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Controversy in statistical analysis of functional
magnetic resonance imaging data
Emery N. Browna,b,1 and Marlene Behrmannc

To test the validity of statistical methods for fMRI data
analysis, Eklund et al. (1) used, for the first time, large-
scale experimental data rather than simulated data.
Using resting-state fMRI measurements to represent a
null hypothesis of no task-induced activation, the au-
thors compare familywise error rates for voxel-based
and cluster-based inferences for both parametric and
nonparametric methods. Eklund et al.’s study used
three fMRI statistical analysis packages. They found
that, for a target familywise error rate of 5%, the para-
metric methods gave invalid cluster-based inferences
and conservative voxel-based inferences.

Eklund et al. (1) attribute the invalid cluster-based
inferences to the incorrect assumption of squared ex-
ponential structure in the spatial autocorrelation func-
tion of the parametric models. The authors suggest
nonparametric methods as a more appropriate way
to achieve targeted error rates, and conclude that sta-
tistical methods for fMRI data analysis should be vali-
dated. In addition, Eklund et al. state that their findings
“question the validity of some 40,000 fMRI studies and
may have a large impact on the interpretation of neuro-
imaging results” (1). This sentence from the Signifi-
cance section of the original paper was picked up by
the press and yielded the alarming negative headline
that fMRI analyses produce incorrect results because of
a bug in a widely used data analysis package (2–4).
Eklund et al. revised their extrapolation regarding the
implication of their findings in a correction to their arti-
cle (5) and report that their analysis might apply to
3,500 rather than 40,000 fMRI studies (6). However,
before this revision was published, the original state-
ments created considerable debate about data analysis
and the accuracy of fMRI findings (2–4).

The overstatements of the original paper and the
subsequent media attention cast doubt on fMRI as a
technique for studying brain function, and possibly
even caused damage to the field of cognitive neuro-
science (2–4). In PNAS, Cox et al. (7) and Kessler et al. (8)
offer clarifications about the original paper and its re-
vision. Eklund et al. have added their rejoinder (9). Sev-
eral scientific points have now been mostly resolved.

The remaining question is: What else can be learned
from this controversy?

fMRI is a highly valued methodology for under-
standing brain function and its relationship to behavior.
During the last 25 y, significant scientific advances have
been made using this technique. To ensure continued
progress, fMRI experimentalists want to be assured that
the instruments, experimental protocols, and data
analysis paradigms have been vetted by experts and
work correctly. At the same time, experimentalists must
be well informed about the fMRI process, and have a
solid understanding of how to apply and interpret com-
monly used statistical methods (10–12). The ease of
analysis afforded by some of the software programs
belies the complexity of the methods. This ease of use
does not release experimentalists from their responsibil-
ity to validate findings using established statistical prin-
ciples (12, 13). Judicious use of nonparametric methods
can, as Eklund et al. (1) suggest, improve the current
analysis paradigm in certain cases. However, application
of nonparametric methods cannot be the universal so-
lution, nor did Eklund et al. suggest that it could be.

The current discussion shows that the validity of fMRI
data analysis paradigms has not been uniformly estab-
lished and needs continued in-depth investigation.
fMRI is a complex process that involves biophysics,
neuroananatomy, neurophysiology, and statistics (ex-
perimental design, statistical modeling, and data anal-
ysis). fMRI data have a low signal-to-noise ratio (14, 15).
As a consequence, all of the biophysics, neurophysiol-
ogy, and neuroanatomy that underlie fMRI should be
used to design experiments, formulate statistical mod-
els, and analyze the data to increase the signal-to-noise
ratio and information extraction. Achieving more ac-
curate fMRI data analyses is a challenging interdisciplinary
task that requires concerted collaborations among phys-
icists, statisticians, and neuroscientists who, together, can
question the current approaches more deeply and con-
struct more accurate analysis methods.

