Wrangling messy data files

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org github.com/kbroman @kwbroman Course web: kbroman.org/AdvData

"In what form would you like the data?"

"In what form would you like the data?"

"In its present form!"

"In what form would you like the data?"

"In its present form!"

...so we'll have some messy files to deal with.

Challenges

Consistency

- ► file names
- ► file organization
- subject IDs
- ► variable names
- categorical data

Example file

	A	В	С	D	Е	F	G	н	1	J	к	L	М	N	0	Р	Q	R	S
1	B6 ob/ob x BTBR	ob/ob					2.0mL RS-			2.0mL RS-			TT-1 bag			2.0mL RS-			TT-1 bag
0	And the second	Cate B.	Sec Orening	•	Sr1, 12	Aroonader Con	And	Support of the second	Paece Box	Bahn	Brain 5	to 90		Liver C	to to the second	of and	A KONTON	Primeron Primeron	
4	Mouse# 3002	6/2/05	8/15/05	F	10.0	RS-115943	8.2	1	RS-115942	391	1	RS-98275	413	1	RS-115948	246	1	RS-98271	530
5	Mouse# 3003	6/3/05	8/15/05	м	10.0	RS-115938	13.1	1	RS-115937	359	1	RS-98265	538	1	RS-115925	317	1	RS-98270	594
6	Mouse# 3004	6/3/05	8/15/05	м	9.3	RS-115815	13.5	1	RS-115814	365	1	RS-98277	654	1	RS-115820	324	1	RS-98272	670
7	Mouse# 3005	6/13/05	8/22/05	F	•	RS-115799	19.3	1	RS-115800	386	1	RS-98268	467	1	RS-115801	233	1	RS-98274	757
8	Mouse# 3006	6/13/05	8/22/05	F	9.5	RS-127305	11.7	1	RS-127304	384	1	RS-98258	498	1	RS-127303	233	1	RS-98257	676
9	Mouse# 3007	6/13/05	8/22/05	F	8.9	RS-127290	16.3	1	RS-127289	345	1	RS-98264	461	1	RS-127288	163	1	RS-98256	478
10	Mouse# 3008	6/13/05	8/22/05	F	10.3	RS-127275	19.7	1	RS-127274	422	1	RS-98259	465	1	RS-127273	299	1	RS-98255	742
11	Mouse # 3009	6/13/05	8/23/05	м	9.0	RS-126754	17.1	1	RS-126753	380	1	RS-98263	452	1	RS-126755	248	1	RS-98262	553
12	Mouse# 3010	6/13/05	8/23/05	м	10.2	RS-126744	20.6	1	RS-126745	395	1	RS-98261	657	1	RS-126740	331	1	RS-98276	496
13	Mouse# 3011	6/13/05	8/23/05	м	10.0	RS-127331	19.7	1	RS-127330	415	1	RS-98260	582	1	RS-127332	230	1	RS-98269	661
14	Mouse# 3012	6/13/05	8/23/05	м	10.7	RS-127341	17.6	1	RS-127340	418	1	RS-98273	431	1	RS-127338	278	1	RS-98254	629
15	Mouse# 3013	6/13/05	8/24/05	м	10.5	RS-126044	19	1	RS-126045	395	1	RS-97152	557	1	RS-126042	384	1	RS-97199	494
16	Mouse# 3014	6/13/05	8/24/05	м	9.4	RS-126024	16.6	1	RS-126022	362	1	RS-97189	401	1	RS-126020	214	1	RS-97196	604
17	Mouse# 3015	6/13/05	8/24/05	F	9.8	RS-126012	15.1	1	RS-126010	385	1	RS-97184	550	1	RS-126008	281	1	RS-97200	671
18	Mouse# 3016	6/13/05	8/24/05	F	9.0	RS-126000	15.1	1	RS-125998	386	1	RS-97194	463	1	RS-125996	223	1	RS-97195	693
19	Mouse# 3017	7/3/05	9/7/05	F	8.2	RS-125980	15.7	1	RS-125989	298	1	RS-97197	408	1	RS-125982	213	1	RS-97185	433
20	Mouse# 3018	7/3/05	9/7/05	F	9.0	RS-125979	15.1	1	RS-125977	363	1	RS-98278	591.3	1	RS-126168	199	1	RS-97201	676
21	Mouse# 3019	7/3/05	9/7/05	F	8.5	RS-126323	18.8	1	RS-126325	383	1	RS-97191	443.8	1	RS-126341	322	1	RS-97180	775

4

Another example

	А	В	С	D	E	F	G	Н	1	J	к	L
											4 wk C	rbital Eye Bleed
1										_		
	Mouse ID	SEX	MHV status (+ or ?)	BIRTH DATE	SAC DATE	WEAN DATE	AGOUTI COAT (Y/N)	TUFT COAT (Y/N)				
3	3001	F	Y	6/2/05	8/15/05	6/22/05	т		6/30/2005	23.1	75	637.3
4	3002	F	Y	6/2/05	8/15/05	6/22/05	т			22.8	80	261.
5	3003	м	Y	6/3/05	8/15/05	6/22/05	т			24.1	80	124.
6	3004	м	Y	6/3/05	8/15/05	6/22/05	В			21	78	254.
7	3005	F	Y	6/13/05	8/22/05	6/30/05	т	Y	7/14/2005	22.3	78	116.15
8	3006	F	Y	6/13/05	8/22/05	6/30/05	т	N		17.4	74	153.02
9	3007	F	Y	6/13/05	8/22/05	6/30/05	т	N		13.6	68	99.39
0	3008	F	Y	6/13/05	8/22/05	6/30/05	т	N		23.5	80	173.65
1	3009	M	Y	6/13/05	8/23/05	6/30/05	т	N		19.3	75	123.4
2	3010	м	Y	6/13/05	8/23/05	6/30/05	В	N		18.7	77	443.4
13	3011	м	Y	6/13/05	8/23/05	6/30/05	В	N		24.6	79	162.5
4	3012	м	Y	6/13/05	8/23/05	6/30/05	т	N		23.7	80	139.0
5	3013	м	Y	6/13/05	8/24/05	6/30/05	т	N		28.5	80	226.7
6	3014	м	Y	6/13/05	8/24/05	6/30/05	т	Y		13.6	68	96.
7	3015	F	Y	6/13/05	8/24/05	6/30/05	т	N				
8	3016	F	Y	6/13/05	8/24/05	6/30/05	т	N				
9	3017	F	Y	7/3/05	9/7/05	7/21/05	В	N	7/28/2005	9.8	66	234.
20	3018	F	Y	7/3/05	9/7/05	7/21/05	т	N		12.9	65	89.3
21	3019	F	Y	7/3/05	9/7/05	7/21/05	т	N		12.5	65	155.
2	3020	F	Y	7/3/05	9/7/05	7/21/05	в	Y		15.9	70	80.
23	3021	F	Y	7/3/05	9/12/05		В	N		14.8	70	235.4
4	3022	F	Y	7/3/05	9/12/05	7/21/05	T	N		19.9	71	469.6
25	3023	м	Y	7/3/05	9/12/05	7/21/05	в	N		16.6	72	536.
26	3024	м	Y	7/3/05	9/12/05	7/21/05	т	Y		17.9	71	268
27	3025	м	Y	7/3/05	9/13/05	7/21/05	т	N		16.6	71	230.1
28	3026	м	Y	7/3/05	9/13/05	7/21/05	т	N		17.1	69	288.0
9	3027	м	Y	7/3/05	9/13/05	7/21/05	в	N		13.1	69	124.
0	3028	м	Y	7/3/05	9/13/05	7/21/05	т	N		13.3	70	170.
1	3029	F	Y	7/9/05	9/20/05		т	N	8/4/2005	29	83	439.7
2	3030	F	Y	7/9/05	9/20/05		т	N		28.1	83	438.5
3	3031	M					T			30.2	85	664.7
4	3032	м					т			30.4	85	403.2
5	3033	F	Y	7/16/05	9/21/05	8/4/05	т	N	8/11/2005	19.5	77	274.
6	3034	F	Y	7/16/05	9/21/05	8/4/05	т	N		20.4	77	582.
17	3035	F	Y	7/16/05	9/21/05	8/4/05	т	N		18.6	75	461.
38	3036	F	Y	7/16/05	9/21/05	8/4/05	т	N		16.5	75	313.
39	3037	F	Y	7/16/05	9/22/05	8/4/05	т	N		18.3	78	121.5

