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In this lecture, we’ll look at the EM algorithm, which is a broadly useful algorithm for
getting maximum likelihood estimates. We’ll learn about it through a case study on a T
cell frequency assay, for measuring the effectiveness of a vaccine.
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We're considering an assay that seeks to estimate the frequency of T cells in a blood sample
that respond to a particular antigen. Antigens are bits of foreign protein, such as chewed-up
virus. Antigen-presenting cells take up these proteins and present them on their surface.
This ultimately leads to the proliferation of specific T cells with receptors complementary
to the antigen, which differentiate to create memory cells (which lead to a faster response
later) or effector cells (which go around destroying antigen).

The real goal was to determine whether a particular vaccine was looking to be effective by
leading to an increase in the frequency of responding T-cells.




The assay
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In the assay we're considering, you combine diluted blood cells and growth medium with
antigen and 3H-thymidine (the T in DNA, but radioactive). Replicating cells take up >H-
thymidine, and you then extract the DNA and measure the radioactivity.




Usual approaches

» Use 3 wells with antigen and 3 wells without antigen,
and take the ratio of the averages

» Limiting dilution assay
— Several dilutions of cells
— Many wells at each dilution

The usual approaches use three wells with antigen and three cells without, and just look at
like the ratio of the average response. This was viewed as too crude for the current context.

Alternatively, you could do a limiting dilution assay: use several dilutions of cells, with
many wells at each dilution. But this was viewed as requiring much more blood than the
subjects would generally be willing to offer.




Our assay
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And so our collaborator was interested in trying to get by with a single 8 x12 plate of wells,
or maybe a pair of plates, at a single dilution. There would be some control wells (with
just cells), and then a couple of sections of wells with one of the two test antigens, and then
some wells with Tetanus toxin (as a positive control; all subjects will have been exposed to
Tetanus toxin, via a tetanus vaccine). The PHA wells are another positive control.




Data
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Here’s an example data set. Higher numbers mean more radioactivity, indicating cells have
taken up *H-thymidine into their DNA.




Traditional analysis

» Split wells into +/— using a cutoff (e.g., mean + 3 SD of “cells alone”
wells)

positive = one or more responding cells
negative = no responding cells
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The tranditional analysis of such data was to split wells into positive and negative wells ac-
cording to whether they seem to have one or more responding cells, or to have no responding
cells. Assuming that the number of responding cells in a well follows a Poisson distribution,
you can use the proportion of negative cells to get an estimate of the average number of
responding cells per well.

The Poisson distribution is like a binomial(n,p) distribution where n is really large and p is
really small, with the mean of the Poisson distribution A = np.




Analysis
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Applying the simple method to the example data, we might derive a cutoff between negative
and positive wells as mean + 3 SD of the cells-alone wells. Then count the negative wells

and convert to get estimates of the number of responding cells in a well.

Ultimately, we subtract off the baseline estimate for the cells-alone wells and re-scale to

number of responders per million cells.




Problems

» Hard to choose cutoff

» Potential loss of information

But it can be hard to choose a cutoff, and there’s a potential loss of information by converting
the quantitative values into binary data.

And since we're trying to get by with just one or two plates of data at a single dilution, we
really want to try to extract as much information as possible from the observed data.
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For a couple of subjects we had a dilution

just positive/negative status of the wells.

series of data. If you look at the average re-
sponse in each section of cells by cell dilution in a subject, there is a clear dose-response
relationship which suggests that there’s more information about the cellular response than




Model
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To extract more information from the quantitative response, let’s create a model for these
observed data. It’s natural to assume that the number of responding cells in a well follows
a Poisson distribution. Let’s further assume that some transformation of the quantitative
response is linear in the number of responding cells, with normally distributed residual
variation. And partly due to the shape of the curves on the previous slide, we went with
square-root of the response.

So we have normally distributed response for wells with 0 responders, a shift upwards for
wells with 1 responder, etc. The overall response distribution is a “mixture” of these normally
distributed components, with the relative proportions of the components being according to
the Poisson probabilities.




log Likelihood
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Our goal is to get estimates of the mean numbers of responding cells in each group of wells,
as well as the plate-specific parameters a, b, and o.

