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In this lecture, we’ll look at a case study on fine-mapping an eQTL, and determining where
there is one or two eQTL in a region.

This is a case-study in the analysis of expression QTL (eQTL), where you’re looking for loci
that affect the level of mRNA of genes (gene expression).




QTL mapping
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Our goal is to identify quantitative trait loci (QTL): regions of the genome for which genotype
is associated with the phenotype.

The basic analysis is to consider each locus, one at a time, split the mice into the three
genotype groups, and perform analysis of variance.

We then plot a test statistic that indicates the strength of the genotype-phenotype asso-
ciation. For historical reasons, we calculate a LOD score as the test statistic: the logig
likelihood ratio comparing the hypothesis that there’s a QTL at that position to the null
hypothesis of no QTL anywhere.

Large LOD scores indicate evidence for QTL and correspond to there being a difference in
the phenotype average for the three genotype groups.

But a big disappointment in QTL analysis has been that the regions to which we can map
them can be quite large and so include lots of potential candidate genes.




DNA — RNA — protein — phenotype

One approach to try to speed the process is to look at intermediate, molecular phenotypes.

The “central dogman” of molecular biology is that DNA is transcribed into RNA which is
then translated into protein. And ultimately this is what leads to the observerable pheno-

types.

So there’s been a big effort to measure the RNA level of genes, called “gene expression.”
Mapping loci that affect gene expression might help us to identify the loci that affect clinical
traits.

One can also look at protein levels, and that might be more valuable, but it turns out to be
much easier to measure RNA.




Gene expression microarrays

This is a picture of a pile of gene expression microarrays, which had classically been used to
measure mRNA.

In collaboration with Alan Attie, we’ve been studying a B6 x BTBR mouse intercross, with all
mice knocked out for leptin (and so obese), in order to understand obesity-induced diabetes.

There are 500 intercross mice, phenotyped at a large number of clinical traits, and also with
gene expression microarray data on 6 tissues. These were custom two-color Agilent arrays.

In each tissue in each mouse, we measured the mRNA level in each of the 30,000 genes.

We're interested in identifying genes that control the expression of other genes.




eQTL results
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This figure shows the basic result of single-QTL genome scan for each expression trait, one
at a time, in pancreatic islets. Each dot is an inferred QTL. The y-axis is the location of
the corresponding gene, and the x-axis is the location of the QTL.

We see a prominent diagonal, of local-eQTL, where the mRNA level for a gene is affected
by a QTL right at the gene. There are also several prominent vertical bands: “trans-
eQTL hotspots” where genotype at a give region is associated with the mRNA expression
of numerous genes across the genome.




eQTL results
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Here are the results for all six tissues.

There are numerous “trans-eQTL hotspots” (where genotype at a give region is associated
with the mRNA expression of numerous genes across the genome). Some of these trans-

eQTL hotspots are specific to a given tissue (e.g. islet chr 6) and some are seen in many
tissues (e.g. chr 17).

We seek to fine-map these trans-eQTL hotspots, and to determine whether they involve one
or multiple eQTL.




Chr 6
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I'm particularly interested in the locus on chromosome 6, which affects like 8% of genes in

pancreatic islets, but is entirely specific to islets.

Each dot corresponds to the peak LOD score of a single expression trait: the LOD score vs
the position at which it occurred. The blue dots are for expression traits that exist on other
chromosomes; the brown dots are for expression traits that reside on chromosome 6.

The local-eQTL are similar for the six tissues, but the hotspot on distal chr 6 in islets is
seen only in islets.

Assuming this is a single gene, how can we define a precise interval for the gene? We’d like

to refine the localization and actually determine the responsible gene.




Consider the non-recombinants...

QTL

Our key strategy is to focus on the non-recombinant mice (that is, those mice that have no
recombination event in the region of this eQTL). For these mice, we know their QTL geno-
type. We can use this to establish the distribution of the multivariate expression phenotype
in each genotype group.




Islet c6 PCs
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We focused on the 177 microarray probes that are not on chromosome 6 and that map to
this region with LOD score > 100.

We exclude expression traits that reside on chromosome 6, thinking that they might be
affected by separate, local-eQTL rather than the present locus of interest.

We first focus on mice that had no recombination event in the 10 ¢cM interval surrounding
the eQTL, apply principal components analysis, and make a scatter plot of the first two
principal components. Each dot is a mouse. There are three clear clusters which correspond
to the three possible QTL genotypes.

There were 74 mice that showed a recombination event in the interval; they all fall clearly
into one of the three clusters. We can infer their eQTL genotype based on the cluster into
which they fall.