Weird rounding

30.1	ອບ	307.73144	12.27 1001 1009420	109.2011
37.5	89	404.04308	6.55818503449434	146.9497
41.9	90	218.343	9.55324086763758	101.9179
36	88	287.62704	4.65914900117792	91.0011
22.8	79	114.2122	32.46127	70.38872
20.8	75	166.4504	8.211126	60.96332
27.2	84	202.51284	13.1384923833842	105.07665
20.8	77	313.51314	11.1372217899707	93.32436
12.6	65	199.61718	16.7719514987531	66.61461
12.1	64	429.33954	18.9643060968415	49.52037
27.4	81	512.34846	4.31272238159915	101.51535
25.3	79	591.4965	9.70506442962546	186.98655
22	78	142.6692	14.9913480181089	53.79393
22.9	80	349.70889	17.0824838559225	180.93234
24.2	77	425.96127	5.77571495445421	151.72968
25.7	82	248.36079	14.3881991417965	99.37857
23.9	79	441.8874	17.1454129445892	70.17591
26.6	93	359.8437	11.3140598977232	152.79807
37.1	87	445.14312	10.4517	87.77684
35.3	85	183.7356	7.32103	67.86024
37.9	88	471.54792	11.8114	166.35688
07 4	07	142 00016	22 640	70207

Inconsistent IDs

	Α	В	С		D	E	F	G	н	1	1	К	L	M	N	0 P	Q
1	mouse #	hirthdate	SPX	coat	color	6 wk glu	6 wk ins	6 wk TG	10 wk elu	10 wk ins	10 wk TG	14 wk elu	14 wk ins	14 wk TG	GTT date	GTT weight sac da	e sac wkięlu
2	121	10/15/14	F	ago	ıti	149.37426	0.8442	139.2379	60.12283	0.6957333	120.88583	105.82285	0.2120998	211.87862	2/9/15	24.5	115.74088
3	122	10/15/14	F	ago	rti	95.326808	1.481575	202.05441	74.487115	0.7096667	132.7588	82.242928	0.5339661	121.14418	2/9/15	18.9	191.43122
4	123	10/15/14	F	ago	iti	97.490984	0.408725	79.373226	98.03989	0.7610667	142.69479	119.71168	0.6829993	93.352632	2/9/15	24.7	132.51577
5	124	10/15/14	F	ago	rti	116.96857	2.0537	143.44967	80.069995	1.3096333	145.20569	96.90912	1.4193986	141.42944	2/9/15	25.1	135.81992
6	125	10/15/14	F	whit	e	108.0271	1.246475	125.88264	76.17361	0.6123667	98.07251	72.603664	0.5343661	101.70108	2/9/15	23.2	166.47222
7	126	10/15/14	F	ago	ıti	148.97559	1.3875	172.42806	122.5813	0.9788667	165.29289	162.46648	1.5992651	179.18054	2/9/15	29.1	197.48035
8	127	10/15/14	F	ago	ıti	169.36441	0.689275	89.812646	70.2418	0.8910333	67.76236	103.85354	0.6974326	99.32104			
9	128	10/15/14	F	whit	e	107.11587	1.2042	274.3024	112.69495	1.1338	261.56797	76.283168	0.6091661	146.44583	2/9/15	21.8	172.67384
10	129	10/15/14	F	whi	e	94.643384	0.830975	181.13957	101.76181	1.4178	148.97204	124.11672	2.1157646	118.10505	2/9/15	23.6	170.58969
11	130	10/15/14	F	ago	iti	96.351944	1.1899	150.36128	85.12948	1.0738	100.69102	86.907088	0.9270324	105.47253	2/9/15	22.6	196.41285
12	131	10/15/14	F	ago	rti	76.077032	0.5684	96.40028	89.78188	0.6778	117.11948	99.293024	0.3135997	126.96612	2/9/15	22.8	170.79302
13	132	10/15/14	F	blac	<	164.92215	0.81265	80.777148	83.326675	0.9203	71.09827	121.21458	0.8231658	74.934784	2/11/15	25.1	170.69136
14	133	10/15/14	F	ago	rti	138.15471	0.2814	136.28606	111.53185	0.4980667	94.23442	115.77306	0.2903997	130.1151	2/11/15	23.5	154.17063
15	134	10/15/14	F	ago	rti	147.7796	0.964775	114.29129	113.85805	0.9436	139.39475	113.4928	0.5289661	91.704912			
16	135	10/15/14	F	ago	rti	91.511024	0.5702	73.577548	88.793245	1.1656	78.34401	120.54086	1.3810986	97.966248	2/11/15	20.4	
17	136	10/15/14	F	whit	e	82.740416	0.920675	85.132906	75.01051	0.8757	98.10838	107.68851	1.1119656	96.098832	2/11/15	23.9	
18	137	10/15/14	F	whit	e	87.866096	1.093125	146.65349	94.78321	0.9767	114.39336	83.486704	0.7033993	101.37154	2/11/15	24.9	156.05145
19	138	10/15/14	F	ago	rti	84.164216	0.7453	121.2389	103.50646	0.6329667	135.41318	107.99946	0.962399	114.80961	2/11/15	20	147.00318
20	139	10/15/14	F	ago	rti	71.406968	0.5858	111.73543	85.94365	0.4654	148.11116	100.22586	1.0999656	112.90558	2/11/15	21.8	
21	140	10/15/14	F	ago	rti	77.102168	0.6512	111.41145	105.71635	0.8600667	147.32202	103.80171	0.4851328	108.43842	2/11/15	21	108.5226
22	141	10/15/14	F	whit	e	105.52122	1.20255	212.45783	120.08064	2.1076	106.03565	86.855264	0.3471663	100.49275	2/11/15	25.8	105.11679
23	142	10/15/14	F	ago	rti	127.61859	1.20365	90.46061	123.56994	1.7958	90.7909	133.70416	2.7086973	141.39282	2/11/15	32.2	256.70079
24	143	10/15/14	F	chin	chilla	94.187768	0.7509	191.54299	92.747785	0.8498333	137.67299	117.27595	2.008198	154.50135	2/13/15	21.8	218.11855
25	144	10/15/14	F	whit	e	104.66694	1.2506	117.6391	112.05525	1.2141	227.77843	87.684448	0.8403325	100.23644	2/13/15	28.2	133.37993
26	145	10/15/14	F	ago	rti	88.777328	1.290625	83.225012	100.42425	0.9828	108.0085	94.266096	1.0286656	124.51285	2/13/15	30.1	214.6619
27	146	10/15/14	F	chin	chilla	92.991776	0.683275	80.20118	89.491105	0.722	61.7362	128.98818	1.1048656	102.06724	2/13/15	23.3	157.27144
28	147	10/15/14	F	blac	< .	68.502416	0.55135	104.89581	63.84475	0.4654	113.56835	83.745824	0.379133	112.10002	2/13/15	22.9	202.15698
29	148	10/15/14	F	ago	rti	85.588016	0.8417	187.58321	72.858775	1.4085667	179.82024	75.868576	0.5696661	263.14102	2/13/15	24.4	127.12748

