Computer simulations

The genomes of recombinant inbred lines

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org github.com/kbroman @kwbroman Course web: kbroman.org/AdvData

daviddeen.com

Intercross

QTL mapping

Congenic line

Advanced intercross lines

Recombinant inbred lines

Recombinant inbred lines

Collaborative Cross

MAGIC

 \times

 \mathbf{V}

 \downarrow

V/

Heterogeneous stock

Collaborative Cross

Recombination fraction

r is the "recombination fraction"

Simulation results

Haldane & Waddington 1931

INBREEDING AND LINKAGE*

J. B. S. HALDANE AND C. H. WADDINGTON

John Innes Horticultural Institution, London, England

Received August 9, 1930

TABLE OF CONTENTS

Self-fertilization	358
Brother-sister mating. Sex-linked genes	360
Brother-sister mating. Autosomal genes	364
Parent and offspring mating. Sex-linked genes	367
Parent and offspring mating. Autosomal genes	368
Inbreeding with any initial population	370
Double crossing over	372
DISCUSSION	373
SUMMARY	374
LITERATURE CITED	374

PACE

Result for selfing

Then
$$\mathbf{c}_n + \lambda \mathbf{d}_n \equiv \mathbf{c}_n + \frac{1}{4}(1 - 2\mathbf{x})\mathbf{d}_n + \frac{1}{2}\lambda(1 - 2\mathbf{x})\mathbf{d}_n$$

$$\therefore \ \lambda = \frac{1 - 2\mathbf{x}}{2 + 4\mathbf{x}} \cdot$$

Then since $d_{\infty} = 0$, and $c_1 = 0$, $d_1 = 2$,

$$c_{\infty} = c_{\infty} + \lambda d_{\infty} = c_1 + \lambda d_1 = \frac{1 - 2x}{1 + 2x}$$

Put $y = D_{\infty}$ (the final proportion of crossover zygotes)

$$\therefore C_{\infty} + D_{\infty} = 1, C_{\infty} - D_{\infty} = c_{\infty} \therefore y = \frac{1}{2}(1 - c_{\infty}).$$

$$\therefore y = \frac{2x}{1 + 2x}.$$
(1.3)

Result for sib-mating

Omitting some rather tedious algebra, the solution of these equations is:

$$\zeta = \frac{q}{2 - 3q}, \quad \theta = \frac{2q}{2 - 3q}, \quad \kappa = \frac{1}{2 - 3q},$$
$$\lambda = \frac{1 - 2q}{2 - 3q}, \quad \mu = \frac{1 - 2q}{2 - 3q}, \quad \nu = \frac{2q}{2 - 3q}$$

as may easily be verified.

$$\therefore c_{\infty} = c_{n} + 2e_{n} + \frac{1}{1+6x} [(1-2x)(d_{n} + 2f_{n} + 2j_{n} + \frac{1}{2}k_{n}) + 2g_{n} + 4x(h_{n} + i_{n})]$$
(3.4)

and $y = \frac{1}{2}(1 - c_{\infty})$.

In the case considered, $d_0 = 1, \therefore c_{\infty} = \zeta d_0 = 1 - 2x/1 + 6x$. Hence the proportion of crossover zygotes, y = 4x/1 + 6x (3.5).

Result for sib-mating

Omitting some rather tedious algebra, the solution of these equations is:

$$\zeta = \frac{q}{2 - 3q}, \quad \theta = \frac{2q}{2 - 3q}, \quad \kappa = \frac{1}{2 - 3q},$$
$$\lambda = \frac{1 - 2q}{2 - 3q}, \quad \mu = \frac{1 - 2q}{2 - 3q}, \quad \nu = \frac{2q}{2 - 3q}$$

as may easily be verified.

$$\therefore c_{\infty} = c_{n} + 2e_{n} + \frac{1}{1+6x} [(1-2x)(d_{n} + 2f_{n} + 2j_{n} + \frac{1}{2}k_{n}) + 2g_{n} + 4x(h_{n} + i_{n})]$$
(3.4)

and $y = \frac{1}{2}(1 - c_{\infty})$.

In the case considered, $d_0 = 1, \therefore c_{\infty} = \zeta d_0 = 1 - 2x/1 + 6x$. Hence the proportion of crossover zygotes, y = 4x/1 + 6x (3.5).

