KnitR + \LaTeX \rightarrow \text{paper}

Tools for Reproducible Research

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman
@kwbroman

Course web: kbroman.org/Tools4RR
This is a simple example of a \LaTeX\ document for an article. Here's some in-line math: \(y = \beta_0 + \beta_1 x + \epsilon \).

And here's a display equation:

\[
\hat{\beta} = (X'X)^{-1} X'y
\]
What I actually do

\documentclass[12pt]{article}
\setlength{\headheight}{10pt}
\setlength{\headsep}{15pt}
\setlength{\topmargin}{-25pt}
\setlength{\topskip}{0in}
\setlength{\textheight}{8.7in}
\setlength{\footskip}{0.3in}
\setlength{\oddsidemargin}{0.0in}
\setlength{\evensidemargin}{0.0in}
\setlength{\textwidth}{6.5in}

\begin{document}
\begin{center}
\textbf{\large An example document}
\vspace{10mm}
Karl Broman
\end{center}
\vspace{30mm}
\textbf{A section}

\end{document}
Why \texttt{\LaTeX}?

- Fine control of document appearance
- Transparency of how that was achieved
- Version control (diff/merge)
- Typesetting equations
- Markdown’s not quite ready, or sufficiently rich
 (but see the R package \texttt{rticles})
simple \leftrightarrow flexible
simple \longleftrightarrow flexible

\centerline{\Large simple \quad $\longleftarrow\rightarrow$ \quad \Large flexible}
Modify your desires to match the defaults.

Focus your compulsive behavior on things that matter.
Stuff I use a lot

\% other fonts
\usepackage{palatino}
\usepackage{times}

\setlength{\rightskip}{0pt plus 1fil} \% makes ragged right

\newcommand{\LOD}\{\text{LOD}\}

\usepackage{setspace}
\setstretch{2.0}

\addtocounter{framenummer}{-1}

\% make figures S1, S2, ...
\renewcommand{\thefigure}\{\textbf{S\arabic{figure}}\}
\renewcommand{\figurename}\{\textbf{Figure}\}

\% bigger space between rows in tables
\renewcommand{\arraystretch}\{1.5\}

\% paragraphs not indented but have space between
\setlength{\parskip}\{6pt\}
\setlength{\parindent}\{0pt\}
\documentclass[12pt]{article}
\title{An example Rnw document}
\author{Karl Broman}
\begin{document}
\maketitle

<<load_library, echo=FALSE, results="hide">>=
library(broman) # used for myround()
@

<<example_chunk>>=
x <- rnorm(100)
y <- 5*x + rnorm(100)
lm.out <- lm(y ~ x)
plot(x,y)
abline(lm.out$coef)
@

The estimated slope is \Sexpr{myround(lm.out$coef[2], 1)}.
\end{document}
\documentclass[12pt]{article}
\title{An example Rnw document}
\author{Karl Broman}
\begin{document}
\maketitle
<<load_library, echo=FALSE, results="hide">>=
library(broman) \# used for myround()
@

<<example_chunk, out.width="0.8\textwidth">>=
x <- rnorm(100)
y <- 5*x + rnorm(100)
lm.out <- lm(y ~ x)
plot(x,y)
abline(lm.out$coef)
@

The estimated slope is \Sexpr{myround(lm.out$coef[2], 1)}.
\end{document}
5.1.6 Operators with Limits

Sum \sum and integral \int operators are very often decorated with limits. These limits can be entered in LyX by entering them as you would enter a super- or subscript, directly after the symbol. The sum operator will automatically place its “limits” over and under the symbol in displayed formulas, and on the side in inline formulas. Such as $\sum_{n=0}^{\infty} \frac{1}{n!} = e$, versus

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e$$

Integral signs, however, will place the limits on the side in both formula types.

All operators with limits will be automatically re-sized when placed in display mode. The placement of the limits can be changed by placing the cursor directly behind the operator and hitting M-m-l or using the menu **Edit > Math > Change Limits Type**.

Certain other mathematical expressions have this “moving limits” feature as addition, such as \sum and \int

$$\lim_{x \to \infty} f(x),$$

which will place the $x \to \infty$ underneath the “lim” in display mode. In inline formulas it looks like this: $\lim_{x \to \infty} f(x)$.