Inconsistent IDs

	Α	В	С	D	E	F	G	н	1	1	К	L	М	Ν	0	Р	Q		
1	mouse #	hirthdate	SPX	coat color	6 wk elu	6 wk ins	6 wk TG	10 wk elu	10 wk ins	10 wk TG	14 wk elu	4 wk ins	14 wk TG	GTT date	GTT weight	sac date	sac wk elu		
2	121	10/15/14	F	ago iti	149.37426	0.8442	139.2379	60.12283	0.6957333	120.88583	105.82285	0.2120998	211.87862	2/9/15	24.5		115.74088		
3	122	10/15/14	F	ago iti	95.326808	1.481575	202.05441	74.487115	0.7096667	132.7588	82.242928	0.5339661	121.14418	2/9/15	18.9		191.43122		
4	123	10/15/14	F	ago iti	97.490984	0.408725	79.373226	98.03989	0.7610667	142.69479	119.71168	0.6829993	93.352632	2/9/15	24.7		132.51577		
5	124	10/15/14	F	ago iti	116.96857	2.0537	143.44967	80.069995	1.3096333	145.20569	96.90912	1.4193986	141.42944	2/9/15	25.1		135.81992		
6	125	10/15/14	F	white	108 0271	1 246475	125 88264	76 17361	0.6123667	98 07251	72 603664	0 5343661	101 70108	2/9/15	23.2		166 47222		
7	126	10/15/	A	В	С	D	E	F	G	н	1	J	К	L	M	N	0	Р	Q
8	127	10/15/ 1	mouse #	birthdate	sex	coat cold	or 6 wk glu	6 wk ins	6 wk TG	10 wk glu	10 wk ins	10 wk TG	14 wk glu	14 wk ins	14 wk TG	GTT date	GTT weight sa	ic date	sac wk glu
9	128	10/15/ 2	DO-461	6/21/	16 F	black	91.64380	0.3550	5 83.51719	5 93.59484	9 0.8989324	1 239,4555	6 80.50138	7 0.3877628	155,39943	10/17/1	6 20.2	11/14/16	88.7025
10	129	10/15/ 3	DO-462	6/21/		agouti	111.600				5 0.387632								106.197
11	130	10/15/ 4	DO-463	6/21/	16 F	black	94.67841	4 0.93467	5 97.72990	2 99.02433	3 0.71336	5 113.6415	6 91.36096	1 1.1118889	119.85253	10/17/1	6 32.3	11/14/16	140.0993
12	131	10/15/ 5	DO-464	6/21/	'16 F	chinchill	a 120.6011	5 2.17632	5 121.8057	4 111.7936	8 1.833631	5 126.8681	6 142.7238	1 1.5440512	126.22905	10/17/1	6 40.3	11/14/16	129.671
13	132	10/15/ 6	DO-465	6/21/		agouti	90.82086				7 2.479530								142.9656
14	133	10/15/ 7	DO-466	6/21/	'16 F	agouti	112.1659	0.60767	5 80.27032	7 123.8089	2 0.7189993	3 106.1249	8 127.8041	3 0.5506278	64.195097	10/17/1	6 20.8	11/16/16	136.2939
15	134	10/15/ 8	DO-467	6/21/	'16 F	agouti	100.9019	3 1.0787	5 119,5390	6 114.6592	4 0.376466	3 125.6745	4 104.0793	8 0.8151585	171.41285	10/17/1	6 24.7	11/16/16	117.4649
16	135	10/15/ 9	DO-468	6/21/	'16 F	agouti	93.70116	8 0.55572	5 73.16397	3 102.3926	2 0.64126	5 173.2580	4 105.2044	7 0.9074243	168.46984	10/17/1	6 24.6	11/16/16	121.6162
17	136	10/15/ 10	DO-469	6/21/	'16 F	black	100.9019	3 1.78692	5 183,6800	2 104.8057	3 2.30373	244.262	3 105.008	8 0.8191251	214.05758	10/17/1	6 21.6	11/18/16	118.0085
18	137	10/15/ 11	DO-470	6/21/	'16 F	agouti	98.58739	0.81647	5 97.17854	7 99.82870	1 0.399766	84.897	9 78.78929	2 0.3717629	80.323924	10/17/1	6 19.1	11/18/16	5 107.1361
19	138	10/15/ 12	DO-471	6/21/	'16 F	agouti	137.5229	4 1.01677	5 52.02869	8 107.6712	9 0.6544993	3 177.1292	4 113.2268	5 1.3451199	99.222639	10/19/1	6 33.8	11/18/16	144.250
20	139	10/15/ 13	DO-472	6/21/	'16 F	white	102.8049	9 1.149	4 109.3696	2 123.658	1 0.547966	229.4872	2 93.51330	9 1.2255211	284.14152	10/19/1	6 24.1	11/18/16	108.4705
21	140	10/15/ 14	DO-473	6/21/	'16 F	white	94.3698	0.7664	5 73.10271	1 143.4656	7 0.479166	2 78.6717	2 141.5987	2 0.5927274	69.388637	10/19/1	6 20.6	11/22/16	128.1396
22	141	10/15/ 15	DO-474	6/21/	'16 F	agouti	110.9829	9 1.41592	5 62.32065	8 92.941	3 0.836365	86.4141	2 113.618	2 0.4423956	74.582177	10/19/1	6 20.4	11/22/16	108.7176
23	142	10/15/ 16	DO-475	6/21/	'16 F	black	86.24323	0.7860	5 96.87223	9 95.05276	6 0.595666	62.3481	6 93.61114	3 0.3843295	80.035394	10/19/1	6 18.5	11/30/16	5 134.9102
