
INTRO AND RECAP

Welcome to day 2! Today, R. But first, recap yesterday.

First, we learned about managing spreadsheets--make a single rectangle, rows = observations, columns =
variables. Header row at top, informative names w/ no spaces. Only 1 type of data per cell. Fill all cells with
something, esp. where data are missing. Code missing data consistently. Consider storing dates as separate
day/m/y. Keep raw data files clean--don’t do calcs in them. Save data as csv so they’re transferable and always
openable. Lastly, don’t use color or highlighting--store that information instead.

Next, OpenRefine for exploring and cleaning. Don’t edit raw! Use facets + filters to explore. Use OR to
split columns easily, remove extra blank spaces, and find outliers. Reproducible, so fast to apply again.

Then, SQL. Quickly explore, manipulate, and summarize databases. Keywords: SELECT to choose
columns, FROM to specify data tables, WHERE to select specific rows, ORDER BY to sort, GROUP BY to
organize results by a group, COUNT and SUM to summarize by groups, and JOIN ON to link data together.

Today, learning R. In a bit, we’ll see dplyr, a set of tools for data manipulation, very similar to SQL (many
same or similar keywords).

Before R, organizing project files. Data projects are often chaos. Org is the enemy of chaos!

Here’s what we recommend: All files in common folder (called “directory”). Have separate folders for raw vs.
clean data. Have separate folder for R code and files and for products of SQL. Make file names meaningful
(i.e. searchable), sortable, & consistent! For example, dates with year, then 2 digit month, then day.

Remember, you are your closest collaborator! We often must pick analyses back up later--don’t be a bad
collaborator with self! Keep things organized.

INTRO R

Ok, now R. Good place to start--what is R, anyway?

Programming language. Fairly old. Designed with data processing and analysis in mind. Importantly,
though, also program fluent in R. Good news--if we learn to put wishes in R, R can put our computer to work
for us: do stats, manipulate data sets, make graphs, and more. So yeah, learning curve (must learn to speak
R), but super worth it!

R is worth knowing for many reasons: Free, on all platforms, open-source (anyone make new features and
upload them for all. 9000+ plus packages and counting!). Also, R knowledge is in demand because user base is
growing. R user community all around you! If not sold yet, just wait. Today is designed to show what R is
good at and can do for you!

Today, we’ll use RStudio, an add-on for R. Integrated Development Environment--meaning it integrates all
the tools you need to use R and puts them at your fingertips! Not technically required, but I can’t imagine R
without it!

Turn to R. Show you around. At top, menus like you’re used to. Bottom-left, console--speak directly to R
here, and where it will talk back to us. Top-left: script editor. Scripts are text files for code. Can type code,
run it from here, and have a record of it later! Top-right: Environment. When we store stuff in R, shows up
here for reference. Bottom-right, many useful tabs! Files--navigate your project folder to look for files. Plots-
-shows graphics. Packages--turn on add-on packages to add new features! Help--where help pages appear
(more later!). Like I said--all tools in one place.

INTERACTING WITH R

Now, communicating with R directly thru console. When R is ready to be talked to, > prompt. If you have
something else, ask us for help! R works well with data, so it can do math very well. Type simple addition,
then hit enter to execute code. R will take it, operate on what you gave it, and return any results. Here, our
sum. Can also do subtraction, multiply, and divide. Spaces not necessary, but makes easier reading.

We can do complex math too by using functions. Functions are like SQL’s keywords: they are shorthand for
one or more tasks we might want a computer to do for us--functions are like the verbs of the R language! Using
functions is relatively painless--3 parts: Put function name, put parentheses after, then put any necessary
input inside the parentheses, then hit enter to run. R will do whatever tasks and return the result.

Sample function: log(), takes the logarithm of the input values. Straightforward enough. Some R functions are
simple--they just take one input, such as data to take the logarithm of. Others actually need to or at least can
to take multiple inputs, such as multiple chunks of data or instructions on how to work with that data. Even
tho it’ll work with just data to take the log of, log() can actually take a second input: what base of log to take.
In log’s case, this second input is optional--log assumes, by default, we want to take the log base e (natural
log). However, we can change the base by putting a comma and then putting a new base--new answer.
Meanwhile, the first piece of input is required--if we give no data to log, can’t work!