Simulation results

Non-linear regression

Non-linear regression

	Estimate	Std.	Error
а	7.016		0.011
b	6.023		0.016

Non-linear regression

					More	data	
	Estimate	Std.	Error		Estimate	Std.	Error
а	7.016		0.011	a	7.003		0.008
b	6.023		0.016	b	6.005		0.012

Simulation results

Markov chain

- Sequence of random variables $\{X_0, X_1, X_2, ...\}$ satisfying $Pr(X_{n+1} \mid X_0, X_1, ..., X_n) = Pr(X_{n+1} \mid X_n)$
- Transition probabilities $P_{ij} = Pr(X_{n+1} = j | X_n = i)$
- Here, X_n = "parental type" at generation n.
- ► We are interested in absorption probabilities

 $\pi_j = \mathsf{Pr}(\mathsf{X}_\mathsf{n} \to \mathsf{j} \mid \mathsf{X}_\mathsf{0})$

Absorption probabilities

Consider the case of absorption into the state $\begin{array}{c|c} A & A \\ A & A \end{array}$ (write this AA|AA)

Let h_i = probability, starting at i, of being absorbed into AA|AA.

Then $h_{AA|AA} = 1$ and $h_{AB|AB} = 0$.

Condition on the first step: $h_i = \sum_k P_{ik} h_k$

For selfing, this gives a system of 3 linear equations.

Equations for selfing

C. AABB and aabb. D. AAbb and aaBB. or C_{n+1}, D_{n+1}, and F_{n+1}, G_{n+1}, E. AABb, AaBB, Aabb, and aaBb. F. AB.ab. G. Ab.aB. d_n (1.2)We assume $2C_n + 2D_n + 4E_n + F_n + G_n = 2$, so that $C_1 = D_1 = E_1 = G_1 = 0$. and $F_1 = 2$. Clearly $E_{\infty} = F_{\infty} = G_{\infty} = 0$, and D_{∞} is the final proportion of all values of n. crossover zygotes. Then considering the results of selfing each generation, $2x)d_n$ we have: $C_{n+1} = C_n + \frac{1}{2}E_n + \frac{1}{4}(1 - \beta - \delta + \beta\delta)F_n + \frac{1}{4}\beta\delta G_n$ $D_{n+1} = D_n + \frac{1}{2}E_n + \frac{1}{2}\beta\delta F_n + \frac{1}{2}(1 - \beta - \delta + \beta\delta)G_n$ $E_{n+1} = \frac{1}{2}E_n + \frac{1}{4}(\beta + \delta - 2\beta\delta)(F_n + G_n)$ (1.1) $F_{n+1} = \frac{1}{2}(1 - \beta - \delta + \beta\delta)F_n + \frac{1}{2}\beta\delta G_n$ $G_{n+1} = \frac{1}{2}\beta\delta F_n + \frac{1}{2}(1-\beta-\delta+\beta\delta)G_n$ Put $v = D_{\infty}$ (the final proportion of crossover zygotes) $\therefore C_m + D_m = 1, C_m - D_m = c_m \therefore y = \frac{1}{2}(1 - c_m).$ 2x(1.3): v = -1 + 2x