24	143	10/15/ 17	DO-476	6/21/	'16 F	agouti	136.9057	3 0.97972	5 117.5174	2 118.9827	1 0.349799	7 134.3524	8 161.9971	0.836625	109.3789	10/19/1	6 25.2	11/30/16	119.1946
25	144	10/15/ 18	DO-477	6/21/	'16 F	agouti	128.3162	0.6931	5 249.3525	3 112.5477	7 0.7935993	2 233.455	2 138.4191	2 0.8584914	234.08156	10/19/1	6 26.1	11/30/16	135.5526
26	145	10/15/ 19	DO-478	6/21/	'16 F	agouti	115.8177	9 0.401032	9 48.84309	1 109.4308	4 0.267599	95.0275	4 132.7447	4 0.2432976	91.6343	10/19/1	6 21.2	11/30/16	120.1336
27	146	10/15/ 20	DO-479	6/21/	'16 F	agouti	113.6061	3 1.38207	5 114.8831	7 105.0068	2 1.95309	8 141.2561	2 113.5692	8 1.3259534	132.37474	10/19/1	6 33.3	12/2/16	145.3872
28	147	10/15/ 21	DO-480	6/21/	'16 F	black	167.0974	9 2.240	8 57.29720	1 123.8089	2 2.536964:	122.9324	4 136.364	5 1.6026506	128.53729	10/19/1	6 31.4	12/2/16	5 156.9515
29	148	10/15/ 22	DO-481	6/21/	'16 F	agouti	105.5309	0.47877	5 64.89364	8 110.2352	1 0.1381333	2 73.768	2 113.3736	1 0.6286604	74.495618	10/21/1	6 27.3	12/2/16	123.8895
		23	DO-482	6/21/	'16 F	agouti	101.9820	0.82092	5 82.78205	5 90.82983	4 0.5752994	4 84.9624	2 103.3456	3 0.2304644	87.969969	10/21/1	6 21.7	12/2/16	5 113.7090
		24	DO-483	6/21/	'16 F	agouti	82.95146	0.345	3 78.49373	8 95.40467	7 0.556666	1 101.4472	8 90.08911	9 1.5080183	107.67657	10/21/1	6 21.4	12/6/16	93.1503
		25	DO-484	6/21/	'16 F	agouti	126.4131	9 0.6771	5 98.28125	7 100.1806	1 0.922099	1 139.8044	2 114.4497	9 1.3265201	154.67811	10/21/1	6 28.2	12/6/16	132.389
		26	DO-485	6/21/	'16 F	agouti	93.75260	1.609	5 90.86859	5 89.37191	7 0.67556	5 86.510	9 83.04507	1 0.3703296	102.85812	10/21/1	6 25.4	12/6/16	98.9818
		27	DO-486	6/21/	'16 F	agouti	100.9019	0.6416	5 83.57845	7 102.9456	3 0.781565	80.3169	8 103.6391	3 0.6679933	88.200793	10/21/1	6 24.4	12/6/16	114.9939
		28	DO-487	6/21/	'16 F	agouti	113.1946	5 0.31802	5 71.01981	5 96.10849	9 0.521566	1 151.4825	4 125.2604	4 0.3840295	125.70969	10/21/1	6 24.7	12/8/16	128.7327
		29	DO-488	6/21/	'16 F	agouti	91.69524	0.593	7 115.1282	2 104.0516	3 0.8984324	1 205.5180	4 93.90464	5 0.5686943	129.22976	10/21/1	6 23.2	12/8/16	87.417
		30	DO-489	6/21/	'16 F	agouti	50.49660	0.38502	5 73.0414	5 72.93264	6 0.542766	100.4472	2 98.79634	5 0.8198585	56.058551	10/21/1	6 21	12/8/16	86.7751

Inconsistent layout

	А	В	С	D	Е	F
1		GTT date	GTT weight	time	glucose mg	insulin ng/ml
2	DO-121	2/9/15	24.5	0	99.165552	lo off curve
3				5	349.30355	0.2052
4				15	286.09221	0.12895
5				30	312.0477	0.17545
6				60	99.871824	0.12165
7				120	217.93696	lo off curve
8	DO-122	2/9/15	18.9	0	185.80158	0.25145
9				5	297.39256	2.2281
10				15	439.0001	2.0778
11				30	362.25187	0.7746
12				60	232.65096	0.50015
13				120	260.72527	0.5234
14	DO-123	2/9/15	24.7	0	198.45562	0.15135
15				5	530.63889	lo off curve
16				15	614.15555	0.62425
17				30	647.46805	0.12085
18				60	531.05088	0.19775
19				120	388.0308	0.1853

	А	В	С	D
1	DO-221	0	145.74279	0.7445
2		5	206.45264	2.026
3		15	216.64061	1.1320
4		30	299.55501	0.7847
5		60	242.65912	0.332
6		120	186.23344	0.5357
7	DO-222	0	138.01038	0.7071
8		5	342.86694	1.104
9		15	339.83668	0.828
10		30	276.1488	0.593
11		60	248.30168	0.490
12		120	303.42121	1.041
13	DO-223	0	138.21936	1.122
14		5	407.443	2.102
15		15	336.85865	1.858
16		30	235.50141	1.5098
17		60	246.21184	0.8670
18		120	247.62249	0.8931