This is probably the single most confusing thing about using R--understanding functions--so I want you to
picture a function in R as a train. Each function is pulling cars, and each car is a place for a different input. log
has two cars--one for the data and one for the base. These cars for input are called “arguments.” Each train car,
or argument, has a name: log’s first argument is called x. The second is called base. When we use the log
function and we want to give it inputs for both x and base, we use a comma to separate the two so R knows
what input goes in what car. Thinking about an R function as a train is useful because R functions assume
you’re giving them inputs in exactly the same order their cars are in. If you don’t, R won’t know any better
and you’ll get different results! You can see this if you run log(3,5) and log(5,3) in R--you get back very
different numbers. However, you can help R ensure that each input always goes in the right place by using the
argument names to assign inputs to specific arguments, as shown here. R will put the right inputs in the right
cars for you, even if they’re out of order!

Now, log is just 1 of thousands of R functions, so R can do thousands of things for you. Almost all of your
time in R will be spent using functions because they are so useful. However, as you can see, you use functions
the most effectively when you know what inputs they want, where they want them, and what optional
features they have. To learn this about any function, type ?function name. Brings up the help page for the
function! Fair warning, these take practice to read, trust me. But, when you get the hang of it, lots of useful info,
including a description of what the function does, its arguments and what they are called and do, as well as
what order they are in, and examples at the bottom. Use this today as needed!

SCRIPTS

So, we can talk to R directly thru console, but doing so doesn’t save our code so we can reference it later, share
it, or reuse it. To do those thing, we can use script files. These are text files for R code that can be shared with
colleagues, submitted with journal articles for review, and reused over and over, so very useful and
empowering!

Before we make our script file, let’s tell R where our project folder is. To do this, go to File -> New Project ->
existing directory -> browse to data_carpentry, click Create Project. R sort of restarts. Now it’s in “project
mode!” This has changed R’s “working directory” to our project folder, so R knows all data for this project is
in this folder and all output produced should go here too. Helps us keep everything in one place.

Now make a new script file using this icon. Click, then select new script. Name this script “Intro to R” and
save it in your code folder. From here on out, we’ll interact with R exclusively via our script file so we have a
record of all we’ve done.

Let’s type out some simple math again so we can see a handy feature. Our script’s name turns red. This
indicates we have unsaved changes. If we click the save icon again, the title reverts to black. I wish Microsoft
Word had that!

Code written in our script won’t be run unless we tell R to run it. Hit enter--nothing happens in console!
That’s because a script file is just a text file--we’re not talking directly to R here. However, doing so from a
script is easy. There are two ways: 1) Put cursor on same line as code and hit run button. This flings the code
into the console and runs it for us. Alternatively, if you hover over run button, you can see there is a hot-key for
running code: Ctrl + enter (make sure cursor is on the right line). If you have multiple lines of code to run,
highlight them to run them all at once.

Another handy R feature. Just like SQL, R has a comments operator, the #. R ignores anything written after
one, so you can annotate your code to explain to yourself or any future readers what your code does. USE
THIS! Be a good collaborator, even just with yourself.

OBJECTS

We’ve learned two core concepts of R so far that make it very powerful: functions and scripts. Now, we’ll learn
a third: objects. If functions are the “verbs” of R language because they do things, then objects are the “nouns,”
because they are what things are done to. One way R is so good at working with data is that it allows you to
store data inside of an object so that you can work with that data repeatedly with ease. I want you to think of
an object as a big storage box with a name label on it. When we create an object in R, we put some stuff in this
box and put a name on the box. Then, when we use that name, R knows we really mean all the stuff in the box
with that name: the name becomes a nickname for all the stuff! This is so useful--instead of typing out 1000
data points every time we want to work with them, we can store them in an object and just use that object’s
name instead.

