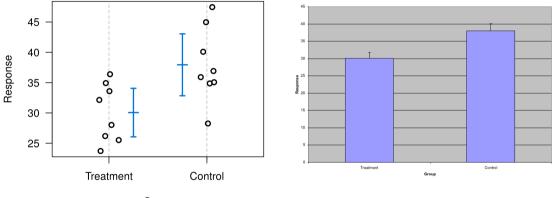
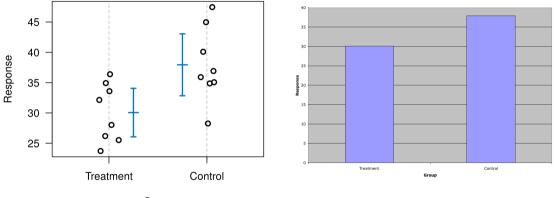
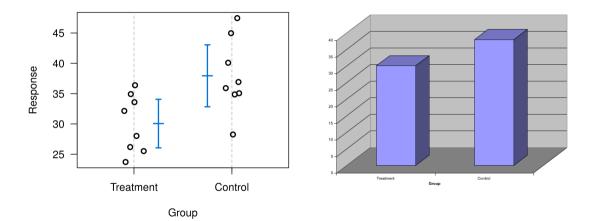
Data visualization

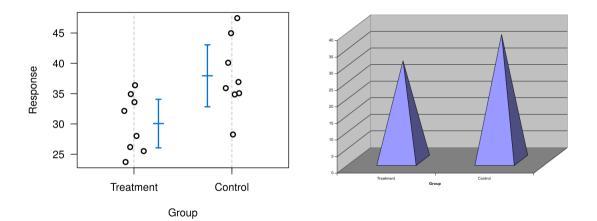

Karl Broman

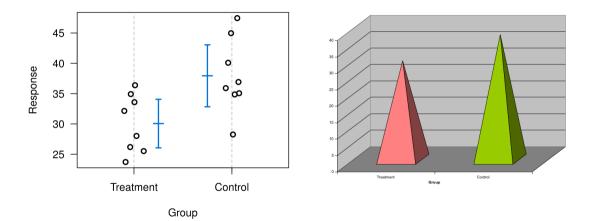
Biostatistics & Medical Informatics, UW-Madison

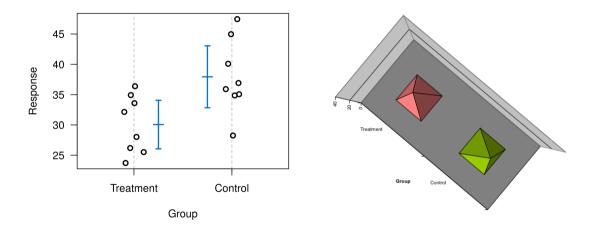

kbroman.org github.com/kbroman @kwbroman Course web: kbroman.org/AdvData

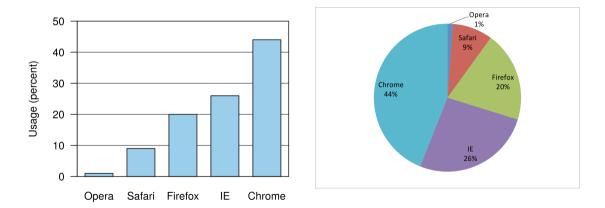
Displaying data well

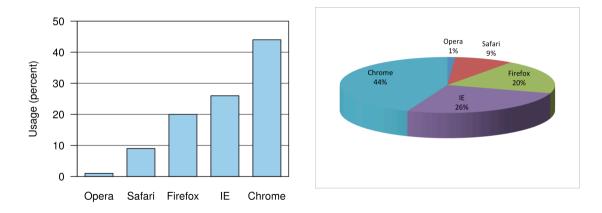

- ► Be accurate and clear.
- ► Let the data speak.
 - Show as much information as possible, taking care not to obscure the message.
- Science not sales.
 - Avoid unnecessary frills (esp. gratuitous 3d).
- ► In tables, every digit should be meaningful. Don't drop ending 0's.