	A	В	С	D	Е	F	G	н
1	date	mouse #	weight	heart	Lliver lobe	remaining liver	R fat nad	L fat pad
2	3/9/15	121	26.7	0.136	0.325	0.655	0.383	0.317
3		122	19.3	0.103	0.231	0.548	0.279	0.261
4		123	28.2	0.116	0.317	0.668	0.736	0.706
5		124	26.4	0.121	0.346	0.694	0.646	0.541
6	3/10/15	171	40.5	0.158	0.518	1.07	1.38	1.38
7		172	48.6	0.199	0.505	1.405	0.804	0.868
8		173	36	0.187	0.406	0.965	0.785	0.712
9		174	25	0.109	0.264	0.6	0.308	0.308
10	3/11/15	125	24.3	0.12	0.303	0.556	0.536	0.508
11		126	30.5	0.113	0.376	0.992	0.777	0.972
12		128	24.3	0.101	0.307	0.715	0.34	0.461
13		129	22.2	0.123	0.304	0.799	0.343	0.293
14	3/12/15	175	34.7	0.159	0.454	0.892	0.886	0.9
15		176	29.6	0.166	0.388	0.753	0.656	0.638
16		177	31.8	0.189	0.375	0.762	0.702	0.62
17		178	36.8	0.156	0.459	1.22	0.602	0.637

	A		В	С	1	D	Е		F	G	i F	
1	date	moi	ise #	weight	heart	t liv	ver lobe	rei	maining live	r Rfatr	ad Ifatr	ad
2	3/9/15		121	26.7		0.136	0.325		0	.655 (0.383	0.317
3			A	E	3	С	D		E	F	G	н
4		1	mouse	e nun date		weight	heart		L liver lobe	remaining	R fat pad	L fat pad
5		2	DO-22		20/15		1 0.1	36	0.339	-		
6	3/10/15	3	DO-22		,	21		47	0.318			
7		4	DO-22	3		22	2 0.1	17	0.252	0.663	0.133	0.15
8		5	DO-22	4		23	3 0.1	42	0.314	0.667	0.048	0.04
9		6	DO-22	.5 7/	22/15	24	8 0.1	34	0.252	0.633	0.337	0.28
10	3/11/15	7	DO-22	6		22	9 0.1	.36	0.269	0.574	0.247	0.19
11		8	DO-22	.7		20	8 0.1	18	0.32	0.767	0.1	0.094
12		9	DO-22	8		23	1 0	.12	0.27	0.649	0.249	0.28
13		10	DO-22	9 7/	24/15	25	8 0.1	12	0.329	0.801	0.591	0.58
14	3/12/15	11	DO-23	0		20	9 0.1	.37	0.307	0.61	0.112	0.10
15		12	DO-23	1		18	2 0.1	.04	0.227	0.567	0.111	0.12
16		13	DO-23	2		26	4 0.1	.24	0.343	0.776	0.194	0.194
17		14	DO-23	3 7/	28/15	17	8 0.1	.08	0.235	0.496	0.054	0.05
		15	DO-23	4		2	9 0.1	68	0.393	0.737	0.823	0.78
		16	DO-23	5		22	6 0.1	.37	0.35	0.72	0.407	0.383
		17	DO-23	6		21	3 0.1	.32	0.287	0.622	0.19	0.18

	Α		В	С		D		Е			F		G		ŀ	-		
1	date	moi	ise #	weight	heart		l live	r lobe	re	maini	ng live	r	R fat r	had	I fat r	had		
2	3/9/15		121	26.	7	0.136		0.3	25		C	.655	(0.383		0.317		
3			A		В	(2	D)		E		F		G		H	
4		1	mouse	e nun date		weigh	nt	heart		L live	r lobe	rem	aining	R fat	pad	L fat	pad	
5		2	DO-22	21 7	/20/15		24.1		0.136		0.339		0.743		0.289)	0.262	
6	3/10/15	3	DO-22		A		В			С	[E		F	G	н
7		4	DO-22	23 1	mouse	nund	ate		weigł	nt.	heart		Llive	r lohe	rema	ining	R fat pad	L fat pad
8		5	DO-22		mouse	321		11/16	WCIBI	50.1		0.171		0.515		1.37		
9		6	DO-22			322	-/.	, 10		22.6		0.119		0.441		0.689		
10	3/11/15	7	DO-22			323				23.5		0.128		0.33		0.64		
11		8	DO-22			324				24.6		0.104		0.277		0.322		
12		9	DO-22	28 6		325	2/:	15/16		20.8		0.116		0.311		0.737		
13		10	DO-22	/		326				16.9		0.107		0.173		0.551		
14	3/12/15			0		327				23.6		0.114		0.329)	0.684	0.384	0.39
15		12	DO-23	9		328				22.1		0.131	L	0.277	'	0.539	0.132	0.13
16		13	DO-23	- 10		329	2/:	17/16		27.2		0.131	L	0.374	Ļ	0.682	0.612	0.5
17		14	DO-23	11		330				20.5		0.123	3	0.297	,	0.622	0.041	0.04
		15	DO-23	12		331				23.1		0.115	5	0.313	1	0.764	0.229	0.28
			DO-23	13		332				19.3		0.103	3	0.276	;	0.586	0.107	0.14
		17	DO-23	14		333	2/:	19/16		32.6		0.126	i	0.21		0.939	1.14	0.85
				15		335				26.2		0.145	5	0.366	5	1.03	0.198	0.24
				16		336				20.2		0.126	6	0.3	1	0.692	0.066	0.06
				17		337				21.8		0.132	2	0.241		0.414	0.212	0.19

	Α		В	С	1	C		Е			F		G	ŀ	1					
a	te	mou	ise #	weight	heart		Lliv	er lobe	rei	nainin	gliver	R fa	t nad	I fat r	had					
	3/9/15		121	26.	7	0.136	5	0.3	25		0.65	5	0.383		0.317					
			A		В		С	1	D	E		F		G	1	H				
		1	mouse	nun date		weig	ht	heart		L liver	lobe rer	nainin	g R fat	pad	Lfat	oad				
		2	DO-22		/20/15		24.	1	0.136	(0.339	0.74	13	0.289	1	0.262	-			
	3/10/15	3	DO-22		A			В	C		D		Е		F	(G		н	
		4	DO-22	3 1	mouse	nun			weigh		heart	L lis	er lobe	rema	ining			L fat	nad	
		5	DO-22	4 2	mouse	321		/11/16		50.1	0.1		0.515		1.37		3.03	Liat	3.28	
		6	DO-22			322		A		В		с	C		E		F		G	н
	3/11/15	7	DO-22			323					woir								P fat pad	L fat pad
		8	DO-22			324		DO461		` 11/14		20.3	hoart 3 (0.106).259).505	0.23	
		9	DO-22			325		DO462	_	11/14		20.6		0.107		0.283		0.521		
		10	DO-22			326		DO463		11/14		36.2		0.161		0.505		.066		
	3/12/15	11	DO-23			327		DO464		11/14		45.9		0.18).447		1.18		
		12	DO-23			328	-	DO511		11/15		35.1		0.151		0.471		.064		
		13	DO-23			329		DO512		11/15		27.2		0.148		0.308		0.707		
		14	DO-23			330		DO513		11/15		29.9		0.168).422		.905	0.493	
		15	DO-23	4 12		331		DO514		11/15		33.6		0.161		0.413		.851		
		16	DO-23	5 13		332		DO465	_	11/16		36.4		0.165		0.498		1.09		
		17	DO-23	6 14		333		DO466	_	11/16		21.4		0989).254		0.601	0.375	
				15		335	12	DO467		11/16		26.3		0.154		0.47		.936		
				16		336		DO468	_	11/16		25.9		0.151	(0.311		0.88		
				17		337		DO515	_	11/17		45.9		0.156).474		1.09		
							15	DO516		11/17		34.5	5 (0.197	(0.502		1.1		0.861
								DO517	_	11/17		41.6		0.184		0.561		1.12		
								DO518	_	11/17		41.8		0.185		0.497		1.14		