Creating an object, naming it, and putting something in it requires 3 things: the nme we want to give our new
object goes first, then the assignment operator <-, and then the data to store goes last. We are saying, “Hey
R, store the result of 15 + 5 inside of a new object called math.” Now if we were to type just math, R returns
20, that result. R “knows” means the same thing as 20--20 is in the “math” box. Note--math is now listed in our
Environment. This is where our created objects are shown for our reference. We can now use math in math
problems in place of 20. We can even use objects we’ve already made to create new objects and then use those
objects in math problems.

Alright, time to see if you understand how objects work in R. Let’s type these three lines of code into our script,
but don’t run them yet. I want you to take a minute and discuss with your neighbors--what will y be equal to
after all three of these lines are run? Why? What would we have to do to make y equal to something else?
[follow-up] In short, R doesn’t link objects together. Just because y was created using x doesn’t mean y will
update to equal something else just because x changed. If we want y to change, we will have to run this
assignment code again to make R aware of the new value. Keep this in mind!

Now, just so you know, the = sign is also an assignment operator. In fact, it’s what I use! It’s shorter and
what I was taught. However, = is used to do other things in R besides assignment (like associating inputs with
arguments in functions), whereas the arrow only does assignment. In that way, the arrow is less confusing.
Plus, many guides use the <-, so you might see it more often. Use the one you want today, but know both are
out there, and if I mix them up, know that’s ok. I should note here that operators, like the arrow, equals sign, the
comment operator, math symbols, parentheses, and commas, are the punctuation of R language. Make sure to
understand what they do and when to use them!

More object tips and tricks. First, objects can be named almost anything. The names can contain numbers,
but can’t start with one. We recommend avoiding short names because many short, genetic terms are
already names for function in R. Examples include mean, t, c, and data. So, that could be really confusing!
For the same reason, don’t use periods to separate words in names because many functions do that as well.
Lastly, remember when naming that R is case-sensitive, capitals and lowercases are different. Frustrating, but
worth remembering--be consistent, especially with capitals!

My recommendation--come up with a naming convention and stick with it. For example, I put all my column
names in all caps, and I use underscores to separate words. Other people use CamelCase, where each new
word starts with a capital. Use what works for you but at least aim for names that are meaningful and unique
but not so long it’s a chore to type. If you’re interested, there are formatting guides out there we can direct
you to!

THE SURVEY DATA

We know enough about R now to start working with our survey data again. To bring the data into R and save
them in an object called surveys, we can use the read.csv function. Its first argument slot is for the path to
where the data is on our computer. Or, it can even be a url to where the file is available on the web! Now, for its
own good, R treats text and numbers as fundamentally different. Because our url is text, we need to mark it as
text by using text operators--quotation marks!

In our Environment, we see that surveys is something called a data frame with 34000+ observations of 13
variables. A data frame is an object type in R that holds data in a rectangle, with individual observations in
rows and variables as columns. So, just like the data is in Excel.

It’s important to explore data once you bring them into R to make sure they look right. We can do this using
several functions. head() and tail() will show us the first and last couple of rows, for example. dim() shows you
the numbers of rows and columns, whereas nrow() and ncol() give you one or the other. names() shows you the
names of your columns.

Two really powerful exploration functions are str() and summary(). str() shows you the structure of your
data, combining elements of all these previous functions. You get the object type (data.frame), the
dimensions, the column names, their data types, and the first couple of observations in each column. Note
that some of our data are integers (int) and some of them are factors. Factors are special way R stores textual
data--we won’t cover them today in depth.

Lastly, summary will show you interesting metadata about your data. For numeric data, it presents your
quartiles and mean and so forth. For factor data, it gives you the most common values that variable takes in
the data and gives you counts of those. The most common species was DM, for example.

INDEXING AND SUBSETTING

We’ve covered four major concepts: functions, objects, scripts, and data importing. We have one more:
Indexing. To close this R crash course, we need to teach you how to work with objects--to view and change

their contents. Both of these things require us to understand how to index. To understand how indexing works, I
want you to picture our surveys object as a box. Inside of that box is a big shelving unit--it has rows, it has
columns, and it has cubbies where each individual data point is stored. Each of these cubbies is individually
numbered, just like in this picture. Just as we could in real life, if we wanted to see the contents of a cubby or
replace those contents with something else, we can use the cubby’s numbers to help us.

