Organizing collaborative projects; capturing exploratory data analysis

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org github.com/kbroman @kwbroman Course web: kbroman.org/AdvData File organization and naming are powerful weapons against chaos.

– Jenny Bryan

Organizing your stuff

```
Code/d3examples/
    /Others/
    /PyBroman/
    /Rbroman/
    /Rqt1/
    /Rqtlcharts/
Docs/Talks/
    /Meetings/
    /Others/
    /Papers/
    /Resume/
    /Reviews/
    /Travel/
Play/
Projects/AlanAttie/
        /BruceTempel/
        /Hassold_QTL/
        /Hassold_Age/
        /Payseur_Gough/
        /PhyloQTL/
        /Tar/
```

Organizing your projects

```
Projects/Hassold_QTL/
    Data/
    Notes/
    R/
    R/Figs/
    R/Cache/
    Rawdata/
    Refs/
    Makefile
    Readme.txt
    Python/convertGeno.py
    Python/convertPheno.py
    Python/combineData.py
    R/prepData.R
    R/analysis.R
    R/diagnostics.Rmd
    R/qtl analysis.Rmd
```

Organizing a paper

```
Docs/Papers/PhyloQTL/
    Analysis/
    Data/
    Figs/
    Notes/
    R/
    SuppFigs/
    ReadMe.txt
    Makefile
    phyloqtl.tex
    phyloqtl.bib
    Submitted/
    Reviews/
    Revised/
    Final/
    Proofs/
```

Organizing a talk

```
Docs/Talks/SampleMixups/
Figs/
R/
ReadMe.txt
Makefile
bmi2013.tex
Old/
```

Basic principles

- Develop your own system
- Put everything in a common directory
- Be consistent
 - directory structure; names
- Separate raw from processed data
- Separate code from data
- It should be obvious what code created what files, and what the dependencies are.
- No hand-editing of data files
- Don't use spaces in file names
- Use relative paths, not absolute paths

../blah NOt ~/blah Or /users/blah

Your closest collaborator is you six months ago, but you don't reply to emails. Organization takes time.

Painful bits

Coming up with good names for things

- Code as verbs; data as nouns
- Stages of data cleaning
- Going back and redoing stuff
- Clutter of old stuff that you no longer need
- Keeping track of the order of things
 - dependencies; what gave rise to what
- Long, messy Makefiles

Painful bits

Coming up with good names for things

- Code as verbs; data as nouns
- Stages of data cleaning
- Going back and redoing stuff
- Clutter of old stuff that you no longer need
- Keeping track of the order of things
 - dependencies; what gave rise to what
- Long, messy Makefiles

\rightarrow Modularity

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE. CONFUSION. THAT'S WHY IN 1988 ISO SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

xkcd.com/1179

Problem: Variations across data files

- ► Different files (or parts of files!) may have different formats.
- Variables (or factor levels) may have different names in different files.
- ► The names of files may inconsistent.
- ► It's tempting to hand-edit the files. Don't!
- Create another meta-data file that explains what's what.

Problem: 80 million side projects

\$ ls ~/Projects/Attie

AimeeNullSims/ AimeeResults/ AnnotationFiles/ Brian/ Chr10adipose/ Chr6_extrageno/ Chr6hotspot/ ChrisPlaisier/ Code4Aimee/ CompAnnot/ CondScans/ D20 2012-02-14/ D20_Nrm_2012-02-29/ D20_cellcycle/ D2Ocorr/ Data4Aimee/ Data4Tram/

Deuterium/ ExtractData4Gary/ ForFirstPaper/ FromAimee/ GoldStandard/ HumanGWAS/ Insulin/ Islet_2011-05/ Lusis/ MappingProbes/ Microarrays/ MultiProbes/ NewMap/ Notes/ NullSims/ NullSims_2009-09-10/ PepIns 2012-02-09/

Ping/ Ping2/ Ping3/ Ping4/ Plav/ Proteomics/ R./ RBM PlasmaUrine/ R adipose/ R islet/ Rawdata/ Scans/ SimsRePower/ Slco1a6/ StudyLineupMethods/ eQTLPaper/ transeQTL4Lude/

Saving intermediate results

R Markdown document with details of data cleaning.