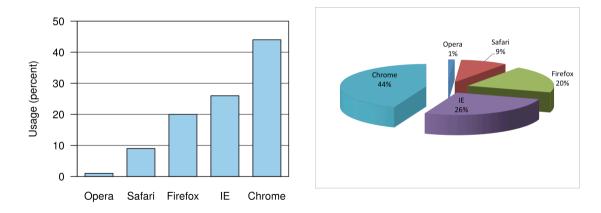


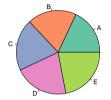


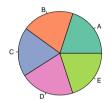


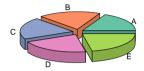


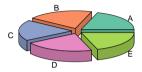


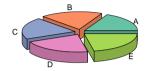


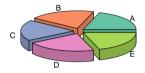


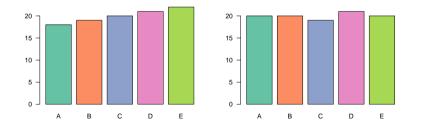


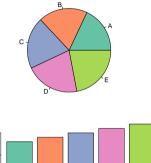










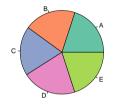

20

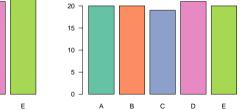
15

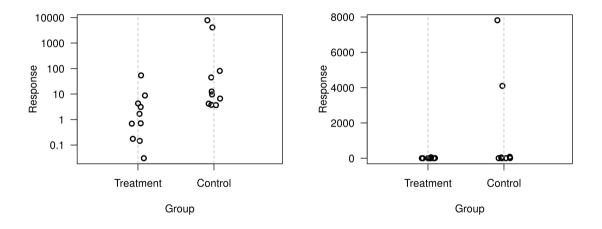
10

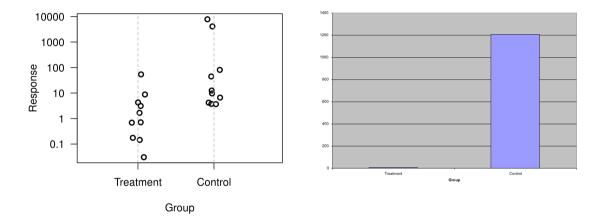
5

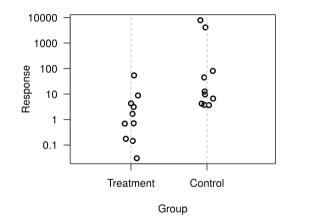
0

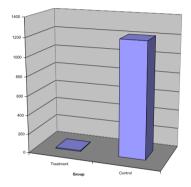


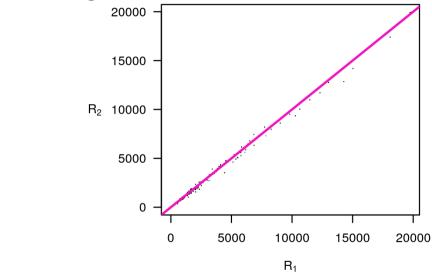

в

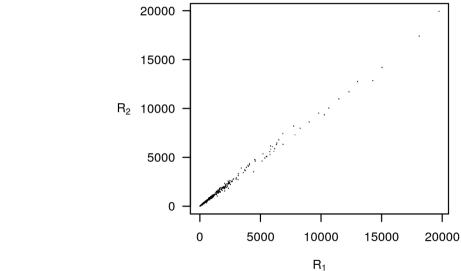

А

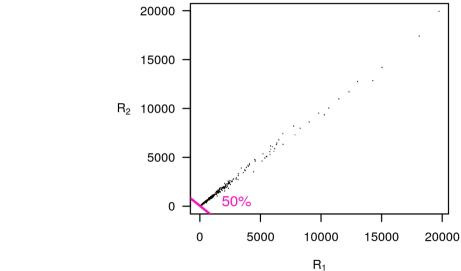

С

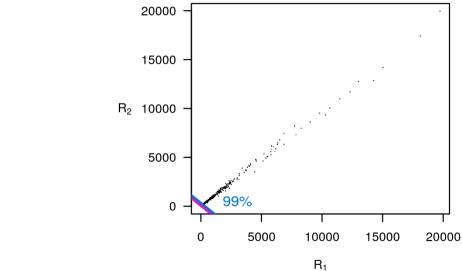

D

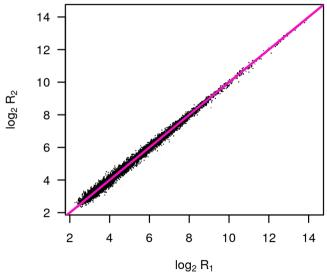


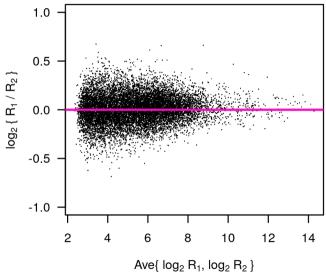


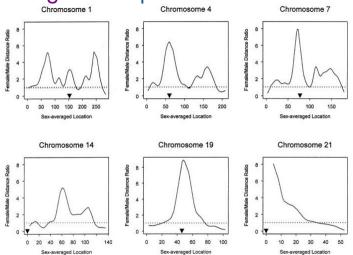




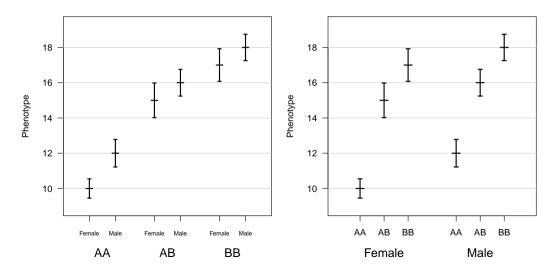




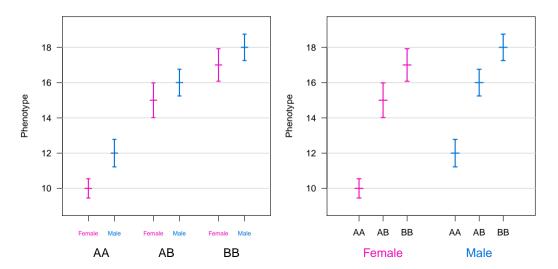




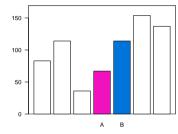
Consider differences