Let’s say we wanted R to tell us what the value was in the 25th cubby in our data set. To index that value, we
need just 3 things: Our object’s name, a set of square brackets, and our cubby number inside those brackets.
That’s all there is to it! Square brackets even look like cubbies, which is handy! If we wanted to replace that
value with a different one, we simply combine indexing with assignment. [Turn the 25th entry into something
else and show that it’s changed].

Indexing is a convenient way to view and change specific values in a data set without having to go back to
Excel to do it. But what if your data sheet has 30000 entries and you don’t know which entry the one you want
to work with is? With data frames, you can also index values using their row and column numbers instead. (give
reverse example also). Let’s say we wanted to know the value in the first row and fifth column. Just put the row
and column numbers inside the brackets and separate them with a comma. You can even index whole rows or
columns this way by leaving either the row or column slot empty--for example, to get the whole 7th row, [7,].
This means “7th row, all columns.” You can also get an entire column using that column’s name and then the $
operator to put the column name too. Lastly, to get the values in the 5th row for every column except the first,
you could use the minus sign: ([5:7, -1]). This excludes the first column from the results.

And, as always, you can save the results of any index into a new object if you’d like. Take a minute to try this
out: Use the nrow function and indexing to save just the last row of surveys in a new object called surveys_last.

(Optional, time permitting) Now, while that’s technically all I wanted to show you in this introduction to R unit,
since we have a little extra time, I wanted to show you one more thing: vectors. So far, we’ve seen two kinds of
objects--ones that hold just a single value, like our math object, and data frames, which holds a rectangle of
values. There’s a type of object in between these two--a vector is just a string of data in one long line. For
example, any one row or one column from surveys is a vector--it’s just a sequence of data points (For example,
surveys$sex).

Just like we can make single-value objects or data frames, we can make vectors too. One way to do this is to use
the : operator. The : makes a simple sequence, with the starting and ending values being the ones you put before
and after the colon. You can make more complex vectors too, though, by using the c() function. To use the c()
function, you just put each new value you want to add to your new vector one at a time, each in its own
argument slot. So, if I want a vector of 3,-1000, and pi, I can do that. You can even use vectors when indexing
to return multiple rows, columns, or entries (demonstrate with :).

Challenge: With that in mind, spend two minutes working with your table mates to return the values in the first
4 rows of surveys for the 3rd, 5th, and 8th columns. Hint: Use the c() function for that second part.

That concludes the Intro R unit. You now know all the basics needed to do basic work in R! In the next unit,
we’ll learn some ways to manipulate your data even more powerful than indexing! Any questions?

DPLYR

Welcome back! So far, we’ve learned how to import data into R and then speak the R language to manipulate
that data a bit. By the end of the day, though, our goal is get you to the point where you’ve fully summarized
your data in a useful way, produced a graph of that data, and written a report to give to your supervisor. This
unit will address the summarization part, while the two sessions after lunch will handle the graphing and reports
parts.

First, though, we need to make sure everyone still has their surveys object from the first unit. Please check your
environment tab and confirm you have it (if not, get help to remake it).

In this unit, we’re going to learn the powerful R package dplyr. In R, a package is a user-created set of functions
and data sets that anyone can build, share, download, and use. Dplyr, specifically, is a package that provides
several functions for quickly and easily manipulating and summarizing a data set. To use a package, we have to
turn it on. To do that, we can navigate to the Packages tab, scroll down to where it says dplyr, and click the
check box. In the console, you see that R used the library function to turn on the package--we can also do that.
If you don’t see dplyr, you may have not installed it properly when preparing for today’s workshop. Raise your
hand for help!

In this unit, I’ll show you 6 of dplyr’s most useful functions--3 easier ones and 3 trickier ones. I’ll also show
you a new operator introduced in dplyr called the pipe that makes doing multiple manipulations faster. I’ll also
give you chances to practice your dplyr skills as we go.

