstrap, we have set up 
a fully defined simulation model, where the parameters 
and the distribution of the disturbances are all known. In 
this world, the variability of the (gls, 1) estimates was 
determined empirically, as reported in the SD column of 
Table 1. In .the same world, how good are the nominal 
standard errors’? The answer is that they are much too 
small, as is shown in Column 5 of Table 1. This column 
may be explained as follows. At each of the 100 repeti- 
tions, the nominal SE for each (gls, 1) estimate is com- 
puted using (8) on the starred data set. The root mean 
square of these SE’s is shown in the table. 

Take, for example, the coefficient d of the price term. 
In the simulation world of this experiment, the “real” 
variability of the (gls, 1) estimate for this parameter is 

C r r ,  h r r ,  P r r ,  q r , t - l * ,  and v r t -  

noted before: There are not enough data to estimate the 
parameters and the covariance matrix with any reason- 
able accuracy. Thus an asymptotic formula has been mis- 
used in a finite-sample situation. (In Table 1, we do not 
recommend comparing Columns 2 and 5; the underlying 
models have different parameters, and different error 
structures. We believe the comparison between Columns 
4 and 5 shows that Column 2 is too small; this is an in- 
ductive step.) 

The shapes of the bootstrap distributions may be of 
some interest. The coefficient estimates l i k e p  are close 
to normally distributed, as may be anticipated. A bit more 
surprising: the nominal SE’s are close to normal too, and 
not especially variable. Take value-added, for example. 
Let SEi be the nominal SE from the ith starred data set. 
A histogram for these 100 numbers is close to the normal 
curve, with mean .014 and an SD of .OM. 

A sidelight is the bias in the gls coefficient estimates. 
For a simple autoregression it is well known that the least 
squares coefficient estimates are biased (see Hurwicz 
1950). The estimates in the more complicated dynamic 
model considered here also exhibit significant bias, for a 
similar reason. Compare Columns 1 and 3 in Table 1. For 
instance, the coefficient f for  value-added was set to the 
estimated value .281 in the construction of the pseudo- 
data. However, the 100 coefficientsp had a sample av- 
erage of .310. The discrepancy is .029. A standard error 
for the discrepancy can be calculated from the standard 
deviation of t h e p  divided by the square root of the num- 
ber of replications, . 0 3 9 / a  = .0039. The t value is 
.029/.0039 = 7.4 on 99 degrees of freedom, so the bias 
is significant. The coefficient for the lag term is also Sig- 
nificantly biased; the remaining coefficients, less so. 
When the lag is removed from the model (l), the bias in 
the gls coefficient estimates subsides. The usual argument 
to show (gls, k) estimates are unbiased depends on the 
assumption that E has a symmetric distribution given the 
design matrix. When the lag term is dropped, this is ap- 
proximately so. 

More interesting for present purposes is that when the 
lag term is dropped, the conventional estimates of stan- 
dard errors are still too optimistic, by factors like those 
in Table 1. Thus the bias in the conventional asymptotics 
is not due to the autoregressive structure. Likewise, 
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Table 1 can be rerun using a multivariate Gaussian dis- 
tribution for the errors, with mean 0 and covariance ma- 
trix equal to the empirical covariance matrix 8, of the 
residuals. This covariance matrix is displayed in Table 2. 
Again, the results do not change much. Thus the bias in 
the conventional asymptotics is not due to the discrete- 
ness of the error distribution. On this score see Theil, 
Rosalsky, and Finke (1983). 

We also redid the simulation experiments, using Gaus- 
sian errors, eliminating the lag, and selectively removing 
the weather and price variables; we had 3, 6, and 10 re- 
gions; we‘had iid errors, as well as errors with covariance. 
The results were somewhat surprising: 

The condition number of the design matrix does not 
indicate the probable magnitude of the bias in the 
conventional standard errors. 
Decreasing the number of regions sometimes in- 
creased the bias. 
The change from correlated to iid errors also in- 
creased the bias. 

The quality of the bootstrap estimates of standard error 
will now be checked by a simulation experiment. We 
show that these estimates are much better than the con- 
ventional ones, but are still biased downwards. The de- 
tails may be a bit complicated, but the main idea is 
straightforward. We check the bootstrap by trying it out 
in a simulation world where we know the answers. Going 
back to Table 1, the SD column shows the “real” vari- 
ability in the (gls, 1) estimates, in the simulation world 
of the bootstrap. The RMS Nominal SE column shows 
the variability indicated by the conventional formulas. 
The last column in the table shows the variability indi- 
cated by the bootstrap; the procedure will now be de- 
scribed. 