In this manner, the multivariate gene expression phenotype is converted to a co-dominant
Mendelian phenotype.




Fine-mapping the c6 locus
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Using these inferred eQTL genotypes, we can locate the QTL to a single 3.5 Mbp interval
between two markers (top panel). There are 29 mice (highlighted) that showed a recombi-
nation event in that interval.

Genotyping an additional four markers in the interval in 28/29 of these mice (for one mouse,
DNA was not available) reduced the QTL interval to 900 kbp (lower-left panel). There were
eight mice (highlighted) that showed a recombination event in this interval.

Additional genotyping of these eight mice reduced the QTL interval to 298 kbp. This interval
contains just three genes. Additional genotyping cannot exclude any of these genes.

Our best candidate is Slcola6, which is a transporter of bile acids, some of which can have
large effect on gene expression. B6 and BTBR show a number of coding variants in this
gene, one of which is plausibly functional. Bruno Hagenbuch at the University of Kansas
Medical Center has shown that the two variants differ in activity, but we’ve not completely
proven that Slcola6 is responsible for the huge expression difference in pancreatic islets.




Is it one QTL?

11

We now turn to the “dissection” part of the talk.

That chromosome 6 eQTL for islets looked like a single gene, but how can we tell? We’ve
developed a number of graphical diagnostics, plus a formal statistical test of one vs two QTL
for a trans-eQTL hotspot.




Consider the QTL effects...
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First, let’s look at the effects of the QTL on the expression traits that map to the region.

The additive effect (a) is half the difference between the two homozygotes’ phenotype av-
erages. The dominance effect (d) is the diffence between the heterozygote average and the
midpoint between the two homozygotes.




eQTL effects: Islet c6
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Here’s the islet ¢6 locus we’ve been studying. On the left is a plot of LOD score vs QTL
position; we’re using a signed LOD score, with the sign taken from the estimated additive
effect of the QTL on the corresponding expression trait. (Each dot is a single expression

trait.)

On the right is a plot of the estimated dominance effect vs the estimated additive effect.

The QTL looks to be additive for all expression traits, and there are approximately equal
numbers of traits where the B6 allele is associated with increased and decreased expression.




eQTL effects: Kidney ¢13
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Here’s a trans-eQTL hotspot on chr 13, for kidney. We're considering a pretty wide interval
here, but the pattern is interesting and instructive.

There looks to be a QTL at about 57 cM, and then another at about 68 cM. For the proximal
locus, the B6 allele is associated with decreased expression for all traits. The distal locus
has the opposite pattern, though there are some in each direction.

In the right panel, we see that there are a group of traits where the BTBR allele is dominant,
and from the combination of the two figures, we can infer that these correspond to the
proximal locus. At the distal locus, the B6 allele is dominant.

That the two loci show such distinctive inheritance patterns is strong evidence that they are
in fact distinct.

Of course, they’re rather far apart, and so we’d probably come to this conclusion anyway.
But imagine the case that these were sitting just 5 ¢cM apart. Consideration of the QTL
effects could be useful.




eQTL effects: Islet c2
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Here’s another example: islet, chr 2. This is a bit of a muddle.

Note the additive effects, in both directions.




eQTL effects: Liver c17
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Here’s liver, chr 17. Again, not clear evidence for two QTL. Here, BTBR looks to be
dominant, but again with effects in both directions.




eQTL effects: Adipose ¢10
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One last example: adipose, chr 10. Again, no clear evidence for two QTL, but note the two

expression traits with large effects, mapping to 54 cM.

Again, BTBR looks to be dominant, and again with effects in both directions.




Compare the recombinants
and non-recombinants.
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A second strategy is to compare the recombinants and non-recombinants, much as we’d done
in fine-mapping the islet chr 6 locus.

We can use the non-recombinants to establish the relationship between eQTL genotype and
the multivariate expression phenotype. If the effects are strong, we should be able to discern
three clear clusters. If there’s a single QTL, the recombinants should fit clearly within these
three clusters.




LDA & PCA: Islet c6
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Here’s the islet chr 6 locus again.

On the left, we use linear discriminant analysis to form a classifier of genotype based on
expression phenotype, using just the non-recombinant mice. On the right, we use principal
component analysis, again just with the non-recombinant mice.

We look to see whether the recombinant mice fall into the clusters defined by the non-
recombinant mice.

In this case, the recombinants look just like the non-recombinants, which is consistent with
there being a single eQTL.

Note that the PCA figure (on the right) is a bit different than the one I'd shown earlier.

We’re focusing on the top 50 expression traits here; before we looked at all traits mapping
with LOD > 100.