First, the three easier functions. I like to think of these functions in terms of the problem each is designed to
solve. The first problem is: “What if I want to see or store only some of a data set’s columns?” For that, we use
the select function. Each column name you give select as input will be returned and any you omit won’t be. To
use select, put the data sheet in the first argument slot, and then put each column to save in a new slot.

Challenge: Make an object called small_surveys that only has the species_id, sex, and weight columns of the
surveys data set.

The second problem is “What if I want to sort my data set?” For that, we can use the arrange function. To use
arrange, you put the data set to sort in the first argument slot and then the column you want to sort by in the
second one. You can then sort by another column after that by putting it next, and so on. By default, arrange
sorts in ascending order. To reverse the order, use the desc() function by putting the column to sort by inside
that function.

Challenge: Make an object called sorted_surveys that sorts small_surveys by species_id in ascending order and
weight in descending order.

The third problem we might want to solve is “What if I want to create a new column using a column I already
have?” For that, we use the mutate function. mutate makes a new column using an old column as a reference
point. For example, if our weights are in grams and we want to see them in kilograms too, we can use mutate to
divide the weights by 1000 and make a new column. We can give that column a name too by using assignment.

Challenge: Use the square root function, sqrt(), to take the square root of the weights in sorted_surveys. Save
the result in an object called mutated_surveys.

So far so good! We’re halfway through dplyr already. Now, onto the trickier 3 functions. The first one of these
solves the problem “What if I only want to see or store some of the rows of my data set?” To eliminate some
rows and keep others, we can use filter. filter works by using logical rules to determine if it should keep a row
or not. For example, if we only want rows in which the weight is = 18, we can use filter to get those. Now, I
used two =s here--can anyone guess why? Yes, = already means something in R, as we’ve seen, so to do
“equals” in a logic sense, R needs a different symbol. You can also do filters like greater than and less than,
greater than or equal to, and not equal to. Here, why do you think I needed the quotes? Yes--the sex column is
text, so I need to remind R it’s trying to match text here. Lastly, you can actually have multiple rules as long as
you put each new, complete rule in its own argument slot.

Challenge 4: Ok, now use filter to make a new object called filtered_surveys that filters mutated_surveys such
that we only have data from females less than or equal to a weight of 50.

Alright, we have one last problem to solve--“What if we want to summarize our data to discover patterns or
include the summaries in a report or graph?” This is a more complex problem, so we’re going to need two
functions to solve it. The first is group_by and the second is summarize. group_by is tricky to understand--it
tells R “treat each unique entry in this column as a separate group.” Then, when we summarize the data, it will
give us summary data on each of those groups as a whole. If we group the data first, we can’t see that R has
done anything, but it has. To prove it, let’s now use summarize to find the average weight of each species using
the mean() function. We now have only a few rows--the data has been collapsed down to a few rows, one for
each species, with the mean weight for that species. We don’t even have any other columns because those don’t
even really mean anything with the data summarized like this. In this way, group_by, when paired with
summarize, kind of acts as a select function also. Also, just like with mutate, we can name the new column if
we want to.

One more trick with group_by and summarize is that you can group by more than one column. When you then
summarize, you will get a summary for each combination of the columns given. Here, we can use the n()
function to get the number of observations for each species and sex combination.

Now, up until now, we did our summarizations in two steps--we grouped, and then we summarized. dplyr
actually introduces a way to do that process in one step--the pipe! A pipe is a weird-looking operator--%>%--
but it works a lot like a pipe does in the real world. What one does is pump, or pipe, whatever object or product
is on its left into the function on its right as the first input. The group_by chunk here takes filtered_surveys as its
first input, then the summarize chunk takes the output of the group_by as its first input, making a chain. As you
can see, this saves a lot of typing, and means we need to make fewer objects!

Challenge 5: Produce our summarized data set in a single step using pipes, starting from the original surveys
data set. Select, arrange, mutate, filter, group, and then summarize!

Ok, after lunch, we intend to show you how to graph the results you’ve found using dplyr. As a result, let’s
make the three data summaries we will need for that lesson now as a way to practice our dplyr skills. Your
handout has a description of the three data summaries we need. Work with your table to make these and we’ll
show you how to make them at the end if you’d had trouble.