The experiment involves a nested iteration: at the 
“outer loop” starred data sets are built up one after an- 
other and presented to the “inner loop” bootstrap for an 
estimate of the standard errors. Here are the details. The 
outer loop is just the bootstrap procedure described ear- 
lier: E l * ,  r j r t * ,  &*, and so on are as previously defined. 

Table 2. K, , the Interregional Covariance Matrix 
Estimated From the One-Step gls Residuals in 

Equation (9). Entries Have Been Scaled up by 76. 
The 70 x 10 Matrix Is Symmetric; Only the Upper 

Half Is Reported 

Let Err* be the residuals: 

err* = qrr* - a,* - bcrr* - E*hrt 

- 2 * ~ r t  - e * q r , r - l *  - f * v r r .  

Let &* be the 10-vector ( E l , [ * ,  . . . , tl0,,*) of residuals 
for year t .  Let p* be the empirical distribution of {&*: t 
= 1961, . . . , 1978). So p* will change on each pass 
through the outer loop. 

On each pass through the inner loop generate Er* *  for 
t = 1961, . . . , 1978 as 18 independent draws from p*. 
Let err** denote the rth component of E r * * .  Construct a 
doubly starred data set: qrr** = qr. l%o and for r = 1961, 
. . . , 1978, 
qrt** = iir* + &*crr  + t*h, ,  + d*prt + 8A*qr,t-l** 

+ p u r r  + € , I * * .  

Obtain the doubly starred parameter estimates a,**, &**, 
. . . , p* by the (gls, 1) regression of qrr**  on C r t ,  h r r ,  

prt, qr , t , - i ** ,  and V r t .  

The outer loop may be repeated to develop the distri- 
bution of these bootstrap standard errors. Column 6 of 
Table 1 summarizes an experiment with 100 passes 
through the outer loop, and at each pass there were 100 
passes through the inner loop. Column 6 gives the root 
mean square of the 100 bootstrap estimates for the stan- 
dard error, each such estimate being itself the standard 
deviation of 100 doubly starred estimates. Consider, for 
example, the coefficient d of the price term. Let i index 
the outer loop, and j index the inner loop. On pass i 
through the outer loop and pass j through the inner loop, 
a doubly starred parameter estimate a** is computed; call 
this value di j .  On pass i, the bootstrap standard error is 
the standard deviation of the 100 numbers {di,: j = 1, 
. . . , 100): call this SDi. Then the last column of Table 
1 reports 

/ I  100 

- SD; .022. dlL i = l  

This is the typical standard error for d estimated by the 
bootstrap method, in the simulation world. The “real” 
(gls, 1) parameter variability is displayed in Column 4 and 
is .028. Column 6 is uniformly smaller than Column 4, 
indicating the bias in the bootstrap procedure. But the 
bootstrap is closer to the mark than the conventional 
asymptotics, shown in Column 5 .  Indeed, the bootstrap 
is off by 20% to 30%; the conventional asymptotics, by 
factors ranging from 1.5 to 3. 

One problem, both for the bootstrap and for the con- 

1,184 ,831 ,643 ,650 ,905 .392 ,490 ,337 smaller than the disturbance term E, due to the effect of 
1.064 ,630 .594 ,672 ,420 ,491 .367 fitting. In some designs, for example, the standard regres- 

.580 .394 .‘05 .554 .363 .311 sion model, there is an easy fix, namely scaling up the 
1.906 ,824 :717 .257 residuals by [n/(n - P)]’’’. This fix is not appropriate 

2.031 1.186 1.087 1.008 ,942 1.064 1.359 ,881 .565 .695 ventional asymptotics, is that the residuals i tend to be 2.989 ,993 1.1 18 ,569 1.1 61 ,937 ,297 ,355 208 

1.302 ,433 ,0243 ,144 ,227 

1.567 ,367 -.125 here. Due to the interregional constraints, the bias in 2 
turns out to depend in a complicated way on the design 
matrix and 2,. However, the bootstrap can be used as a 

’.04’ -.0°7’ 
1.086 
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bias-correction device for 2, and this reduces the bias in 
the bootstrap SE’s to below 10%. 