Multiple rectangles

	Α	В	С	D	E	F	G	н	1	J	к	L
1	Wave 2 ID	Adiponectin (ug/mL)	collection date	BW	sex			Wave 1 ID	Adiponectin (ug/mL)	collection date	BW	sex
2	DO-121	25.28521548	3/9/15	26.7	F			DO-21	58.70791021	10/20/14	21.1	F
3	DO-122	8.589388212	3/9/15	19.3	F			DO-22	6.141839632	10/20/14	30.4	F
4	DO-123	16.45348107	3/9/15	28.2	F			DO-23	37.34270189	10/20/14	29.9	F
5	DO-124	22.86891765	3/9/15	26.4	F			DO-24	5.805316486	10/20/14	21.1	F
6	DO-125	37.13273594	3/11/15	24.6	F			DO-25	5.48942198	10/22/14	22.9	F
7	DO-126	18.76181517	3/11/15	31	F			DO-26	7.550740533	10/22/14	29.4	F
8	DO-128	11.50813114	3/11/15	23.9	F			DO-27	7.633411071	10/22/14	26.6	F
9	DO-129	7.447558701	3/11/15	22.6	F			DO-28	0.049261069	10/22/14	24.6	F
10	DO-130	10.48386039	3/13/15	25.9	F			DO-30	8.841227011	10/24/14		F
11	DO-131	8.471601718	3/13/15	25.6	F			DO-31	8.170986006	10/24/14	26.6	F
12	DO-132	3.04690223	3/13/15	27.4	F			DO-32	12.67835566	10/24/14	24.6	F
13	DO-133	0.099577938	3/13/15	24.8	F			DO-33	17.75682222	10/24/14	34.2	F
14	DO-137	11.20577459	3/17/15	27.7	F			DO-34	24.29713573	10/28/14	28.9	F
15	DO-138	12.72099796	3/17/15	20	F			DO-35	11.74448642	10/28/14	19.7	F
16	DO-140	23.68048642	3/17/15	22.3	F			DO-36	9.310303972	10/28/14	22.6	F
17	DO-141	14.64889349	3/17/15	26.2	F			DO-37	18.45679929	10/28/14	34.3	F
18	DO-142	42.30217756	3/19/15	37.8	F			DO-38	65.906108	10/30/14	34.1	F
19	DO-143	14.54807857	3/19/15	22.8	F			DO-39	55.95587133	10/30/14	30.8	F
20	DO-144	10.57159252	3/19/15	28.7	F			DO-40	20.5376597	10/30/14	29.6	F
21	DO-145	9.465243507	3/19/15	33.5	F			DO-41	26.11849635	10/30/14	21.4	F
22	DO-146	6.278729256	3/23/15	23.1	F			DO-42	14.58745555	11/3/14	27.4	F
23	DO-147	4.894797158	3/23/15	26.6	F			DO-43	21.77644658	11/3/14	33.3	F
24	DO-148	11.33704889	3/23/15	25.8	F			DO-44	12.48999428	11/3/14	25.4	F

Stuff moving around

	A	В	С	D	E	F	G	н	1	J	К	L	M	N	0	Р	Q	R	S	т	U
1	Single islet secretion																				
2	Date islets isolated	11/20/14																			
3	# days on HF diet	143																			
4	DO mouse #	118																			
5	sex	m																			
6	Secretion		values						mean	SD	SE	fc	old ove	r basal(s	ec/ave t	oasal)			mean	SD	SE
7	G3.3		0.65988	2.6638	1.42784	2.189	2.1732	1.0936	1.70	0.76	0.34		0.39	1.57	0.84	1.29	1.28	0.64	1.00	0.45	0.20
8	G8.3		5.020	2.832	6.126	5.440	3.748	1.312	4.08	1.80	0.81	1	2.95	1.66	3.60	3.20	2.20	0.77	2.40	1.06	0.47
9	G16.7		11.195	4.640	8.814	2.758	7.361	4.981	6.62	3.09	1.38		6.58	2.73	5.18	1.62	4.33	2.93	3.89	1.82	0.81
0	G3.3K+		7.323	7.258	5.750	10.381	3.470	5.203	6.56	2.35	1.05		4.30	4.27	3.38	6.10	2.04	3.06	3.86	1.38	0.62
1	G8.3+GLP1 100nM		15.293	19.488		13.131	10.885	7.512	13.26	4.52	2.02		8.99	11.46	0.00	7.72	6.40	4.42	6.50	3.97	1.78
2	G8.3+1.25mMal+2gl+0.5le		8.835	7.959	7.230	2.280		11.502	7.56	3.37	1.51		5.19	4.68	4.25	1.34	0.00	6.76	3.70	2.53	1.13
13	G16.7+0.5mMPA-BSA		34.068	14.982	17.371	18.052	27.981	19.717	22.03	7.39	3.30	12	20.03	8.81	10.21	10.61	16.45	11.59	12.95	4.34	1.94
14																					
5	islet #	320																			
6																					
7	Islet content (IC)	ng/3 islets	ng/islet		"pseudo" p	ancreati	c insulin i	content(islet# X	Insulin	per isle	t) ug	of insu	ılin							
18		240.84	80.28		25.69																
19																					
20	fold over G8.3 alone		values						mean	SD	SE										
21	G8.3		1.23	0.69	1.50	1.33	0.92	0.32	1.00	0.44	0.20										
22	G8.3+GLP1 100nM		3.75	4.78	0.00	3.22	2.67	1.84	2.71	1.66	0.74										
23	G8.3+1.25mMal+2gl+0.5le		2.17	1.95	1.77	0.56	0.00	2.82	1.54	1.06	0.47										
24																					
25	fold over G16.7 alone																				
26	G16.7		1.69	0.70	1.33	0.42	1.11	0.75	1.00	0.47	0.21										
27	G16.7+0.5mMPA-BSA		5.14	2.26	2.62	2.72	4.22	2.98	3.33	1.12	0.50										
28																					
29	% of Total		values						mean	SD	SE										
30	G3.3		0.82	3.21	1.75	2.65	2.64	1.34	2.07	0.91	0.41										
31	G8.3		5.89	3.41	7.09	6.35	4.46	1.61	4.80	2.05	0.92										
32	G16.7		12.24	5.46	9.89	3.32	8.40	5.84	7.53	3.27	1.46										
33	G3.3K+		8.36	8.29	6.68	11.45	4.14	6.09	7.50	2.49	1.11										
14	G8.3+GLP1 100nM		16.00	19.53	0.00	14.06	11.94	8.56	11.68	6.82	3.05										
35	G8.3+1.25mMal+2gl+0.5le		9.91	9.02	8.26	2.76	0.00	12.53	7.08	4.73	2.11										
36	G16.7+0.5mMPA-BSA		29.79	15.73	17.79	18.36	25.85	19.72	21.21	5.43	2.43										