We can write down the likelihood for the data; optimizing this likelihood would give us the
MLESs for the parameters.




EM algorithm

» lterative algorithm useful when there is missing data that if observed
would make things easy

Dempster et al. (1977) JRSS-B 39:1-22 doi.org/gfxzrv

Start with some initial estimates

>

>

» E-step: expected value of missing data given current estimates
» M-step: MLEs replacing missing data with their expected values
>

Advantages
— often easy to code
— super stable
— log likelihood is non-decreasing

The EM algorithm is a particular optimization method for getting the MLEs that is useful
in this sort of situation where we have missing data (the k’s). If we knew the number of
responding cells in each well, we could estimate the averages by just taking the averages of
the K’s in each group, and we could estimate a, b, and o by linear regression of the responses
on the K’s.

Not knowing the K’s, the EM algorithm works by iterating between an E step (where you
get expected values for the K’s, given the observed data and given current estimates of
the parameters) and an M step (where you derive new and improved estimates, using the
expected values of the k’s in place of their true (but unknown) values.

The EM algorithm has a number of advantages: it is often easy to implement in software,
it can be super stable (meaning no matter what starting values you use, the algorithm will
converge to some finite values that are at least reasonable), and it can be proven that across
iterations, the log likelihood is non-decreasing.
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For this particular model, the idea is to calculate expected values for the k’s given the
observed data and given current values for the parameters, using Bayes’s rule. (In practice,
the sums go up to some maximum K, like 20, where the posterior probability for k has gotten
really small.)

At the M step, you then take averages of these values, and regression y on these values.

Go back and forth between the two steps until the estimates converge.




Oops, that didn’t work
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Here’s the log likelihood plotted against iteration. As you can see, the thing didn’t really
work as it should have. The log likelihood is going up and down rather than being non-
decreasing, as I said it should be.




EM algorithm, more formally

» Calculate expected complete-data log likelihood, given observed data
and observed parameters, and then maximize that.

I)(0) = E{log f(y. k|0)|y, 0}

» In practice, it's usually a linear combination of the sufficient statistics,
so you focus on those.

» Here, we need not just >"k and > ky, but also >~ k2.
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It turns out that, formally, you need to calculate the expected value of the complete-data
log likelihood function. In practice, this is a linear combination of the sufficient statistics.

And in this situation the sufficient statistics include not just Yk and >~ ky, but also >_ k2.
Note taking account of > k? was our problem, as E(k?) # [E(k)]?.
This took a while for me to figure out, as I initially thought there was a bug in my code,

but really there was a bug in my understanding of the EM algorithm. Calculating the log
likelihood and following it by iteration was a super-useful diagnostic.




EM algorithm, again
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Going back to the EM algorithm, we need to include the calculation of the expected value of
k? given the observed data and given the parameter estimates. This is easy enough, because
it’s just like calculation the expected value of k.

More difficult is that the linear regression part of the M step involves sort of going back-to-
basics. You need to figure out where the k? values enter into things and plug in E(k) for k
and E(k?) for k2.

I think the easiest way to do this is to look at the X’X matrix, which will be 2x2, and stick
the E(k?) values in there.




Ah, that’s better
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Having corrected our algorithm, here is the trace of the log likelihood by iteration. Non-

decreasing, as it should be.




Difficulties

» Starting values

» Multiple modes
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The EM algorithm may sound great, but I’ve swept some important difficulties under the
rug.

First, we need starting values. How do we get those? The easiest way is to use our crude
method of splitting wells into positive/negative; that will give us some estimates of the A
values. We can look at the relationship between the average responses and those \’s to get
estimates of a, b, and o.

More difficult is that while the EM algorithm will converge to something, it won’t necessarily
converge to the global MLEs. There can be multiple modes in the likelihood surface. A
solution to this is to use lots of random starting points and pick the best of the converged
estimates.




Multiple modes
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Here’s a particular example. I initiated the EM algorithm at 1000 different random starting
points, and it converged to 8 different sets of estimates.




