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I’m trying to cover two things here: how to organize collaborative data analysis projects so
that they results will be reproducible, and how to capture the results of exploratory data
analysis.

The hardest part, regarding organizing projects, concerns how to coordinate with collabo-
rators: to keep data, code, and results synchronized among collaborators. The key thing is
communication, to establish shared goals and procedures.

Regarding exploratory data analysis, we want to capture the whole process: what you’re
trying to do, what you’re thinking about, what you’re seeing, and what you’re concluding
and why. And we want to do so without getting in the way of the creative process.

I’ll sketch what I try to do, and the difficulties I’ve had. But I don’t have all of the answers.



File organization and naming
are powerful weapons against chaos.

– Jenny Bryan
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You don’t need to be organized, but it sure will help others (or yourself, later), when you
try to figure out what it was that you did.

Segregate all the materials for a project in one directory/folder on your harddrive.

I prefer to separate raw data from processed data, and I put code in a separate directory.

Write ReadMe files to explain what’s what.



Organizing your stuff
Code/d3examples/

/Others/
/PyBroman/
/Rbroman/
/Rqtl/
/Rqtlcharts/

Docs/Talks/
/Meetings/
/Others/
/Papers/
/Resume/
/Reviews/
/Travel/

Play/
Projects/AlanAttie/

/BruceTempel/
/Hassold_QTL/
/Hassold_Age/
/Payseur_Gough/
/PhyloQTL/
/Tar/
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This is basically how I organize my hard drive. You want it to be clear where things are.
You shouldn’t be searching for stuff.

In my Projects/ directory, I have a Tar/ directory with tar.gz files of older projects; the
same is true for other directories, like Docs/Papers/ and Docs/Talks/.



Organizing your projects
Projects/Hassold_QTL/

Data/
Notes/
R/
R/Figs/
R/Cache/
Rawdata/
Refs/

Makefile
Readme.txt

Python/convertGeno.py
Python/convertPheno.py
Python/combineData.py

R/prepData.R
R/analysis.R
R/diagnostics.Rmd
R/qtl_analysis.Rmd
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This is how I’d organize a simple project.

Separate the raw data from processed data.

Separate code from data.

Include a Readme file and a Makefile.

I tend to reuse file names. Almost every project will have an R/prepData.R script.

Of course, each project is under version control (with git)!

R/analysis.R usually has exploratory analyses, and then there’ll be separate .Rmd files with
more finalized work.



Organizing a paper
Docs/Papers/PhyloQTL/

Analysis/
Data/
Figs/
Notes/
R/
SuppFigs/

ReadMe.txt
Makefile
phyloqtl.tex
phyloqtl.bib

Submitted/
Reviews/
Revised/
Final/
Proofs/
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This is how I organize the material for a paper.

R/ contains code for figures; Analysis/ contains other analysis code; Data/ contains data;
Figs/ contains the figures; Notes/ contains notes or references.

Of course, a Makefile for compiling the PDF, and perhaps a ReadMe file to explain where
things are.

And I’ll save the submitted version (and text files with bits for web forms at submission),
plus reviews, the revised version plus response to reviews, and then the final submitted
version and the proofs.



Organizing a talk
Docs/Talks/SampleMixups/

Figs/
R/

ReadMe.txt
Makefile
bmi2013.tex

Old/
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This is how I organize the material for a talk: much like a paper, but generally a bit simpler.

Again, R/ contains code for figures and Figs/ contains the actual figures.

And again, a Makefile for compiling the PDF, and perhaps a ReadMe file to explain where
things are.

And I’ll save all old versions in Old/



Basic principles

▶ Develop your own system
▶ Put everything in a common directory
▶ Be consistent

– directory structure; names
▶ Separate raw from processed data
▶ Separate code from data
▶ It should be obvious what code created what files, and what the

dependencies are.
▶ No hand-editing of data files
▶ Don’t use spaces in file names
▶ Use relative paths, not absolute paths

../blah not ~/blah or /users/blah
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I work on many different projects at the same time, and I’ll come back to a project 6 months
or a year later.

I don’t want to spend much time figuring out where things are and how things were created:
have a Makefile, and keep notes. But notes are not necessarily correct while a Makefile
would be.

Plan for the whole deal to ultimately be open to others: will you be proud of the work, or
embarrassed by the mess?



Your closest collaborator is you six months ago,
but you don’t reply to emails.
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I heard this from Paul Wilson, UW-Madison.

The original source is a tweet by Karen Cranston, quoting Mark Holder.

https://twitter.com/kcranstn/status/370914072511791104



Organization takes time.
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There’s no getting around the fact that doing things properly takes longer, in the short
term.