Stuff moving around

	А		В	С	D	E	F	G	н	1	J K	L	M	N	0	Р	C	R	S	1		U			
1	Single islet secretion																								
	Date islets isolated		11/20/14																						
3	# days on HF diet		143																						
	DO mouse #		118																						
5	sex		m																						
6	Secretion			values						mean	SD SE	fo	old over t	pasal(se	c/ave t	asal)			me	an S	D	SE			
7	G3.3		A			в	с	D	E	F	G	н	1	1	к		м	N	0	Р	Q	R	s	т	U
8	G8.3	-	Single islet secre	tion																					
9	G16.7	-	Date islets isolat			3/9/15																			
	G3.3K+	2	# days on HF die			112	-																		
	G8.3+GLP1 100nM	4	# days on HF die DO mouse #	τ.		112	-																		
	G8.3+1.25mMal+2gl+0		sex		_	121 f	-																		
	G16.7+0.5mMPA-BSA	6	Secretion			T	values						mean	60		6.	lat as so	- h K -		and b				60	
14		0	G3.3		_		0.083	0.089	0.128	0.365	0.370	0.130		SD 0.14	SE 0.06		a ove	r basal(s 0.46	0.66	1.88	1.91	0.67	mean 1.00	SD 0.70	SE 0.31
	islet #	8	G8.3															0.46		0.91	2.24				
16	inter in	9	G8.3+GLP1 100n				0.173	0.131	0.361	0.176		0.197		0.12			0.89		1.86			1.01	1.26	0.63	0.28
	Islet content (IC)									0.306		0.221		0.18			L.69	2.17		1.58	3.21	1.14	2.20	0.93	
18	isier content (ic)		G8.3+1.25mMal- G16.7	+2g1+0.5le			0.566	1.070	0.459	0.438		0.416		0.27			2.91	5.51	2.36	2.26	1.69	2.14	2.81	1.38	0.62
19			G16.7 G3.3K+				3.262	1.427	2.979	1.863		1.701		0.74			6.79	7.35	15.33	9.59	12.66	8.76	11.75	3.80	1.70
	fold over G8.3 alone	12					2.577	4.805	1.457	2.167		1.478		1.29			3.27	24.74	7.50	11.16	8.14	7.61	12.07	6.62	2.96
	G8.3			A-BSA			9.209	5.304	9.801	10.50	9.910	5.222	8.33	2.41	1.08	4	7.41	27.30	50.45	54.09	51.02	26.88	42.86	12.40	5.54
	G8.3+GLP1 100nM	14				225	-																		
	G8.3+1.25mMal+2gl+0		islet #		_	335																			
23 24	G8.3+1.25mMai+2gi+0								Bernstein																
			Islet content (IC)		ng/3 islets	ng/islet			[•] pancrea	tic insulin	content	t(islet# X	Insulin	per isle	it) ug c	of insu	lin							
	fold over G16.7 alone				_	148.45	49.48		16.58	_															
	G16.7	19																							
	G16.7+0.5mMPA-BSA			lone			values	0.50		0.70	4.88		mean		SE										
28			G8.3				0.71	0.53	1.47	0.72	1.77	0.80	1.00	0.50											
	% of Total		G8.3+GLP1 100n				1.34	1.72	2.71	1.25	2.54	0.90	1.74	0.73											
	G3.3		G8.3+1.25mMal-	+2g1+0.51e			2.30	4.36	1.87	1.78	1.33	1.69	2.22	1.09	0.49										
	G8.3	24																							
	G16.7		fold over G16.7	alone																					
	G3.3K+		G16.7				1.43	0.63	1.31	0.82	1.08	0.75	1.00		0.14										
	G8.3+GLP1 100nM		G16.7+0.5mMPA	A-BSA	_		4.04	2.32	4.30	4.60	4.34	2.29	3.65	1.06	0.47										
	G8.3+1.25mMal+2gl+0	28																							
36	G16.7+0.5mMPA-BSA		% of Total				values						mean		SE										
			G3.3				0.17	0.18	0.26	0.73	0.74	0.26	0.39	0.27											
			G8.3				0.35	0.26	0.72	0.35	0.87	0.40	0.49	0.24											
			G8.3+GLP1 100n				0.66	0.84	1.33	0.62	1.24	0.44	0.86	0.36											
			G8.3+1.25mMal-	+2gl+0.5le			1.13	2.12	0.92	0.88	0.66	0.83	1.09	0.53											
			G16.7				6.19	2.80	5.68	3.63	4.73	3.32	4.39	1.36											
		35	G3.3K+				4.95	8.85	2.86	4.20	3.10	2.90	4.48	2.30	1.03										

Being self-sufficient

► C

- Perl (or python or ruby)
- ► R

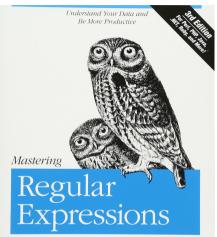
Being self-sufficient

► C

- Perl (or python or ruby or R)
- ► R

Key techniques

- stepping through a file
- ► regular expressions
 - search and replace patterns
- ► parsing individual lines in a file
- matching vectors
- construct meta data
- ► system calls


Stepping through a file in R

```
filecon <- file("huge_data.txt", "r")
while(TRUE) {
    line <- readLines(filecon, n=1)
    if( grepl("^\\[Data\\]", line) ) break
}
data <- readLines(filecon)
close(filecon)</pre>
```

Regular expressions

Regular expressions

O'REILLY*

Jeffrey E.F. Friedl

Regular expressions

grep(), grepl(), sub(), gsub()

- ^ and \$ match the beginning and end of a line
- ▶ [034] for any one of several things; [0-9] for a range
- ▶ [^034] for something other than this set of things
- ► \s for white space
- ▶ . match any one character
- + match the last bit 1 or more times
- * match the last bit 0 or more times
- parentheses to group bits for use with + and *
- when substituting, can use 1, 2, ... in place of matched groups
- In R, most backslashes need to be made double-backslashes.