Equations for sib-mating

Typical mating	Number of types						
AABB×AABB	2	$C_{n+1} = C_n + H + \frac{1}{2} (\alpha^2 + \gamma^3) L + \frac{1}{2} (\beta^2 + \delta^3) N + \frac{1}{2} Q + \frac{1}{2} R + \frac{1}{2} (\alpha^2 + \gamma^3) \\ U + \frac{1}{2} (\beta^2 + \delta^3) V + \frac{1}{2} (\alpha^2 + \gamma^3) L + \frac{1}{2} (\beta^2 + \delta^3) N + \frac{1}{2} Q + \frac{1}{2} \delta^2 \beta^2 + \frac{1}{2} \delta^2 \gamma^3 N + \frac{1}{2} \delta^2 \beta^2 + \frac{1}{2} \delta^2 \gamma^3 N + \frac{1}{2} \delta^2 \beta^2 + \frac{1}{2} \delta^2 \gamma^3 N + \frac{1}{2} \delta^2 \beta^2 + \frac{1}{2} \delta^2 \gamma^3 N + \frac{1}{2} \delta^2 \beta^2 + \frac{1}{2} \delta^2 \gamma^3 N + \frac{1}{2} \delta^2 \beta^2 + \frac{1}{2} \delta^2 \gamma^3 N + \frac{1}{2} \delta^2 \gamma^$					
AAbb imes AAbb	2	$D_{n+1} = D + I + \frac{1}{4}$ $U + \frac{1}{2}(\alpha^2 + \gamma^3)^2$	$(\alpha^2 + \gamma^2)$ M $+ \frac{1}{4}(\beta^2 + \delta^2)$ P $+ \frac{1}{4}\beta^2\delta^2$ W $+ \frac{1}{2\pi}(\alpha^2\delta^2 +$	++Q++S+	$\frac{1}{2}(\beta^2 + \delta^2)$ $\alpha^2 \gamma^4 \nabla$.		
AABB×aabb	2	$E_{n+1} = \frac{1}{\sqrt{2}}\alpha^2 \gamma^2 W$	$+\frac{1}{16}(\alpha^2\delta^2+\beta^2\gamma^2)X+\frac{1}{16}\beta$	δ2Y.			
AAbb×aaBB	2	$F_{n+1} = \frac{1}{16}\beta^2 \delta^2 W$ -	$+\frac{1}{16}(\alpha^2 \delta^2 + \beta^2 \gamma^2)X + \frac{1}{16}\alpha^3$	YºY.			
AABB×AAbb	8	$G_{n+1} = \frac{1}{16}(\alpha\beta + \gamma)$	δ)(U+V)+ $\frac{1}{12}\alpha\beta\gamma\delta$ (W-	+2X+Y).			
AABB×AABb	8	$H_{n+1} = \frac{1}{2}H$ $U + \frac{1}{16}($ $(\alpha \delta + \beta)$	Typical	Number	4 (4, 1)		
AAbb×AABb	8	$I_{n+1} = \frac{1}{2}I + U + \frac{1}{16}($	AABB×Ab.aB AAbb×AB.ab	4 4	$\begin{split} N_{n+1} = \frac{1}{4} R + \frac{1}{4} (\alpha \beta + \gamma \delta) (U+V) + \frac{1}{4} \alpha \beta \gamma \delta (W+2X+Y). \\ P_{n+1} = \frac{1}{4} S + \frac{1}{4} (\alpha \beta + \gamma \delta) (U+V) + \frac{1}{4} \alpha \beta \gamma \delta (W+2X+Y). \end{split}$		
AABB imes Aabb	8	$J_{n+1} = \frac{1}{16} (c_{\beta\delta})(\alpha\delta)$	AABb×AABb	4	$Q_{n+1} = 2G + \frac{1}{2}(H + I + J + K) + \frac{1}{4}(\alpha^2 + \gamma^3)(L + M) + \frac{1}{4}(\beta^2 + \delta^3)$ (N+P) + $\frac{1}{4}Q + \frac{1}{6}(R + S + T) + \frac{1}{4}(\alpha^2 + \alpha\beta + \beta^3 + \gamma^3 + \gamma^3 + \delta^3)$		