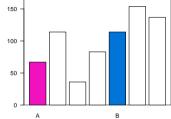

Another "take logs" example

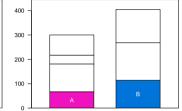
Broman et al., Am J Hum Genet 63:861-869, 1998, Fig. 1

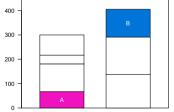

Ease comparisons

(things to be compared should be adjacent)

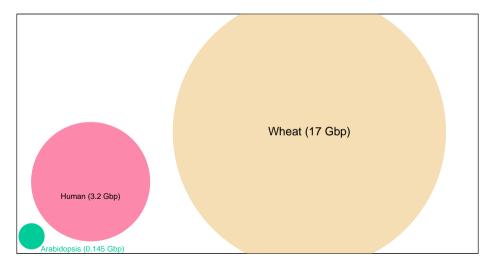



Ease comparisons

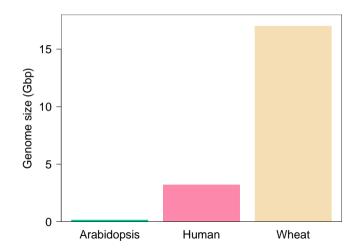

(add a bit of color)



Which comparison is easiest?


Don't distort the quantities

(value \propto radius)


Don't distort the quantities

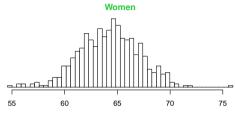
(value \propto area)

Don't use areas at all

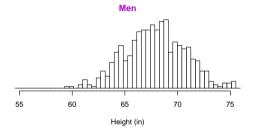
(value \propto height)

Encoding data

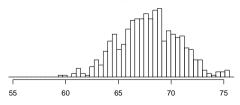
Quantities

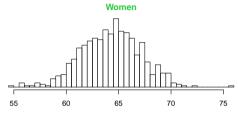

- Position
- ► Length
- ► Angle
- Area
- ► Luminance (light/dark)
- ► Chroma (amount of color)

Categories

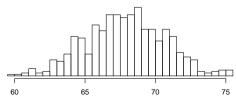

- ► Shape
- ► Hue (which color)
- ► Texture
- Width

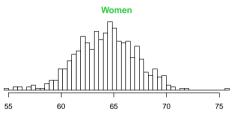
Ease comparisons


(align axes)

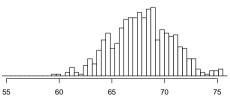


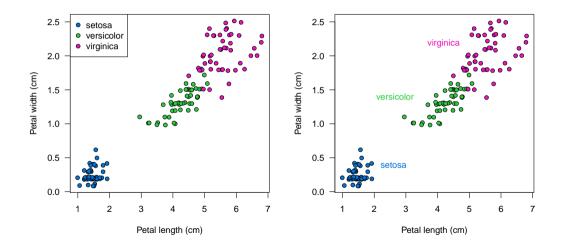
Height (in)