Parsing strings

- ► I use a lot of strsplit()
- The output is a list of vectors so is not pretty
- Also look at the stringr package
- To put things back together, use paste(), paste0(), or the glue package.

Matching vectors

- I spend a lot of time matching two vectors, say of subject IDs
- I mostly use match(), eg match(old_ids, new_ids)
- Check for NAs, which indicate unmatched values
- May want to check that the values on right are unique
- Often do something like olddata[match(new_ids, old_ids),]

Construct meta data

	А	В	С	D	E
1	short_name	file	from_column	id_column	column_offset
2	mouse	Attie_DO_mice_wave2	_smouse #	1	. 0
3	sex	Attie_DO_mice_wave2	_sex	1	. 0
4	sac_date	Attie_DO_mice_wave2	_sac date	1	. 0
5	coat_color	Attie_DO_mice_wave2	_scoat color	1	. 0
6	oGTT_date	Attie_DO_mice_wave2	_sGTT date	1	. 0
7	diet_days	ex_vivo_waves1-3.csv	Days.on.Diet	1	. 0
8	num_islets	ex_vivo_waves1-3.csv	num_islets	1	. 0
9	Ins_per_islet	ex_vivo_waves1-3.csv	IC	1	. 0
10	Glu_0min	gtt2.csv	glucose.mg.dl.0	2	0
11	Ins_0min	gtt2.csv	insulin.ng.ml.0	2	0
12	Glu_tAUC	gtt2.csv	glucose.mg.dl.tAUC	2	0
13	Glu_iAUC	gtt2.csv	glucose.mg.dl.iAUC	2	0
14	Ins_tAUC	gtt2.csv	insulin.ng.ml.tAUC	2	0
15	Ins_iAUC	gtt2.csv	insulin.ng.ml.iAUC	2	0
16	Glu_6wk	Attie_DO_mice_wave2	_£6 wk glu	1	. 0
17	Ins_6wk	Attie_DO_mice_wave2	_s6 wk ins	1	. 0
18	TG_6wk	Attie_DO_mice_wave2	_\$6 wk TG	1	. 0
19	Glu_10wk	Attie_DO_mice_wave2	_10 wk glu	1	. 0
20	Ins_10wk	Attie_DO_mice_wave2	_s10 wk ins	1	. 0
21	TG_10wk	Attie_DO_mice_wave2	_10 wk TG	1	. 0
22	Glu_14wk	Attie_DO_mice_wave2	_14 wk glu	1	. 0
23	Ins_14wk	Attie_DO_mice_wave2	_14 wk ins	1	. 0
24	TG_14wk	Attie_DO_mice_wave2	_14 wk TG	1	. 0
25	oGTT_weight	Attie_DO_mice_wave2	_sGTT weight	1	. 0
26	Glu_sac	Attie_DO_mice_wave2	_sac wk glu	1	. 0
27	Ins_sac	Attie_DO_mice_wave2	_sac wk ins	1	. 0
28	TG_sac	Attie_DO_mice_wave2	_sac wk TG	1	. 0
29	food_1wk	Attie_DO_mice_wave2	_s 11/17/14	1 1	. 2
30	food_2wk	Attie_DO_mice_wave2	_11/24/14	1 1	
31	food_3wk	Attie_DO_mice_wave2	_ 12/1/14	1 1	. 2
32	food_4wk	Attie_DO_mice_wave2	_12/8/14	1 1	. 2

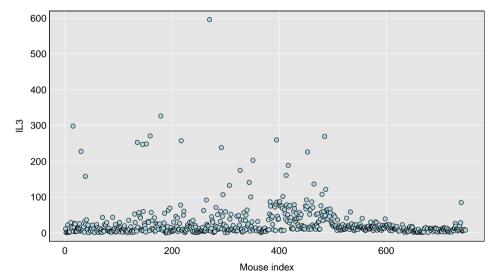
R challenges

- stringsAsFactors
- check.names in read.csv()
- dealing with factors
 - levels
 - converting to/from strings
- Consider the forcats package

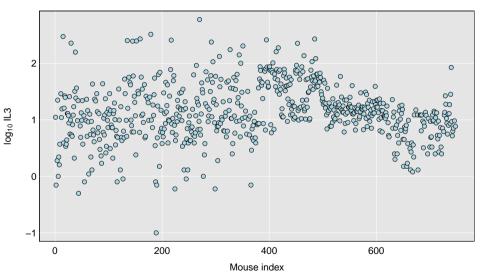
Further tips

Avoid using numeric indices

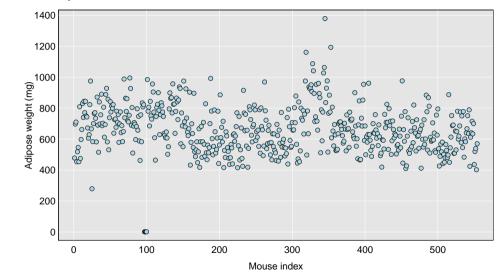
- refer to data by variable name and individual ID
- this will be more robust
- stopifnot() to assert things that should be true
- cbind and rbind, but padding with missing values
- Sometimes converting excel \rightarrow csv loses precision
- ▶ get() to grab an object from a character string with its name
- eval(parse()) to evaluate a character string as R code

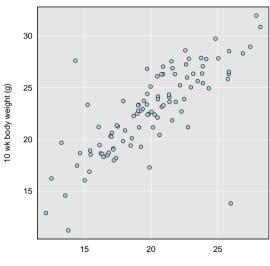

Verify everything

- ► subject IDs unique?
- identifiers that don't match the typical pattern?
- subjects in one file but not in another?
- re-calculate and verify any derived values (like ratios)
- data repeated in multiple files the same?


Reproducible reports

- You want all of this work to be reproducible
- Consider combining the data reorganization with the data cleaning – a lot of double-checking is happening when reorganizing
- Or clean each file one at a time
 - do the detailed diagnostics and cross-checks with data that are in a more convenient form
- Include diagnostic plots
 - Plot stuff vs time or by batch
 - Scatterplots of different variables
 - Consider taking logs
 - Look at missing data pattern
- Explain your thought process and observations


Batch effect


Batch effect

Messed up units

Outliers

6 wk body weight (g)

- ► Be prepared for anything
- Double-check everything
- Take your time and keep things organized
- Python is a good skill to have, but you can just do R