5. SOME MATHEMATICS 

Why are the nominal SE’s so badly biased in RDFOR? 
The main reason is that the true g l s  estimator depends on 
8;  the approximate gls estimators replace 2 by an esti- 
mate e, and this source of error is ignored by the con- 
ventional asymptotics. More particularly: 

The conventional formula (XT$ - X)- is a concave 
function of 8, and this creates a downwards bias, 
which is severe when 2 is variable-even if $ were 
an unbiased estimate of S .  
In fact, the conventional estimate 2 for 8 is biased 
downward in RDFOR, because of the constraints. 

The object of this section is to give a mathematical treat- 
ment of the concavity issue, in settings much simpler than 
RDFOR. The bias in 3 will not be discussed here. 

Consider fust the one-way analysis of variance model 

Y,, = a + E,,, E(Err) = 0, var Err  = a:, 

where a is an unknown location parameter to be esti- 
mated; the E,, are independent for r = 1, . . . , R and t 
= 1, . . . , T ;  for each r ,  they are identically distributed, 
but this distribution may depend on r .  Suppose R 2 2 and 
T 2 2. When ul’, . . . , uR2 are known, the gls estimate 
for a is 

R 

YrlrJ,z 

c l/u,z 
(13) 

r =  1 
‘gls = R 

r =  1 

where Y, = (UT)  2:’ Yrr.  Of course, 

var 6tglS = 1 / [ Tlu:] . (14) 

If the u: are unknown, consider (13) and (14) with a: 
replaced by the unbiased estimate 

Namely, 

and 

This ixagls is a (gls, 1) estimate. And vPr is a variability 
estimate analogous to the conventional formula (8) con- 

sidered previously. The next theorem shows that the ran- 
dom variable v k  tends to be too small. This is a finite- 
sample result: asymptotically, gls and agls are equivalent. 

Theorem I .  If the are normally distributed, then 

var &-, > var &#is > E(v&). (17) 

That is, provided the errors are normal, the true varia- 
bility of must exceed the variability of and this 
in turn exceeds the expected value of v k .  
Proof. To verify the first inequality, notice that when 

the E,, are normally distributed, Y, and 6; are indepen- 
dent random variables. Condition on I?]’, . . . , t!iR2. 

Clearly, 

E(Yr I &I2, . . . , 6R’)  = a and 

var(Yr 1 &I2, . . . , &R2) = u?/T.  

Then the conditional minimum variance unbiased linear 
estimator for a is still the &as defined by (13). So with 
probability one, 

var(&-, I &I2, . . . , 6R‘ )  

> var(&, 1 &I2, . . . , &R’) = var ads. 
But 

var &=Is = E{var(&ds I . . . , eR2)} 
+ var{E(&ds I &I2, . . . ,&R’)} .  

The first term on the right is greater than var &ds. The 
second term is zero, since E(&,I, 1 &I’, . . . , 6~’) = a. 
This establishes the first inequality in (17). For the second 
inequality, 6: is an unbiased estimate of a:, and these 
variables are independent; also l/c?=l T / [ ,  is strictly 
concave in each of its arguments: now use Jensen’s in- 
equality. 

When the normality assumption is not satisfied, (17) 
may fail to hold. For example, set a = 0, R = 2, T = 
2, and let the erI be independent and identically distrib- 
uted with a common distribution p. Take p as a mixture 
of two normal distributions, 

p = (1 - q P o . 1  + q@o,rr2, 

where @o,rr2 is the normal distribution with mean 0 and 
variance u’, Thus p is symmetric and unimodal. Let q 
be small and u’ large so qu’ is moderately large. Then 

var GdS < var agls. 
In effect, &=lS is a trimmed mean. With this example, 
however, E(vAr) < var &.I,. We do not know what hap- 
pens in general. 

The next result is a fairly straightforward extension of 
Theorem 1 to the general multivariate model. To state the 
result, consider the model 

Yi = Xi C + for i  = 1 , .  . . , n, 
1 x 9  1 x p p x q  1 x q  

where Xi is nonrandom, and the coefficient matrix C will 
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be constrained to fall in the linear space A. Linear con- 
straints of this sort are common in econometric work; for 
example, components of C may be constrained to vanish. 
The Gaussian disturbances ~i have mean zero; they are 
independent and identically disturbed in i, but have an 
arbitrary positive definite covariance matrix cov(ei) = K. 
Suppose q 2 2, n 2 p + q,  and S = xrZl XiTXi is 
nonsingular. 