- Within the .Rmd file, periodically save the state of things, for further exploratory analysis.
- Put those intermediate files (which might be large) in a common subdirectory.
- ► The subdirectory could be under separate version control.
- But you'll need to go in there and commit files.

Problem: Coordinating with collaborators

- Where to put data that multiple people will work with?
- Where to put intermediate/processed data?
- Where to indicate the code that created those processed data files?
- How to divvy up tasks and know who did what?
- Need to agree on directory structure and file naming conventions
- Consider symbolic links for shared data directories

ln -s /z/Proj/blah ln -s /z/Proj/blah my_blah

Problem: Collaborators who don't use git

Problem: Collaborators who don't use git

Um...

Problem: Collaborators who don't use git

► Use git yourself

- Copy files to/from some shared space
 - Ideally, in an automated way
- ► Commit their changes.

Collaboration

- ► Do more, by working in parallel
- Do more, through diversity of ideas and skills
- ► Reproducible pipelines have immediate advantages
- Tests of reproducibility
- ► Code review

Genetics of metabolic disease in mice

Alan Attie, UW-Madison, Biochemistry

Karl Broman, UW-Madison, Biostat & Med Info

Gary Churchill, Jackson Lab

Josh Coon, UW-Madison, Chemistry

Federico Rey, UW-Madison, Microbiology

Brian Yandell, UW-Madison, Statistics

Diversity outbred mice

Data

► 500 DO mice

- generations 17-23
- high fat, high sugar diet
- GigaMUGA SNP arrays
 - 140k SNPs

Clinical traits

- Weekly body weight
- Glucose tolerance test
- Longitudinal serum samples
- ex vivo islet insulin secretion

- Islet gene expression by RNA-seq
- Proteins by mass spec
- Lipids by mass spec
- Gut microbiome
 - 16S RNA
 - metagenomic data

Genome scans

Weight change (week 11 vs 1)

Genome scans

Weight change (week 11 vs 1)

Challenges in collaborations

- ► Shared vision?
- ► Compromise
- Coordination
- ► Communication
- Sharing code and data
- ► Synchronization

Challenges in collaborations

- ► Shared vision?
- ► Compromise
- Coordination
- ► Communication
- Sharing code and data
- ► Synchronization
- ► Weakest link?

Challenges

(totally hypothetical)

"Could we meet to talk about the data file structure?"

"Could we meet to talk about the data file structure?"

"No."

"Wait, these results seem to be based on the older SNP map."

"Could you write the methods section?"

"But I didn't do the work, and we don't have the code that was used."

"My data analyst has taken a job at Google."

"Could you do these analyses? X said they would, but they're not responding to my emails."

Shared vision

- Publication
- Code & data sharing
- Who will do what
- ► Timeline
- Ongoing sharing of methods, results

Shared workspace

- Project structure
- Data and metadata formats
- Software environment
- Automated sync (or it won't happen)

Technology for sharing

Data

- figshare
- dropbox / box / google drive
- ► Code
 - github / bitbucket

► Pipeline / workflow

- make / drake / snakemake / rake

► Full environment

- docker containers
- mybinder.org/wholetale.org

The most important tool is the mindset, when starting, that the end product will be reproducible.

- Keith Baggerly

Exploratory data analysis

- what were you trying to do?
- what you're thinking about?
- ▶ what did you observe?
- ▶ what did you conclude, and why?

Avoid

- "How did I create this plot?"
- "Why did I decide to omit those six samples?"
- "Where (on the web) did I find these data?"
- "What was that interesting gene?"

Basic principles

Step 1: slow down and document.Step 2: have sympathy for your future self.Step 3: have a system.

Capturing EDA

- copy-and-paste from an R file
- ▶ grab code from the .Rhistory file
- ► Write an informal R Markdown file
- Write code for use with the KnitR function spin()

Comments like #' This will become text Chunk options like so: #+ chunk_label, echo=FALSE

A file to spin()

```
#' This is a simple example of an R file for use with spin().
#' We'll start by setting the seed for the RNG.
set.seed(53079239)
#' We'll first simulate some data with x ~ N(mu=10, sig=5) and
#' y = 2x + e, where e ~ N(mu=0, sig=2)
x <- rnorm(100, 10, 5)
y <- 2*x + rnorm(100, 0, 2)
#' Here's a scatterplot of the data.
plot(x, y, pch=21, bg="slateblue", las=1)</pre>
```