In an ideal fMRI statistical analysis, the relationships
among the voxels would take account of the spatial and
temporal properties of the experiment and the scanner
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thermal noise (16). The experiment’s spatial and temporal proper-
ties are dictated by the physiological changes (neural activity, blood
flow, and blood oxygenation levels) induced by the particular be-
havioral task and background physiological activity and anatomy
(white matter, gray matter, the ventricles, and blood vessels) of
the relevant brain regions. The ideal fMRI acquisition schemewould
be accompanied by a characterization of these spatial and temporal
processes so that the subsequent data analysis can correctly take
them into account (16). Improving fMRI statistical methods must
combine research to decipher the meaning/origins of the blood
oxygen level-dependent signal with characterizations of the spatio-
temporal properties of task-related activity, background physiolog-
ical activity, and scanner properties. Sharing data and methods
would greatly expedite validation (9).

BRAIN 2025, the report of the NIH Brain Initiative, recommends
fostering interdisciplinary collaborations among neuroscientists,
physicists, engineers, statisticians, and mathematicians to properly
collect, analyze, and interpret the data that result from the devel-
opment of new neuroscience tools (https://www.braininitiative.nih.

gov/2025/). The current exchange identifies fMRI as an existing tool
that is perfect for pursuing such a collaboration. A possible goal
could be to increase fMRI signal-to-noise ratios so that the tech-
nique can be used reliably to make inferences about an individual
subject in a given paradigm.

Developing statistical methods based on detailed modeling of
the fMRI process opens the door to using more direct, informative
inference paradigms based on estimated effect sizes, confidence
intervals, and Bayesian posterior assessments rather than more
indirect approaches based on significance tests and P values. Link-
ing statistical methodology development and fundamental fMRI
research is crucial for developing more accurate analysis methods,
attributing accurate scientific interpretations to results, and ensur-
ing the reliability and reproducibility of fMRI studies. These points
have been made before. However, their significance has perhaps
not been considered to the extent required.
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fMRI clustering and false-positive rates
Robert W. Coxa,1, Gang Chena, Daniel R. Glena, Richard C. Reynoldsa, and Paul A. Taylora

Recently, Eklund et al. (1) analyzed clustering methods
in standard fMRI packages: AFNI (which we maintain),
FSL, and SPM. They claim that (i ) false-positive rates
(FPRs) in traditional approaches are greatly inflated,
questioning the validity of “countless published fMRI
studies”; (ii ) nonparametric methods produce valid,
but slightly conservative, FPRs; (iii ) a common flawed
assumption is that the spatial autocorrelation function
(ACF) of fMRI noise is Gaussian-shaped; and (iv) a 15-y-
old bug in AFNI’s 3dClustSim significantly contributed
to producing “particularly high” FPRs compared with
other software. We repeated simulations from ref. 1
[Beijing_Zang data (2), cf. ref. 3) and comment on each
point briefly.

AFNI and 3dClustSim
Fig. 1 A–D compares results of the “buggy” and “fixed”
3dClustSim. For each simulation, the typical differ-
ence was small: ΔFPRK3− 5% at per-voxel P = 0.01
and K1− 2% for P = 0.001. The bug had only a
minor impact.

Figures 1 and 2 of ref. 1 actually show similar FPRs
for AFNI, FSL-OLS, and SPM: Most tests were in a
range of 20− 40% FPR at P = 0.01 and 5− 15% FPR at
P = 0.001 (nor did their famous 70% FPR come from
AFNI). The data given in the Results section of ref. 1
simply do not support the statement in the Discussion
section that AFNI had “particularly high” FPRs.

Smoothness
To test the effect of assuming a Gaussian ACF in fMRI
noise, an empirical “mixed ACF” allowing for longer
tails was computed from residuals (3). All FPRs (Fig. 1 E
and F) decreased. Block designs remained >5%, likely
reflecting dependence of the noise’s spatial smooth-
ness on temporal frequency. Heavy tails in spatial
smoothness indeed have significant consequences
for clustering.

Nonparametric Approach
A spatial model-free, nonparametric randomization ap-
proach was added to AFNI’s group-level GLM program,

3dttest++ (3). All FPRs (Fig. 1G andH) were within the
nominal confidence interval. Although this approach
shows promise (as in ref. 1), it may not be feasible to
generalize nonparametric permutations to compli-
cated covariate structures and models (e.g., com-
plex ANOVA, analysis of covariance, or linear mixed
effects) (4, 5).