Ease comparisons

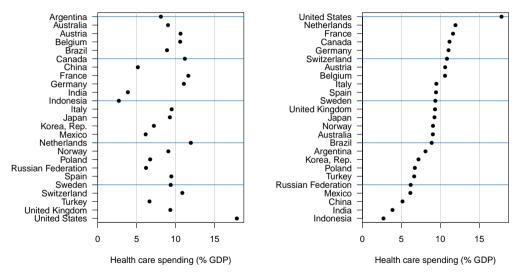

(use common axes)

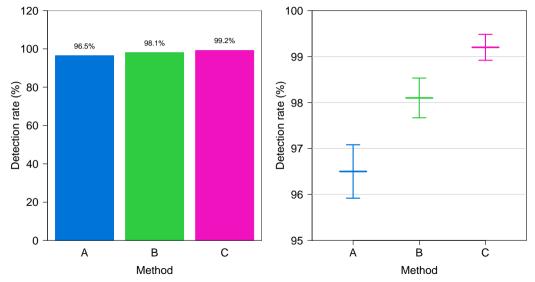
Height (in)





Height (in)




Use labels not legends

Don't sort alphabetically

Must you include 0?

A bad table

	b/c = 10.0		b/	b/c = 10.0		b/c = 100.0	
N	r^{\star}	G	r^{\star}	G	r^{\star}	G	
3	2	0.2	2	2.225	2	22.47499	
4	2 (0.26333	2	2.88833	2	29.13832	
5	2 (0.32333	3	3.54167	3	35.79166	
6	3 (0.38267	3	4.23767	3	42.78764	
7	3	0.446	3	4.901	3	49.45097	
8	3 (0.50743	4	5.5765	4	56.33005	
9	3 (0.56743	4	6.26025	4	63.20129	
10	4 (0.62948	4	6.92358	4	69.86462	

Fewer digits

	b/c = 10.0		b/c = 10.0		b/c = 100.0	
N	r^{\star}	G	r^{\star}	G	r^{\star}	G
3	2	0.20	2	2.2	2	22
4	2	0.26	2	2.9	2	29
5	2	0.32	3	3.5	3	36
6	3	0.38	3	4.2	3	43
7	3	0.45	3	4.9	3	49
8	3	0.51	4	5.6	4	56
9	3	0.57	4	6.3	4	63
10	4	0.63	4	6.9	4	70

Yuck!

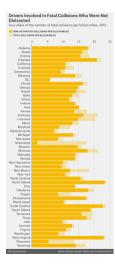
	1990	1990		2005		2010	
	n	Rate (95% CI)	n	Rate (95% CI)	n	Rate (95% CI)	-
(Continued from	1 previous page)						
Globally							
<75 years							
Incidence	6353868	159-22 (145-32-174-98)	9288048	167-45 (150-96-187-11)	10469624	168-75 (152-43-187-09)	0-208
Prevalence	13234062	324-26 (288-74-374-96)	20187246	358-58 (317-58-412-79)	23052804	366-93 (328-04-420-66)	0-086
MIR		0.359 (0.318-0.409)		0.293 (0.249-0.332)		0.254 (0.212-0.287)	<0.001
DALYs lost	63991864	1543-96 (1452-03-1728-25)	74855520	1326-17 (1172-08-1388-74)	73293552	1163-448 (1011-43-1232-19)	<0.001
Mortality	2 301 435	57-38 (54-12-64-27)	2734251	49.16 (43.60-51.55)	2668499	42.89 (37.65-45.81)	<0.001
≥75 years							
Incidence	3725067	3173.50 (2932.14-3422.23)	5446077	3082-97 (2819-52-3372-55)	6424911	3113.00 (2850.95-3403.57)	0-361
Prevalence	4681276	3974-37 (3609-66-4441-23)	8 308 337	4700-18 (4239-37-5256-84)	9 972 153	4835-38 (4382-63-5433-92)	0-005
MIR		0-634 (0-575-0-709)		0-543 (0-476-0-607)		0-500 (0-439-0-560)	<0.001
DALYs	22 018 520	18665-35 (17464-55-20408-51)	27 096 178	15300-36 (13987-78-16317-62)	28938754	14 053 63 (12 761 98-15 088 12)	<0.001
Mortality	2359013	2033-21 (1888-78-2233-65)	2950719	1678-65 (1528-60-1807-22)	3205682	1545-29 (1412-76-1685-12)	<0.001
All ages							
Incidence	10 078 935	250-55 (229-70-273-25)	14734124	255.79 (232.10-283.88)	16894536	257-96 (234-40-284-11)	0-335
Prevalence	17 915 338	434-86 (389-45-496-84)	28495582	490-13 (436-60-557-52)	33 024 958	502.32 (451.26-572.18)	0-047
MIR		0.461 (0.415-0.518)		0.386 (0.336-0.432)		0-348 (0-299-0-390)	<0.001
DALYs lost	86010384	2062-74 (1949-53-2280-29)	101 951 696	1749.59 (1568.67-1830.82)	102 232 304	1554-02 (1373-94-1642-26)	<0.001
Mortality	4660449	117-25 (111-51-129-68)	5684970	98-53 (89-02-103-86)	5874182	88-41 (79-84-94-41)	<0.001