AAbb×AaBB	8	$\begin{array}{c} \mathbf{K}_{n+1} = \frac{1}{16} \\ \beta \delta \right) (\alpha \delta \cdot \mathbf{I}_{n+1}) \\ \end{array}$	AABb×AaBB	4	$(\mathbf{U}+\mathbf{V})+\frac{1}{45}(\alpha\delta+\beta\gamma)^3(\mathbf{W}+\mathbf{Y})+\frac{1}{5}(\alpha\gamma+\beta\delta)^3\mathbf{X},$ $\mathbf{R}_{n+1}=\frac{1}{2}(\beta^3+\delta^3)\mathbf{L}+\frac{1}{4}(\alpha^3+\gamma^3)\mathbf{N}+\frac{1}{3}\mathbf{R}+\frac{1}{4}(\beta+\delta)\mathbf{U}+\frac{1}{4}(\alpha+\gamma)\mathbf{V}+\frac{1}{2}(\alpha$		
AABB×AB.ab	4	$L_{n+1} = \frac{1}{4} (\alpha \alpha^2 \gamma^2 W -$	AABb×Aabb	4	$\frac{1}{16}(\alpha\delta+\beta\gamma)(W+1) + \frac{1}{8}(\alpha\gamma+\beta\delta)A.$ $S_{n+1} = \frac{1}{2}(\beta^2+\delta^3)M + \frac{1}{2}(\alpha^2+\gamma^3)P + \frac{1}{8}S + \frac{1}{8}(\alpha+\gamma)U + \frac{1}{8}(\beta+\delta)V + \frac{1}{16}$		
$AAbb \times Ab.aB$	4	Mn+1=1($(\alpha\delta + \beta\gamma)^2(W+Y) + i(\alpha\gamma + \beta\delta)^2X.$		
		β°δ2W-	$AABb \times aaBb$	4	$T_{n+1} = \frac{1}{6} (\alpha \beta + \gamma \delta) (U + V) + \frac{1}{16} (\alpha \delta + \beta \gamma)^{\alpha} (W + Y) + \frac{1}{6} (\alpha \gamma + \beta \delta)^{\alpha} \Lambda.$		
			AABb×AB.ab	8	$U_{n+1} = \frac{1}{2} J + \frac{1}{4} (\alpha\beta + \gamma\delta) (L+N) + \frac{1}{4} (S+1) + \frac{1}{4} (\alpha + \gamma) (J + \frac{1}{4} \beta\delta) (\beta\gamma + \alpha\delta) V + \frac{1}{4} (\alpha\gamma + \beta\delta) (\alpha\delta + \beta\gamma) X + \frac{1}{4} \beta\delta(\beta\gamma + \alpha\delta) Y.$		
			AABb×Ab.aB	8	$V_{n+1} = \frac{1}{2}K + \frac{1}{4}(\alpha\beta + \gamma\delta)(M+P) + \frac{1}{8}(R+T) + \frac{1}{8}(\beta + \delta)U + \frac{1}{8}(\alpha + \gamma)$ $V + \frac{1}{8}\beta\delta(\beta\gamma + \alpha\delta)W + \frac{1}{8}(\alpha\gamma + \beta\delta)(\alpha\delta + \beta\gamma)X + \frac{1}{8}\alpha\gamma(\beta\gamma + \alpha\delta)Y.$		
			$AB.ab \times AB.ab$	1	$ \begin{split} W_{n+1} &= 2(E+J) + \frac{1}{2}(\alpha^2 + \gamma^2)L + \frac{1}{2}(\beta^2 + \delta^2)N + \frac{1}{4}(S+T) + \frac{1}{4}(\alpha^2 + \gamma^2) \\ U &+ \frac{1}{2}(\beta^2 + \delta^2)V + \frac{1}{4}\alpha^2 \gamma^2 W + \frac{1}{4}(\alpha^2 \delta^2 + \beta^2 \gamma^2)X + \frac{1}{4}\beta^2 \delta^2 Y. \end{split} $		
			$AB.ab \times Ab.aB$	2	$X_{n+1} = \frac{1}{2}T + \frac{1}{2}(\alpha\beta + \gamma\delta)(U+V) + \frac{1}{2}\alpha\beta\gamma\delta(W+2X+Y).$		
			Ab.aB×Ab.aB	1	$\begin{split} Y_{n+1} = & 2(F+K) + \frac{1}{4}(\alpha^5 + \gamma^5) M + \frac{1}{2}(\beta^5 + \delta^3) P + \frac{1}{4}(R+T) + \frac{1}{4}(\beta^2 + \delta^2) U + \frac{1}{4}(\alpha^2 + \gamma^5) V + \frac{1}{4}\beta^2 \delta^5 W + \frac{1}{4}(\alpha^2 \delta^2 + \beta^2 \gamma^3) X + \frac{1}{4}\alpha^2 \gamma^2 Y. \end{split}$		