Inflated FPRs
Several cases showed significant FPR inflation across
existing fMRI software within the testing framework of
ref. 1. However, deviations from nominal FPR were not
uniformly large and depended strongly on several
factors. Fig. 1 and figure 1 of ref. 1 show quite good
cluster results for stricter per-voxel P values (which ref.
6 found to be predominantly used in fMRI analyses)
and for event-related stimuli (emphasizing the impor-
tance of good experimental design): FPR inflation was
often K10% (Beijing) or K5% (Cambridge), affecting
only clusters with marginally significant volume.

We strongly disagree with Eklund et al.’s (1) sum-
mary statement: “Alarmingly, the parametric methods
can give a very high degree of false positives (up to
70%, compared with the nominal 5%).” For compari-
son, their own nonparametric method’s results actually
showed up to 40% FPR. When characterizing results,
medians or percentile ranges are generally more infor-
mative summary statistics than maxima. Looking back-
ward, the typical ranges showmuch smaller FPR inflation
than what had been highlighted, and looking forward
they provide useful suggestions for experimental de-
sign and analyses (lower voxelwise P, event-related
paradigms, etc.). By concentrating on the highest
observed FPRs, the conclusions of Eklund et al. (1) are
unnecessarily alarmist.
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Fig. 1. FPRs for various software scenarios, with 1,000 two-sample one-sided t-tests (as in ref. 1; cf. ref. 3 for more details) using 20 subjects’ data
in each sample. For “buggy” (A and B) and “fixed” (C and D), cluster-size thresholds were selected using the Gaussian shape model with the
FWHMbeing themedian of the 40 individual subjects’ values: “buggy” via 3dClustSim before the bug fix, “fixed” via 3dClustSim after the bug fix.
For “mixed ACF” (E and F), the cluster-size threshold was selected using a non-Gaussian ACF model allowing for heavy tails (3). For “nonparam”

(G andH), 3dttest++was used to perform spatial model-free, nonparametric permutation testing (3); paired, two-sided, and tests with covariates
gave similar results. Two different per-voxel P-value thresholds are shown. The black line shows the nominal 5% FPR (out of 1,000 trials), and the
gray band shows its binomial 95% confidence interval, 3.65–6.35%. As in ref. 1, different smoothing values were tested (4–10 mm), and four test
designs were used: B1 = 10-s block; B2 = 30-s block; E1 = regular event-related; E2 = randomized event-related.
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Reevaluating “cluster failure” in fMRI using
nonparametric control of the false discovery rate
Daniel Kesslera,1,2, Mike Angstadta,1, and Chandra S. Sripadaa,1

In a substantial contribution to the fMRI field, Eklund
et al. (1) use nonparametric methods to demonstrate
that random field theory (RFT)-based familywise error
(FWE) correction for cluster inference does not control
errors appropriately, and this discrepancy is more pro-
nounced for lenient cluster-defining thresholds (CDT).
Moreover, they point to violations of RFT assumptions
as the culprit for this discrepancy.

Given these results, how should we interpret existing
fMRI literature that used RFT-based, FWE-corrected
P values (pRFT-FWE)? To suggest caution is reasonable but
incomplete; we require concrete, quantitative guidelines
to enable appropriate calibration of skepticism.

Here, we undertake an initial attempt at such guid-
ance. We heed Eklund et al.’s (1) warning and prefer
nonparametric null distributions to RFT. However, we
focus on the false discovery rate (FDR) (2), which is a
more natural target for multiple testing control [as rec-
ognized by Nichols and coworkers in previous work (3)]:
A researcher is naturally more concerned with the pro-
portion of reported clusters that are false positives
(FDR) than whether any are false positives (FWE). Thus,
a reader considering a table of clusters significant under
RFT–FWE might ask which of these results would have
survived had the study instead used a nonparametric
FDR-based method.

We address this question using the same task fMRI
data (4, 5) analyzed by Eklund et al. (1) (available from
openfMRI, ref. 6).

For each contrast, we generate 5,000 realizations
of the data through sign flipping (code, data, and
extended methods: https://github.com/mangstad/
FDR_permutations). To obtain a null distribution of
cluster extents (for an arbitrary cluster) we combine nor-
malized frequencies of extents at each realization. This

distribution is used to assign uncorrected P values to
each observed cluster. We next submit the vector of un-
corrected P values for each contrast to Benjamini and
Hochberg’s (2) FDR procedure with αFDR = .05 (cf. ref. 7
for a parametric implementation of clusterwise FDR).