If you have a good system and good habits, it won’t seem like it takes so long.

But definitely, it’s a large up-front investment in order to potentially save a lot of time and
aggravation later.



Painful bits

▶ Coming up with good names for things
– Code as verbs; data as nouns

▶ Stages of data cleaning
▶ Going back and redoing stuff
▶ Clutter of old stuff that you no longer need
▶ Keeping track of the order of things

– dependencies; what gave rise to what
▶ Long, messy Makefiles

→ Modularity
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I don’t have many solutions to these problems. Version control helps. And try to break
things down into different stages, in case one aspect needs to be revised. Maybe use different
subdirectories for the different stages of data cleaning.

A point that was raised in the discussion: Have periodic “versions” for a project, perhaps
labeled by date. Move all the good stuff over and retire the stuff that is no longer useful or
necessary.



xkcd.com/1179
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Go with the xkcd format for writing dates, for ease of sorting.



Problem: Variations across data files

▶ Different files (or parts of files!) may have different formats.
▶ Variables (or factor levels) may have different names in different files.
▶ The names of files may inconsistent.

▶ It’s tempting to hand-edit the files. Don’t!
▶ Create another meta-data file that explains what’s what.
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Scientists aren’t trained in how to organize data.

Multiple people in a lab might have his/her own system, or an individual’s system may
change over time (or from the top to the bottom of a file!)

Create a separate file with meta-data: “These are the files. In this file, the variable is called
blah while in that file it’s blather.”

The meta-data file should be structured as data (e.g., as a comma- or tab-delimited file) for
easy parsing.



Problem: 80 million side projects

$ ls ~/Projects/Attie

AimeeNullSims/ Deuterium/ Ping/
AimeeResults/ ExtractData4Gary/ Ping2/
AnnotationFiles/ ForFirstPaper/ Ping3/
Brian/ FromAimee/ Ping4/
Chr10adipose/ GoldStandard/ Play/
Chr6_extrageno/ HumanGWAS/ Proteomics/
Chr6hotspot/ Insulin/ R/
ChrisPlaisier/ Islet_2011 -05/ RBM_PlasmaUrine/
Code4Aimee/ Lusis/ R_adipose/
CompAnnot/ MappingProbes/ R_islet/
CondScans/ Microarrays/ Rawdata/
D2O_2012 -02-14/ MultiProbes/ Scans/
D2O_Nrm_2012 -02-29/ NewMap/ SimsRePower/
D2O_cellcycle/ Notes/ Slco1a6/
D2Ocorr/ NullSims/ StudyLineupMethods/
Data4Aimee/ NullSims_2009 -09-10/ eQTLPaper/
Data4Tram/ PepIns_2012 -02-09/ transeQTL4Lude/
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This is a project-gone-wrong.

A key problem in research is that you don’t really know what you’re doing when you get
started. It seems best to separate out each side-project as a separate directory, but it can
be a nightmare to find things later.

If each of these subdirectories was nicely organized and had a ReadMe file, you could grep
your way through them.

I sort of like the idea of separate directories for the different aspects of mucking about. And
second versions are always better. Maybe we should plan to muck about separately and
then bring a more refined analysis back into a common directory?

A point raised in the discussion: Put defunct side projects into an Old/ subdirectory, and
put active but not yet clearly interesting ones into New/ or Play/. This will help to avoid
the clutter.



Saving intermediate results

R Markdown document with details of data cleaning.
▶ Within the .Rmd file, periodically save the state of things, for further

exploratory analysis.
▶ Put those intermediate files (which might be large) in a common

subdirectory.
▶ The subdirectory could be under separate version control.
▶ But you’ll need to go in there and commit files.
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I want a reproducible analysis document, but I want to be able to grab objects from the
middle of the process for further exploration. So I’ll include code chunks to save the state
of things, say in a Cache or RData subdirectory.

Subdirectories can be their own git repositories: Include that subdirectory in the .gitignore
file, and then use git init within the subdirectory.

A point raised in the discussion: how to synchronize a project between computers? If we
don’t put the intermediate files in the main repository, we can’t rely on GitHub. (For a
simple manuscript or talk, it’s okay to reconstruct things on another computer, but for big
analyses, you wouldn’t want to.) I use ChronoSync to synchronize my Mac desktop and
laptop. Maybe Dropbox or Google Drive would be useful for this. You’d still want to use
git and and GitHub, but you could supplement them by having the repository sit in your
Dropbox folder.



Problem: Coordinating with collaborators

▶ Where to put data that multiple people will work with?
▶ Where to put intermediate/processed data?
▶ Where to indicate the code that created those processed data files?
▶ How to divvy up tasks and know who did what?