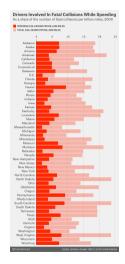
*p value for the difference in age-adjusted rates between 1990 and 2010 only.

Table 1: Age-adjusted annual incidence and mortality rates (per 100 000 person-years), disability-adjusted life-years (DALYs) lost, prevalence (per 100 000 people), and mortality-toincidence ratio (MIR) by age groups in high-income and low-income and middle-income countries, and globally in 1990, 2005, and 2010

Feigen et al., Lancet 383:245-255, 2014, Table 1

Yuck!

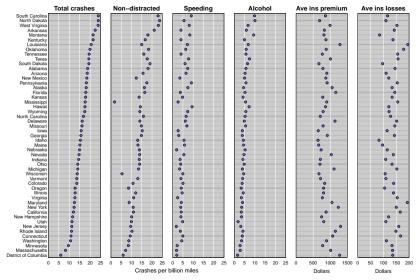

		1990				
		n	Rate (95% CI)			
(Continued from previous page)						
	Globally					
	<75 years					
	Incidence	6353868	159-22 (145-32–174-98)			
	Prevalence	13234062	324·26 (288·74–374·96)			
	MIR		0·359 (0·318–0·409)			
	DALYs lost	63991864	1543.96 (1452.03–1728.25)			
	Mortality	2301435	57.38 (54.12-64.27)			

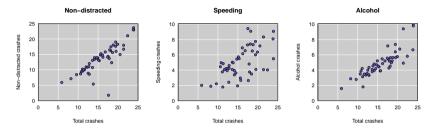

Feigen et al., Lancet 383:245-255, 2014, Table 1

What was wrong with that?

- Way too many digits.
- ► Numbers aren't aligned.
- Numbers to be compared aren't anywhere near each other.
- ► The interesting comparisons are horizontal rather than vertical.
- ► It would be much better as a multi-panel figure.

One last example

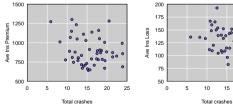


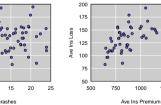

Drivers Involved In Fatal Collisions While Alcohol-Impaired As a share of the number of fatal collisions per billion miles, 2012 ALCOHOL-RELATED COLLISIONS FER BILLION MILES Alabam Hinniki Idaho Maire Massari Neuris New Jersey Oklaharra Rhyde Island Virginia West Wreinig Warneni Wannie

fivethirtyeight.com/datalab/which-state-has-the-worst-drivers

An alternative

Scatterplots




Ave Ins Premium

Premium vs Loss

1250 1500

Summary I

- Show the data
- Avoid chart junk
- Consider taking logs and/or differences
- Put the things to be compared next to each other
- Use color to set things apart, but consider color blind folks
- ► Use position rather than angle or area to represent quantities

Summary II

- Align axes to ease comparisons
- Use common axis limits to ease comparisons
- ► Use labels rather than legends
- Sort on meaningful variables (not alphabetically)
- Must 0 be included in the axis limits?
- Use scatterplots to explore relationships

Inspirations

- ► Hadley Wickham
- Naomi Robbins
- ► Howard Wainer
- ► Andrew Gelman
- Dan Carr
- Edward Tufte

Further reading

- ER Tufte (1983) The visual display of quantitative information. Graphics Press.
- ► ER Tufte (1990) Envisioning information. Graphics Press.
- ► ER Tufte (1997) Visual explanations. Graphics Press.
- A Gelman, C Pasarica, R Dodhia (2002) Let's practice what we preach: Turning tables into graphs. The American Statistician 56:121-130
- ▶ NB Robbins (2004) Creating more effective graphs. Wiley
- Nature Methods columns: bit.ly/points_of_view