In this circumstance, unconstrained 01s and gls esti- 
mators for C coincide (see Schmidt 1976, p. 78, or Theil 
1971, p. 309); call them ko. Stack the q columns of ko 
to form a pq x 1 vector denoted by vec[ko]. The co- 
variance matrix of v e ~ [  ko] is K C3 S - ’, and 

( K g l  s-I)-l = K-18 s = [ : :  k2’S k22S ... k2qS : ]  

where kij  is the ij entry of K - ’ .  For a discussion, see 
Anderson (1958, Sec. 8.2.2). 

Let E j  = Yi - Xie0. Let 8 be the empirical covariance 
of the C i ,  scaled by n/n - p to be an unbiased estimate 
of K. Let kgls be the true gls estimator of C constrained 
to fall in A, with K known. Let kagls be the approximate 
gls estimator of C constrained to fall in A, with K un- 
known but estimated by 8. As usual, kgIs is obtained by 
projecting ko into A relative to K - ’  C3 S, while tds is 
obtained by projecting ko into A relative to k- ’ C3 S. The 
covariance matrix for kglS is a function of K, obtained as 
in Section 3; and the estimated covariance matrix cdv is 
obtained by substituting Ik for K. Suppose 01s and gls 
differ, when the constraints are imposed. 

Theorem 2. cov ed. > cov kglS > E(cBv), where M 
> N means M - N is nonnegative definite and M # N. 

This theorem is proved in much the way Theorem 1 is, 
because 8 and are independent; 8 is distributed like 
the empirical covariance matrix of n - p independent 
draws from a multivariate Gaussian distribution, with 
meaA 0 and covariance matrix K. In general, M - N need 
not be strictly positive definite. This is because for some 
contrasts 01s and gls may coincide, even though they dif- 
fer on other contrasts. For more general results, see 
Eaton (1983). 

The following inequality is used in proving Theorem 2 
(Ylvisaker 1964). 

Theorem 3. Let X be an n X p matrix and 8 a p x p 
positive definite matrix. Then (X‘8-I X)-I is a weakly 
concave function of 8. 

Arnold Zellner (private communication) has consid- 
ered the “seemingly unrelated” regression problem for 
two “regions” : 

k”S  k”S ... k’qS 

k q l S  kq2S ... kqqS 

where Y, is T x 1,  X, is T x k, nonrandom of full rank, 
f3, is k ,  x 1, and L, is T X 1.  He assumes XlTX2 = 0, 

E(E,) = 0, E(E,L,‘) = ursZT, with 8 = {a,} positive def- 
inite, and the E’S multivariate Gaussian. In this model, 
Zellner can compute the finite-sample covariqnce matrix 
for the approximate gls estimator; the asymptotic covar- 
iance matrix is biased downward, by (kl  + k2 + 2)/T. 
Srivastava and Dwivedi (1979) survey other such devel- 
opments in the estimation of seemingly unrelated regres- 
sions. The interregional constraints in models like 
RDFOR seem to make this sort of calculation difficult, 
but see Section 7. In the one-way analysis of variance 
model with two regions and uI2 = u22, we can compute 
the exact bias; it is 1/T. For three regions, or unequal 
regional variances, or unequal numbers of observations 
per region, our computation fails. 

6. COMPUTATIONAL DETAILS 

This section gives additional details about data, algo- 
rithms, and the stability of the Monte Carlo experiments. 
All of the computer work reported here was performed 
using the TROLL econometric modeling system running 
on an IBM 370/168 at M.I.T. The cost for the simple 
bootstrap experiments reported in this paper was $10. 
Validating the bootstrap was more expensive, about $120, 
but this procedure would not be routinely used in prac- 
tice. The SEDS data base is installed in the TROLL file 
system as a collection of single-precision data series. List- 
ings of the relevant data series and of the TROLL func- 
tions used to construct the divisia index and to aggregate 
to the 10 DOE regions are available on request. 

The bootstrap experiments were conducted within the 
BOOTMOD subsystem of TROLL; see Peters (1983a). 
In this program, numerical linear algebra used for 01s and 
gls fitting relies on the LINPACK library, described in 
Dongarra et al. (1979); double precision is maintained for 
all the fitting. Uniformly distributed pseudo-random num- 
bers are obtained from the McGill University random 
number package “Super-Duper,” described in Marsaglia, 
Ananthanarayanan, and Paul (1976). This random number 
generator combines a congruential sequence with a shift 
register procedure and has very high quality. The uniform 
variates are used to select at random with replacement 
from the eighteen 10-vectors of residuals. The seeds 
(1073,12345) were used for the experiments reported 
here. The results of Table 1 were replicated in an unre- 
ported experiment using the seeds (31415,14121). 