Note that the \lim-function was entered as the function macro \lim. Have a look at section **Ref: Functions** for an explanation of function macros.
Also

- Overleaf
- ShareLaTeX
- Authorea
- Verbosus
Flavors of \LaTeX

- \LaTeX
- pdflatex
- xelatex
- lualatex
Getting help

- Google
- tex.stackexchange.com
- Ask a friend
- Look at others’ documents
- Resign yourself to something less-than-ideal
Figure captions and floats

```r
x <- rnorm(100)
y <- 5*x + rnorm(100)
lm.out <- lm(y ~ x)
plot(x,y)
abline(lm.out$coef)
```

\begin{figure}
\centering
\includegraphics{figure/fig_with_caption}
\caption{Scatterplot of y vs x}
\end{figure}
\begin{tabular}{rrrrr}
\hline
& Estimate & Std. Error & t value & Pr(>|t|) \\
\hline
(Intercept) & 0.04 & 0.11 & 0.4 & 0.69 \\
x & 0.98 & 0.10 & 10.0 & 0.00 \\
\hline
\end{tabular}
xtable

<<generate_and_fit>>=
x <- rnorm(100)
y <- x + rnorm(100)
lm.out <- lm(y ~ x)
@

<<table, results="asis">>=
library(xtable)
xtable(lm.out, digits=c(0,2,2,1,2))
@

% a non-floating version
<<table, results="asis">>=
library(xtable)
xtab <- xtable(lm.out, digits=c(0,2,2,1,2))
print(xtab, floating=FALSE)
@
Read proofs carefully

As submitted

\[
\Pr(g_1 = i, g_2 = j) = \begin{cases}
\frac{1-r}{8(1+6r)} & \text{if } i = j \\
\frac{r}{8(1+6r)} & \text{if } i \neq j
\end{cases}
\]

As printed

\[
\Pr(g_1 = i, g_2 = j) = \begin{cases}
\frac{1-r}{8(1+6r)} & \text{if } i = j \\
\frac{r}{2(1+6r)} & \text{if } i \neq j.
\end{cases}
\]

Table 4 Two-locus haplotype probabilities at generation F_4 in the formation of four-way RIL by sibling mating

<table>
<thead>
<tr>
<th>Chr.</th>
<th>Individual</th>
<th>Prototype</th>
<th>No. states</th>
<th>Probability of each</th>
</tr>
</thead>
</table>
| A | Random | AA | 4 | \[
\frac{1}{4(1+6r)} \left(\frac{6r^2-7r+3s}{4(1+6r)s} \right)^k \left(\frac{1-2r+s}{4} \right)^k + \left(\frac{6r^2-7r+3s}{4(1+6r)s} \right)^k \left(\frac{1-2r-s}{4} \right)^k \] |
| | | AB | 4 | \[
\frac{r}{2(1+6r)} \left(\frac{10r^2-r-rs}{4(1+6r)s} \right)^k \left(\frac{1-2r+s}{4} \right)^k - \left(\frac{10r^2-r-rs}{4(1+6r)s} \right)^k \left(\frac{1-2r-s}{4} \right)^k \] |
| | | AC | 8 | \[
\frac{r}{2(1+6r)} \left(\frac{2r^2+3r+rs}{4(1+6r)s} \right)^k \left(\frac{1-2r+s}{4} \right)^k + \left(\frac{2r^2+3r+rs}{4(1+6r)s} \right)^k \left(\frac{1-2r-s}{4} \right)^k \] |
| X | Female | AA | 2 | \[
\frac{1}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{4r^2-7r+3s-3r^2-5r}{4(4r^2+5r+1)t} \right)^k \left(\frac{1-2r+t}{4} \right)^k + \left(\frac{4r^2-7r+3s-3r^2-5r}{4(4r^2+5r+1)t} \right)^k \left(\frac{1-2r-t}{4} \right)^k \] |
| | | AB | 2 | \[
\frac{2r}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{2r^2-2r+r}{2(4r^2+5r+1)t} \right)^k \left(\frac{1-2r+t}{4} \right)^k - \left(\frac{2r^2-2r+r}{2(4r^2+5r+1)t} \right)^k \left(\frac{1-2r-t}{4} \right)^k \] |
| | | AC | 4 | \[
\frac{2r}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{9r^2+5r+rt}{4(4r^2+5r+1)t} \right)^k \left(\frac{1-2r+t}{4} \right)^k + \left(\frac{9r^2+5r+rt}{4(4r^2+5r+1)t} \right)^k \left(\frac{1-2r-t}{4} \right)^k \] |
| | | CC | 1 | \[
\frac{1}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{9r^2+5r+rt}{4(4r^2+5r+1)t} \right)^k \left(\frac{1-2r+t}{4} \right)^k + \left(\frac{9r^2+5r+rt}{4(4r^2+5r+1)t} \right)^k \left(\frac{1-2r-t}{4} \right)^k \] |
| | Male | AA | 2 | \[
\frac{1}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{1-2r-t}{4} \right)^k + \left(\frac{1-2r-t}{4} \right)^k \] |
| | | AB | 2 | \[
\frac{2r}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{r^2-(8r^3+2r^2-3r-t-10r^2+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right)^k \left(\frac{1-2r+t}{4} \right)^k + \left(\frac{r^2-(8r^3+2r^2-3r-t-10r^2+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right)^k \left(\frac{1-2r-t}{4} \right)^k \] |
| | | AC | 4 | \[
\frac{2r}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{2r^2-2r^2+r-t-19r+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right)^k \left(\frac{1-2r+t}{4} \right)^k + \left(\frac{2r^2-2r^2+r-t-19r+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right)^k \left(\frac{1-2r-t}{4} \right)^k \] |
| | | CC | 1 | \[
\frac{1}{3(1+4r)} \left(\frac{1+3r}{6(1+r)} \right)^k \left(\frac{2r^2-2r^2+r-t-19r+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right)^k \left(\frac{1-2r+t}{4} \right)^k + \left(\frac{2r^2-2r^2+r-t-19r+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right)^k \left(\frac{1-2r-t}{4} \right)^k \] |