We compare pRFT-FWE values toqFDR values and note
whether they survive FDR correction under αFDR = .05.
We generate separate plots for this analysis conducted
at CDT = {0.001, 0.01}.

Based on our results (Fig. 1), we suggest nearly all
clusters identified as significant when using CDT =
0.001 and RFT–FWE correction are trustworthy by the
nonparametric FDR benchmark. For clusters identified
as significant with CDT= 0.01 and RFT–FWE correction,
the guidance depends on the corrected P value: Clus-
ters with pRFT-FWE < .00001 seem consistently trustwor-
thy by the nonparametric FDR benchmark, whereas
clusters above this value are not reliably trustworthy.

These findings have promising implications for past
fMRI studies using RFT-based cluster-level inference
that used CDT = 0.001, estimated to be upward of
8,500 reports (8, 9). Although the story is mixed for
CDT = 0.01 (used in ∼3,500 studies) (8, 9), our findings
suggest that not all such previously reported clusters
are unreliable. We identify 0.00001 as a potential cutoff
for trustworthiness.

Our results provide more granular guidance on the
relationship between pRFT-FWE and trustworthiness of
results. A more comprehensive examination of fMRI
task datasets that used RFT-based FWE can further
refine this guidance.

Acknowledgments
We thank Anders Eklund and Thomas Nichols for providing us
with processed data and for very helpful comments on earlier
versions of this letter.

aDepartment of Psychiatry, University of Michigan, Ann Arbor, MI 48109
Author contributions: D.K., M.A., and C.S.S. designed research, performed research, analyzed data, and wrote the paper.
The authors declare no conflict of interest.
1D.K., M.A., and C.S.S. contributed equally to this work.
2To whom correspondence should be addressed. Email: kesslerd@umich.edu.

E3372–E3373 | PNAS | April 25, 2017 | vol. 114 | no. 17 www.pnas.org/cgi/doi/10.1073/pnas.1614502114

L
E
T
T
E
R

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

F
eb

ru
ar

y 
3,

 2
02

0 

https://github.com/mangstad/FDR_permutations
https://github.com/mangstad/FDR_permutations
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1614502114&domain=pdf
mailto:kesslerd@umich.edu
www.pnas.org/cgi/doi/10.1073/pnas.1614502114


1 Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. ProcNatl Acad Sci USA 113:7900–7905.
Erratum in Proc Natl Acad Sci USA 113:E4929.

2 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300.
3 Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878.
4 Duncan KJ, Pattamadilok C, Knierim I, Devlin JT (2009) Consistency and variability in functional localisers. Neuroimage 46:1018–1026.
5 Tom SM, Fox CR, Trepel C, Poldrack RA (2007) The neural basis of loss aversion in decision-making under risk. Science 315:515–518.
6 Poldrack RA, et al. (2013) Toward open sharing of task-based fMRI data: The OpenfMRI project. Front Neuroinform 7:12.
7 Chumbley JR, Friston KJ (2009) False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage 44:62–70.
8 Nichols TE (2016) Bibliometrics of cluster inference. Available at blogs.warwick.ac.uk/nichols/entry/bibliometrics_of_cluster/.
9 Woo CW, Krishnan A, Wager TD (2014) Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. Neuroimage 91:412–419.

Fig. 1. Assessing RFT-based FWE using an FDR benchmark. We submitted the same task data analyzed by Eklund et al. (1, 5, 6) to nonparametric
clusterwise FDR analysis. For CDT= .001 (Top), RFT-based FWE approximates effective FDR control with αFDR = .05. For CDT= .01 (Bottom),
only clusters with pRFT-FWE ≤ .00001 reliably survived correction at αFDR = .05.
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REPLY TO BROWN AND BEHRMANN, COX ET AL., AND KESSLER ET AL.:

Data and code sharing is the way forward for fMRI
Anders Eklunda,b,c,1, Thomas E. Nicholsd,e, and Hans Knutssona,c

We are glad that our paper (1) has generated intense
discussions in the fMRI field (2–4), on how to analyze fMRI
data, and how to correct for multiple comparisons. The
goal of the paper was not to disparage any specific fMRI
software, but to point out that parametric statistical
methods are based on a number of assumptions that
are not always valid for fMRI data, and that nonparametric
statistical methods (5) are a good alternative. Through
AFNI’s introduction of nonparametric statistics in the
function 3dttest++ (3, 6), the three most common fMRI
softwares now all support nonparametric group inference
[SPM through the toolbox SnPM (www2.warwick.ac.uk/
fac/sci/statistics/staff/academic-research/nichols/software/
snpm), and FSL through the function randomise].