Turn now to the stability of the Monte Carlo experi- 
ments. The bootstrap SE’s obtained from the simulation 
experiments are random variables subject to sampling 
error. To get a rough idea of their stability, an approxi- 
mation to the variance of the bootstrap SE’s was calcu- 
lated. The approximation is developed as follows. Let X I ,  
. . . , X,, be independent and identically distributed ran- 
dom variables with mean and variance u2. Let e2 de- 
note the sample variance of the X’s 
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The object is to approximate var 6’. To first order, 

1 
n 

var 6’ A - var{(Xl - P ) ~ }  

1 
n = - p(x1 - P)4 - a41. 

This last expression may be estimated from the sample 
by 

Of course, 

sE(~’>  = V w j  
Finally, an approximate standard error for 6 is 

1 SB(62) 
SB(&) = -- 

2 6  

because 

%’ 2 SB(6.’) = 

For the bootstrap, identify Xi with the ith replicate of a 
starred parameter estimate, for example, A* in the ith 
starred data set. Then an estimate for the approximate 
variability of the bootstrap SE is easily calculated from 
(18-19), by accumulating fourth moments. 

Table 3 shows the bootstrap SE’s from Column 4 of 
Table 1. Alongside stand the values calculated from (19). 
These are in the natural units for comparison: Column 2 
gives a rough standard error for Column 1. For example, 
the bootstrap estimate for the SE off is .039 from Column 
4 of Table 1. This estimate is based on a sample of size 
100, namely, the bootstrap replications. How much does 

Table 3. Stability Assessment for the Bootstrap 
SE’s. Estimation Is by One-Step gls. There Are 100 

Bootstrap Replications 

Bootstrap SE Approximate SE 
(from Table 1) for Bootstrap SE 

a1 .54 ,046 
a2 5 5  .046 
a3 .55 ,046 
a4 .53 .046 
as .55 .047 
ae .53 ,046 
a-r .55 ,048 
as .55 .046 
a9 .51 ,044 
a10 .54 .046 

c.d.d. b .025 .0023 
h.d.d. C .052 ,0038 
price d .028 .0026 

lag e .042 .0024 
v.a. f .039 .0019 

Table 4. Bootstrap Results for a “Seemingly 
Unrelated Regression ”; RMS Across Ten Regions. 

There Are 100 Bootstrap Replications 

RMS Nominal SE RMS Sriv.-Dwiv. SE 
Bootstrap SD Bootstrap SD 

constant a .58 
c.d.d. b .52 
h.d.d. c .62 
price d .83 

v.a. f .68 

.71 

.64 

.77 

.98 

.80 

sampling error affect this estimate? The answer is given 
by the estimated approximate standard error of .0019, 
shown in Column 2 of Table 3; this is computed from (18- 
19). The entries in Column 2 are between 5% and 10% as 
large as those in Column 1. The uncertainties are not large 
enough to change any conclusions that have been drawn. 
An approximation for the variability of the RMS Nominal 
SE (Column 5 of Table 1) can be developed along similar 
lines, with similar results. 

7. ON A FORMULA OF SRIVASTAVA AND DWlVEDl 

To demonstrate the bias in the nominal SE’s very 
clearly, consider a model like (9) with no lag term, normal 
errors, and region-specific parameters. This is precisely 
in the form of a “seemingly unrelated regression prob- 
lem”; it is not a standard multivariate regression prob- 
lem, because, for example, the fuel price in region r does 
not appear in the equation for region s: as is usually said, 
“not all variables appear in all equations.” Srivastava and 
Dwivedi (1979, p. 18) give an asymptotic expansion for 
the SE’s, whose first term is the conventional “large sam- 
ple” formula, and whose second term is a “finite sample” 
correction. Table 4 shows the results of a bootstrap ex- 
periment in this context; for simplicity of presentation, 
the table gives the RMS of the indicated ratios across all 
10 regions. As can be seen, the large-sample formula is 
off by as much as a factor of about two, and the Srivas- 
tava-Dwivedi formula is only somewhat better. 
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