Result for sib-mating

Omitting some rather tedious algebra, the solution of these equations is:

$$\zeta = \frac{q}{2 - 3q}, \quad \theta = \frac{2q}{2 - 3q}, \quad \kappa = \frac{1}{2 - 3q},$$
$$\lambda = \frac{1 - 2q}{2 - 3q}, \quad \mu = \frac{1 - 2q}{2 - 3q}, \quad \nu = \frac{2q}{2 - 3q}$$

as may easily be verified.

$$\therefore c_{\infty} = c_{n} + 2e_{n} + \frac{1}{1+6x} [(1-2x)(d_{n} + 2f_{n} + 2j_{n} + \frac{1}{2}k_{n}) + 2g_{n} + 4x(h_{n} + i_{n})]$$
(3.4)

and $y = \frac{1}{2}(1 - c_{\infty})$.

In the case considered, $d_0 = 1, \therefore c_{\infty} = \zeta d_0 = 1 - 2x/1 + 6x$. Hence the proportion of crossover zygotes, y = 4x/1 + 6x (3.5).

3-point coincidence

► r_{ij} = recombination fraction for interval (i, j) Assume $r_{12} = r_{23} = r$.

Coincidence = c = Pr(double recombinant)/r²
 = Pr(rec'n in 23 | rec'n in 12)/Pr(rec'n in 23)

- No interference = 1
 Positive interference < 1
 Negative interference > 1
- Generally c is a function of r

Coincidence

Coincidence

r

28

Coincidence in 8-way RILs

- The trick that allowed us to get the coincidence for 2-way RILs doesn't work for 8-way RILs.
- ► It's sufficient to consider 4-way RILs.
- Calculations for 3 points in 4-way RILs is still astoundingly complex.
 - 2 points in 2-way RILs by sib mating:
 55 parental types → 22 states by symmetry
 - 3 points in 4-way RILs by sib mating:
 - 2,164,240 parental types \rightarrow 137,488 states by symmetry
- Even counting the states was difficult.

Coincidence

r

The formula

$$C = \frac{(1+6r)[280+1208r-848r^2+5c(7-28r-368r^2+344r^3)-2c^2(49-324r+452r^2)r^2-16c^3(1-2r)r^4]}{49(1+12r-12cr^2)[5+10r-4(2+c)r^2+8cr^3]}$$

3-point symmetry

$Pr(M_2 = x \mid M_1 = A, M_2 \neq A, M_3 = A)$

$$og_{2}\left\{ \frac{Pr(M_{3}=A \mid M_{2}=C,M_{1}=x)}{Pr(M_{3}=A \mid M_{2}=C)} \right\}$$

$$og_{2}\left\{ \frac{Pr(M_{3}=A \mid M_{2}=E,M_{1}=x)}{Pr(M_{3}=A \mid M_{2}=E)} \right\}$$

Whole genome simulations

- 2-way selfing, 2-way sib-mating, 8-way sib-mating
- ► Mouse-like genome, 1665 cM
- Strong positive crossover interference
- Inbreed to complex fixation
- ► 10,000 simulation replicates

No. generations to fixation

No. generations

No. generations to 99% fixation

No. generations

Percent genome not fixed

No. generations

No. breakpoints

No. breakpoints

Segment lengths

Segment lengths (cM)

Segment lengths

Segment lengths (cM)

Probability a segment is inherited intact

Length of segment (cM)

Length of smallest segment

Length of smallest segment (cM)

No. segments < 1 cM

No. segments < 1 cM

Collaborative Cross

The PreCC

What happens at G_2F_k ?

 $\begin{array}{ll} \mbox{Pr}(g_1=i) & \mbox{ as a function of } k \\ \mbox{Pr}(g_1=i,g_2=j) & \mbox{ as a function of } k \mbox{ and the recombination fraction} \end{array}$