Multiple modes

Ao AD B AT a b o log lik no. hits
1 032 3.03 282 437 16.73 10.34 3.52 -289.73 331
2 118 540 495 749 1216 6.69 2.15 -289.80 26
3 0.17 210 195 3.07 17.44 1456 4.18 -290.50 415
4 051 389 356 558 1572 8.35 3.58 -290.70 180
5 073 462 425 658 1458 7.27 3.43 -291.08 30
6 1.64 6.79 6.29 935 10.81 551 1.89 -291.40 7
7 157 622 580 861 10.60 6.02 2.13 -291.59 10
8 259 776 725 10.34 575 547 1.88 -292.27 1
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Here are the 8 modes we found, along with their log likelihood and the numbers of times

they were hit, out of 1000.

This is maybe a bit concerning. Actually, it is quite concerning. Our estimated mode has
estimated \’s around 3, but there’s another mode just slightly lower in likelihood that has
the estimates around 5, and another mode just below that with estimates at 2.

The model is great, but the data aren’t quite sufficient to fit it, is what you might conclude.
The different modes here have a lot in common with that choice of cutoff in the traditional

approach to analyzing these sort of data.




Estimate vs. starting point
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Here’s a plot of the estimates vs the starting value that I had used for that parameter. Each
panel is one parameter and the 1000 points are the 1000 starting points. As you can see, for
most of the parameters there seems no real relationship between where you start and where
you end up.

But the b parameter (slope in response vs responding cells) shows a very strong relationship:
the initial value for b has a big effect on where you end up.




Principles

» Start with an understanding of the problem and data

» Think about a model for the data-generating process
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Some important principles that were guiding this work: start with an understanding of the
problem and the data, and think about a model for the data-generating process. That led
us to this normal /Poisson mixture model.




Lessons

» The EM algorithm is really useful

» Use the log likelihood as a diagnostic when implementing an EM
algorithm
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And what have we learned? The EM algorithm is really useful, and you should use the log
likelihood as a diagnostic when implementing it.




Software development time

» Formulating the problem
» Writing the code
» Debugging the code

» Executing the code
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Real selling points for the EM algorithm come up when you look at the time involved in
writing a program to give parameter estimates. Programming time includes the time to
formulate the problem, the time to write the code, debug the code, and execute the code.

Where the EM algorithm really shines is on the “writing the code” and “debugging the
code” sections. The EM algorithm is often rather simple to code, and it comes with a
built-in diagnostic.




Impact

» I'm pretty sure that the vaccine they were working on didn’t work well.

» R package npem, but | never put it on CRAN, and no one has ever
asked me about it.

» Our paper has like 9 citations: no one has ever really used the method.

26

What can we say about the impact of this work?

It didn’t seem to have much impact, I think. The vaccine we were studying didn’t seem to
be very effective.

The R package I wrote, implementing the method, is on GitHub, but I never did put it on
CRAN. I distributed it just through my personal web site. No one has ever asked me about
it, so probably it has never been used.

The paper we wrote about this work has just like 9 citations. No one has every really used
the method. Bummer.




Further things

» Standard errors should always be required.

— But usually painful to obtain
— We used the SEM algorithm of Meng and Rubin (1991) doi.org/dk27

» Could more formally investigate the appropriate transformation

— See Box and Cox (1964) doi.org/gfrhvs
— Box-Cox transformation is g(y) = (¥ — 1)/cforc #0and = logy forc =0
— Key issue is change-of-variables in the density; as a result you add

>_j(c —1)logyj to the log likelihood
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A couple of further points. Standard errors should always be required. If you give an
estimate, you need to give a standard error. Getting standard errors here is a bit painful.
We used the SEM algorithm, which uses the rate of convergence of EM. It’s a bit clunky, but
it doesn’t require writing a whole lot of new code, and it seems to give reasonable results.

Further, we could more formally investigate the appropriate transformation. See the Box
and Cox (1964) paper, The key issue is the change-of-variables in the density, so that you
have to add a quantity to the log likelihood. It’s slightly tricky to get right, but it is a nice
way to use the data to determine the appropriate transformation.