▶ Need to agree on directory structure and file naming conventions
▶ Consider symbolic links for shared data directories

ln -s /z/Proj/blah
ln -s /z/Proj/blah my_blah
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Ideally, everything synchronized with git/GitHub.

The keys: planning and regular communication

Symbolic links are also called “soft links.” It’s just like a file shortcut in Windows.



Problem: Collaborators who don’t use git

▶ Use git yourself
▶ Copy files to/from some shared space

– Ideally, in an automated way
▶ Commit their changes.
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Life would be easier if all of our analysis collaborators adopted git. Teach them how?!

When I’m working with a collaborator on a paper, I may get comments from them as
a marked-up PDF. I’ll save that in the repository and will incorporate and commit the
changes in the source files, on my own.



Collaboration

▶ Do more, by working in parallel
▶ Do more, through diversity of ideas and skills
▶ Reproducible pipelines have immediate advantages
▶ Tests of reproducibility
▶ Code review
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Collaboration has a lot of advantages, including for reproducibility efforts.

It can be useful to have a pair of people regularly review each other’s code, but it can be
hard to get your busy friends to pay attention to your little project. But if you are working
together on a project, you can more naturally build in some code review.

Moreover, you can explicitly test the reproducibility of your analyses, by having your col-
laborator rerun your work, and vice versa.



Genetics of metabolic disease in mice

Alan Attie, UW-Madison, Biochemistry

Karl Broman, UW-Madison, Biostat & Med Info

Gary Churchill, Jackson Lab

Josh Coon, UW-Madison, Chemistry

Federico Rey, UW-Madison, Microbiology

Brian Yandell, UW-Madison, Statistics
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I want to motivate subsequent discussion with a particular example of a collaboration.
There are lots of people involved. A particular challenge is that there are folks from two
institutions. But even within UW-Madison, we are in five different departments, with five
separate computing systems.

Our project concerns the genetics of diabetes and obesity, using an advanced intercross
among eight strains of mice.



Diversity outbred mice
G0

A B C D E F G H

G1

G2

G10

G15

G20
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We’re using an experimental mouse population called the Diversity Outbreds, which are
derived by repeated outcrossing among eight inbred lines. We have data on 500 mice from
generations 17–23.



Data

▶ 500 DO mice
– generations 17–23
– high fat, high sugar diet

▶ GigaMUGA SNP arrays
– 140k SNPs

▶ Clinical traits
– Weekly body weight
– Glucose tolerance test
– Longitudinal serum samples
– ex vivo islet insulin secretion

▶ Islet gene expression by
RNA-seq

▶ Proteins by mass spec
▶ Lipids by mass spec
▶ Gut microbiome

– 16S RNA
– metagenomic data
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We have a large and diverse set of data on 500 DO mice who were fed a high fat, high sugar
diet. We have high-density SNP data, a variety of clinical traits, gene expression, protein,
and lipid measurements, and gut microbiome data.

Different data sets were generated at different times in different labs, and need separate
preprocessing and data cleaning procedures.



Genome scans
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Our basic analysis is to scan the genome for each trait, one at a time, assessing the association
between genotype at each position and the trait data. We look for peaks in the test statistic,
like that on chromosome 17 in the top panel.

In the lower panel, we plot all of these inferred QTL (quantitative trait loci, genetic loci
that affect quantitative traits) for about 100 or so traits. There are a lot of downstream
analyses to look at, but we’re particularly interested in diverse traits that are affected by
genotype at a common locus.



Challenges in collaborations

▶ Shared vision?
▶ Compromise
▶ Coordination
▶ Communication
▶ Sharing code and data
▶ Synchronization
▶ Weakest link?
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Collaboration also has challenges.

Do you have a shared vision for the reproducibility of the project? You’ll no doubt need to
make some compromises about how things are done: you can’t both just do things the way
you’ve always done them. Careful coordination and regular communication are key.

And then there are the technical challenges of how to share the code and data and make
sure your two working projects remain in sync.

In a sense, the reproducibility of a collaborative project is dependent on the weakest link.
If one collaborator refuses to fully participate and share their work, the chain is broken.



Challenges

(totally hypothetical)
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A collaboration like this will pose many challenges. The following are totally hypothetical.
Really.



“Could we meet to talk about the data file structure?”

“No.”
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Say the first of many sets of data are set up in a way that is complicated to handle, both in
data entry and for analysis. Will your collaborator work with you to refine things?

Or will every new data file require a day of work, so that it can be combined with prior
data?



“Wait, these results seem to be based
on the older SNP map.”
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It can be hard to keep in sync across groups in a multi-site project. If a problem is discovered
and some aspect of data preprocessing needs to be redone, will this get communicated to all
analysis teams, so that relevant analyses get rerun as needed?