Crazy table

Chr.	Individual	Prototype	No. states	Probability of each
A	Random	AA	4	$\frac{1}{4(1+6r)} - \left[\frac{6r^2 - 7r - 3r_3}{4(1+6r)s}\right] \left(\frac{1 - 2r + s}{4}\right)^k + \left[\frac{6r^2 - 7r + 3r_3}{4(1+6r)s}\right] \left(\frac{1 - 2r - s}{4}\right)^k$
		AB	4	$\frac{r}{2(1+6r)} + \left[\frac{10r^2 - r - rs}{4(1+6r)s}\right] \left(\frac{1-2r+s}{4}\right)^k - \left[\frac{10r^2 - r + rs}{4(1+6r)s}\right] \left(\frac{1-2r-s}{4}\right)^k$
		AC	8	$\frac{r}{2(1+6r)} - \left[\frac{2r^2 + 3r + rs}{4(1+6r)s}\right] \left(\frac{1-2r+s}{4}\right)^k + \left[\frac{2r^2 + 3r - rs}{4(1+6r)s}\right] \left(\frac{1-2r-s}{4}\right)^k$
х	Female	AA	2	$\frac{1}{3(1+4r)} + \frac{1}{6(1+r)} \left(-\frac{1}{2}\right)^k - \left[\frac{4r^3 - (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r+t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k + \left[\frac{4r^3 + (4r^2 + 3r)t + 3r^2 - 5r}{4(4r^2 + 5r + 1)t}\right] \left(\frac{1-r^2 + 3r^2 + 5r}{4(4r^2 + 5r + 1)t}\right)^k + \left(\frac{1-r^2 + 5r}{4(4r^2 + 5r + 1)t}\right)^k + \left(1-r^$
		AB	2	$\frac{2r}{3(1+4r)} + \frac{r}{3(1+r)} \left(-\frac{1}{2}\right)^k + \left[\frac{2r^3 + 6r^2 - (2r^2 + r)t}{2(4r^2 + 5r + 1)t}\right] \left(\frac{1-r+t}{4}\right)^k - \left[\frac{2r^3 + 6r^2 + (2r^2 + r)t}{2(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k$
		AC	4	$\frac{2r}{3(1+4r)} - \frac{r}{6(1+r)} \left(-\frac{1}{2} \right)^k - \left[\frac{9r^2 + 5r + rt}{4(4r^2 + 5r + 1)t} \right] \left(\frac{1-r+t}{4} \right)^k + \left[\frac{9r^2 + 5r - rt}{4(4r^2 + 5r + 1)t} \right] \left(\frac{1-r-t}{4} \right)^k$
		сс	1	$\frac{1}{3(1+4r)} - \frac{1}{3(1+r)} \left(-\frac{1}{2}\right)^k + \left[\frac{9r^2 + 5r + rt}{2(4r^2 + 5r + 1)t}\right] \left(\frac{1-r+t}{4}\right)^k - \left[\frac{9r^2 + 5r - rt}{2(4r^2 + 5r + 1)t}\right] \left(\frac{1-r-t}{4}\right)^k$
х	Male	AA	2	$\frac{1}{3(1+4r)} - \frac{1}{3(1+r)} \left(-\frac{1}{2}\right)^k + \left[\frac{h^2 - (8r^3 + r^2 - 3r)t - 10r^2 + 5r}{2(4r^4 - 35r^3 - 29r^2 + 15r + 5)}\right] \left(\frac{1 - r + t}{4}\right)^k + \left[\frac{h^2 + (8r^3 + r^2 - 3r)t - 10r^2 + 5r}{2(4r^4 - 35r^3 - 29r^2 + 15r + 5)}\right] \left(\frac{1 - r - t}{4}\right)^k$
		AB	2	$\frac{2r}{3(1+4r)} - \frac{2r}{3(1+4r)} \left(-\frac{1}{2} \right)^k + \left[\frac{r^4 + (5r^3 - r)t - 10r^3 + 5r^2}{4r^4 - 35r^3 - 29r^2 + 15r + 5} \right] \left(\frac{1 - r + t}{4} \right)^k + \left[\frac{r^4 - (5r^3 - r)t - 10r^3 + 5r^2}{4r^4 - 35r^3 - 29r^2 + 15r + 5} \right] \left(\frac{1 - r - t}{4} \right)^k$
		AC	4	$\frac{2r}{3(1+4r)} + \frac{r}{3(1+r)} \left(-\frac{1}{2}\right)^k - \left[\frac{2r^4 + (2r^3 - r^2 + r)t - 19r^3 + 5r}{2(4r^4 - 35r^3 - 29r^2 + 15r + 5)}\right] \left(\frac{1 - r + t}{4}\right)^k - \left[\frac{2r^4 - (2r^3 - r^2 + r)t - 19r^3 + 5r}{2(4r^4 - 35r^3 - 29r^2 + 15r + 5)}\right] \left(\frac{1 - r - t}{4}\right)^k$
		сс	1	$\frac{1}{3(1+4r)} + \frac{2}{3(1+r)} \left(-\frac{1}{2}\right)^k + \left[\frac{2r^4 + (2r^3 - r^2 + r)t - 19r^3 + 5r}{4r^4 - 35r^3 - 29r^2 + 15r + 5}\right] \left(\frac{1 - r + t}{4}\right)^k + \left[\frac{2r^4 - (2r^3 - r^2 + r)t - 19r^3 + 5r}{4r^4 - 35r^3 - 29r^2 + 15r + 5}\right] \left(\frac{1 - r - t}{4}\right)^k$

Table 4 Two-locus haplotype probabilities at generation F_k in the formation of four-way RIL by sibling mating

 $s = \sqrt{4r^2 - 12r + 5}$ and $t = \sqrt{r^2 - 10r + 5}$; the autosomal haplotype probabilities are valid for $r < \frac{1}{2}$.

Computer simulations are hugely valuable.

Uses of simulations

- Study probabilities
- Estimate power/sample size
- Evaluate performance of a method
- Evaluate sensitivity/robustness of a method

Relative advantages?

- Simulations
- Numerical calculations
- Analytic calculations

References

- Haldane & Waddington (1931) Inbreeding and Linkage. Genetics 16:357–374
- Broman KW (2005) The genomes of recombinant inbred lines. Genetics 169:1133–1146
- Teuscher & Broman (2007) Haplotype probabilities for multiple-strain recombinant inbred lines. Genetics 175:1267–1274
- Broman KW (2012) Genotype probabilities at intermediate generations in the construction of recombinant inbred lines. Genetics 190:403–412
- Broman KW (2012) Haplotype probabilities in advanced intercross populations. G3 2:199–202