LDA & PCA: Islet c2
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Here’s islet chr 2. The LDA plot shows distinct clusters for the non-recombinant mice. PCA
is a bit of a mess. As we’ll see, the PCA figure is always a bit of a mess. We prefer LDA

for this.

Most interesting: the recombinant mice (in yellow) don’t all fall within the clusters defined
by the non-recombinant mice. This is good evidence for there being multiple QTL in the

region.




LDA & PCA: Kidney ¢c13
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Here’s kidney chr 13.

The three clusters are not so clearly defined. The recombinants don’t look too different from
the non-recombinants, but it’s all a bit of a mess. These ideas aren’t always helpful.




LDA & PCA: Liver c17
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Here’s liver chr 17. It’s not as clear as the previous example, but it does seem that the
recombinant mice are different from the non-recombinant mice.




LDA & PCA: Adipose c10

LDA PCA
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Here’s adipose chr 10. The non-recombinant clusters are quite tight, and some of the re-
combinant mice fall outside of those clusters, indicating multiple QTL.




Formal test for 1 vs 2 QTL

» Consider a set of traits mapping to common eQTL

» Multivariate QTL analysis with 1 or 2 QTL
» With 2-QTL model, each trait affected by one or the other QTL

— Order traits by estimated QTL location when considered separately

— Consider cut points of the list, assign first group to one QTL and second group
to other.

» P-value: parametric bootstrap or stratified permutation

24

As a formal test of whether a trans-eQTL hotspot is due to one or multiple QTL, we use
multivariate QTL analysis with one- and two-QTL models. In the two-QTL model, each
expression trait is affected by one or the other QTL.

A key technical difficulty is that the two-QTL model requires consideration of all possible
partitions of expression traits between the two QTL. As an approximation, we sort the
traits by their estimated QTL locations, when considered individually, and then consider
only cut-points on this list: p—1 partitions rather than 2P~!. For each cut-point, we perform
a two-dimensional scan for the pair of QTL locations.

We use a parametric bootstrap (simulate data from the estimated single-QTL model) or a
stratified permutation test (permute mice within strata defined by genotypes at the esti-
mated QTL location under the single-QTL model).




1 vs 2 QTL: Kidney ¢13
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I’ll start with a locus with clear evidence for two QTL.

On the left: The blue and red curves are LOD profiles for the location of the two QTL
(for the split that gave the best fit): slices through the 2d LOD surface, keeping the other
QTL location fixed. The black curve is the LOD profile for the single-QTL model. The
dots at the bottom are the estimated QTL locations for the expression traits, considered
individually. The triangles at the bottom are the estimated locations of the two QTL, under
the two-QTL model.

On the right: the difference between the LOD score for the two-QTL model for a given
cut-point and that for the single-QTL model, for each cut point.

There’s very strong evidence for two QTL here (LOD near 40), and a clear inference of
which expression traits are affected by the left and the right QTL.
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Here’s the islet chromosome 6 locus. The two-QTL models are never much better than the
single-QTL better. We’d conclude that there’s a single QTL.




1 vs 2 QTL: Islet c2
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Here’s islet chromosome 2. Again, very strong evidence for two QTL. It would be interesting
to split off the proximal locus and study the distal locus on its own: it’s likely that we’ll
find evidence for three QTL in this region.




1 vs 2 QTL: Liver c17
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Liver chromosome 7: good evidence for two QTL, but it’s splitting off just the first expression
trait. We should omit this one and look for evidence for multiple QTL among the rest. The
high LOD differences for the split at 23 suggests there would still be evidence for multiple
QTL, among those traits.




1 vs 2 QTL: Adipose ¢c10
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Last one: good evidence for two QTL, but it’s pulling off just a couple of expression traits.

Again, it seems we might use a more focused interval.

There is, of course, room for improvement in this method. I think the key issue is how
to pick which set of expression traits to focus on. The results are quite dependent on this
choice. Here we’ve been picking out a QTL interval in a relatively arbitray way and then
choosing the 50 traits that map to that region with the largest LOD score.




Summary

» Fine-mapping a trans-eQTL hotspot
— Consider the non-recombinants
— Predict QTL genotype of recombinants
— Mendelian trait
— Fine-map by traditional means

» Large-effect locus on chr 6
— Affects expression of ~8% of genes

— Effects specific to pancreatic islets
— Looks to be Sico1a6

» Dissecting a trans-eQTL hotspot
— Sign of eQTL effect
— Degree of dominance
— Compare recombinants and non-recombinants
— Formal statistical test
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It’s always good to include a summary slide.
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Here are the two papers on the work.