Cox et al. (3) correctly point out that the bug in the
AFNI function 3dClustSim only had a minor impact on
the false-positive rate (FPR). This was also covered in
our original paper (1): “We note that FWE [familywise
error] rates are lower with the bug-fixed 3dClustSim
function. As an example, the updated function reduces
the degree of false positives from 31.0% to 27.1% for a
CDT [cluster-defining threshold] of P = 0.01, and from
11.5% to 8.6% for a CDT of P = 0.001.” It is unfortunate
that several media outlets focused extensively on this
bug, when themain problemwas found to be violations
of the assumptions in the statistical models.

The statement that AFNI had particularly high FPRs,
compared with SPM and FSL, is for example supported
by figure S1A in our original paper (1) (Beijing data,
two-sample t test with 20 subjects, CDT P = 0.01). For
8-mm smoothing, the FPR for AFNI is 23–31%, whereas
it is 13–20% for SPM and 14–18% for FSL OLS. To un-
derstand the higher FPRs, we investigated how the
3dClustSim function works, which eventually led us to
finding the bug in 3dClustSim. However, we agree that
AFNI did not produce higher FPRs for all parameter
combinations.

The 70% FPR comes from figure S9C in our original
report (1) (Oulu data, one-sample t test with 40 subjects,
CDT P = 0.01, FSL OLS with 4-mm smoothing) and not,
as some readers believed, from figure 2 in the original
paper (1), which shows results for the ad hoc clustering

approach. The main reason for using the highest ob-
served FPR was to give the reader an idea of how se-
vere the problem can be, but we agree that it led to a
too pessimistic view.

As pointed out by Cox et al. (3), the nonparametric
approach also performed suboptimal for the one-
sample t test, especially for the Oulu data. As discussed
in our paper (1), the one-sample t test has an assump-
tion of symmetrically distributed errors that can be vio-
lated by outliers in small samples. Our current research
is therefore focused on how to improve the nonpara-
metric test for one-sample t tests. Regarding the flexi-
bility of the permutation testing, recent work has shown
that virtually any regression model with independent
errors can be accommodated (5), and even longitudinal
and repeated-measures data can be analyzed with a
related bootstrap approach (7).

Kessler et al. (4) extend our evaluations to (non-
parametric) cluster-based false-discovery rate (FDR) on-
task data, to better understand how existing parametric
cluster P values based on the FWE should be inter-
preted. For the problematic CDT of P = 0.01, Kessler
et al. conclude that a cluster FWE-corrected P value
smaller than P = 0.00001 survives FDR correction at
q = 0.05. Indeed, this information makes it easier to
interpret existing results in the fMRI literature, but it
should be noted that it is not straightforward to gener-
alize these results to other studies. For example, the
fMRI software used, theMR sequence used (EPI or mul-
tiband), the degree of smoothing, and the number of
subjects are all likely to affect this cut-off. The only way
to retrospectively evaluate existing results is, in our
opinion, to reanalyze the original fMRI data [e.g., made
available through OpenfMRI (8)] or to apply a new
threshold to the statistical maps [e.g., made available
through NeuroVault (9)].

Finally, we would like to note the importance of data
and code sharing. Cox et al. (3, 6) replicated and extended
our findings with the same open fMRI data (10) as in our
original paper (1) (and made use of our processing scripts
available on github, https://github.com/wanderine/
ParametricMultisubjectfMRI), ultimately resulting in
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improvements to the AFNI software. Furthermore, we never would
have been able to identify the bug in 3dClustSim were AFNI not
open-source software. Kessler et al. (4) also used the same task data-
sets from OpenfMRI (8) to find the empirical cluster FDR. Together,
these examples show the importance of data sharing (11, 12), open-
source software (13), code sharing (14, 15), and reproducibility (16).
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