“Could you write the methods section?”

“But I didn’t do the work,
and we don’t have the code that was used.”
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Are all teams sharing their work with each other?



“My data analyst has taken a job at Google.”

27

What happens if a key data analyst leaves the project?



“Could you do these analyses? X said they would,
but they’re not responding to my emails.”
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Everyone has multiple things going on, and sometimes there is need for rush analyses, say
for a grant submission or conference presentation. Is there a shared understanding of who
will do what when, and how emergencies can be handled?

The organization of a project often depends on the worst day you spent on it. If you need
to do a bunch of stuff last-minute, will you leave the project directory in a mess, or will you
clean up after yourself?



Shared vision

▶ Publication
▶ Code & data sharing
▶ Who will do what
▶ Timeline
▶ Ongoing sharing of methods, results
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Critical for a successful collaboration is that the collaborators have a shared vision for the
project. We often maybe think about being in agreement on the approach to publication
and co-authorship. But perhaps more difficult is coming to an agreement on data and code
sharing (what, where, and when?), on who will do what, on how soon it will be done, and
on the ongoing sharing, among collaborators, of detailed methods and results.



Shared workspace

▶ Project structure
▶ Data and metadata formats
▶ Software environment
▶ Automated sync (or it won’t happen)
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Also important is the technology or engineering of sharing. Can the collaborators agree on
the project structure, data and metadata formats, and the software environment?

Some groups may use R and some python. This should not pose a problem.

A key issue is how to keep the multiple groups’ work in sync. It is best that this can
be done automatically. Experience demonstrates that if synchronization approach requires
some manual steps, they will not be done consistently.



Technology for sharing

▶ Data
– figshare
– dropbox / box / google drive

▶ Code
– github / bitbucket

▶ Pipeline / workflow
– make / drake / snakemake / rake

▶ Full environment
– docker containers
– mybinder.org / wholetale.org
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I must admit to not being totally confident about what advice to give, regarding the tools
to use for sharing data and code among collaborators.

For sharing data, simple options include posting large files on a data repository like figshare,
or using cloud drive like dropbox, box, or google drive.

For sharing code, I prefer to use a version control system like git, with github, bitbucket, or
a locally-managed equivalent.

For sharing the analysis pipeline or workflow, one can incorporate a system like make (or
drake, snakemake, or rake) with the code.

The full software environment could be replicated across teams using docker containers.
Binder and Whole Tale are two systems for making this easier.



The most important tool is the mindset,
when starting, that the end product

will be reproducible.
– Keith Baggerly
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So true. Desire for reproducibility is step one.



Exploratory data analysis

▶ what were you trying to do?
▶ what you’re thinking about?
▶ what did you observe?
▶ what did you conclude, and why?
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We want to be able to capture the full outcome of exploratory data analysis.

But we don’t want to inhibit the creative flow. How to capture this stuff?



Avoid

▶ “How did I create this plot?”
▶ “Why did I decide to omit those six samples?”
▶ “Where (on the web) did I find these data?”
▶ “What was that interesting gene?”

34

I’ve said all of these things to myself.



Basic principles

Step 1: slow down and document.
Step 2: have sympathy for your future self.
Step 3: have a system.
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I can’t emphasize these things enough.

If you’re not thinking about keeping track of things, you won’t keep track of things.

One thing I like to do: write a set of comments describing my basic plan, and then fill in the
code afterwards. It forces you to think things through, and then you’ll have at least a rough
sense of what you were doing, even if you don’t take the time to write further comments.



Capturing EDA

▶ copy-and-paste from an R file
▶ grab code from the .Rhistory file
▶ Write an informal R Markdown file
▶ Write code for use with the KnitR function spin()

Comments like #' This will become text
Chunk options like so: #+ chunk_label, echo=FALSE
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There are a number of techniques you can use to capture the EDA process.

You don’t need to save all of the figures, but you do need to save the code and write down
your motivation, observations, and conclusions.

I usually start out with a plain R file and then move to more formal R Markdown or AsciiDoc
reports.



A file to spin()

#' This is a simple example of an R file for use with spin().

#' We'll start by setting the seed for the RNG.
set.seed(53079239)

#' We'll first simulate some data with x ~ N(mu=10, sig=5) and
#' y = 2x + e, where e ~ N(mu=0, sig=2)
x <- rnorm(100, 10, 5)
y <- 2*x + rnorm(100, 0, 2)

#' Here's a scatterplot of the data.
plot(x, y, pch=21, bg="slateblue", las=1)
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Here’s an example R file for use with spin().