$s = \sqrt{4r^2-12r+5}$ and $t = \sqrt{r^2-10r+5}$; the autosomal haplotype probabilities are valid for $r < \frac{1}{2}$.
% bibliography format
\usepackage[authoryear]{natbib}
\bibpunct{(}{)}{;}{a}{}{,}

A number of investigators have developed methods for identifying such sample mix-ups \citep{Westra2011, Schadt2012, Lynch2012, Ekstrom2012}, and a similar approach was applied by \citet{Baggerly2008, Baggerly2009} in their forensic...

\bibliographystyle{genetics}
\renewcommand*{\refname}{\centerline{\normalsize\sffamily\textbf{Literature Cited}}}
\bibliography{samplemixups}

@article{Baggerly2008,
author = {Baggerly, Keith A. and Coombes, Kevin R.},
journal = {J. Clin. Oncol.},
pages = {1186--1187},
title = {Run batch effects potentially compromise...},
volume = {26},
year = {2008} }
Organizing analyses

- Directory for the main analysis project
 ~/Projects/Blah

- Directory for a paper
 ~/Docs/Papers/Blah

- Paper directory may have an analysis directory
 ~/Docs/Papers/Blah/Analysis

- Symbolic links to .RData files
 `ln -s ~/Projects/Blah/DerivedData/blah.RData`

- Each part well organized and fully reproducible.

- R Markdown reports documenting different aspects.

- Analysis with the paper may be re-done "properly."
Make every number reproducible.

```r
<<define_numbers, echo=FALSE>>=
numbers <- c("one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten")
cap <- function(vec) paste0(toupper(substr(vec, 1, 1)), substr(vec, 2, nchar(vec)))

Numbers <- cap(numbers)
n <- sample(1:10, 1)

Then if I want to talk about a number, like \texttt{\Sexpr{n}}, I can refer to it by name: \texttt{\Sexpr{numbers[n]}}. And I can start a sentence with it. \texttt{\Sexpr{Numbers[n]}} grasshoppers walked into a bar\dots

But be careful about singular vs. plural, and so write \texttt{\Sexpr{Numbers[n]}} grasshopper\texttt{\Sexpr{ifelse(n>1, "s", ")}} walked\dots
```
Keep the figures separate

simple make file

mypaper.pdf: mypaper.tex Figs/fig1.pdf Figs/fig2.pdf
 pdflatex mypaper

Figs/fig1.pdf: R/fig1.R
 cd R;R CMD BATCH fig1.R fig1.Rout

Figs/fig2.pdf: R/fig2.R
 cd R;R CMD BATCH fig2.R fig2.Rout

\clearpage
\includegraphics{Figs/fig1.pdf}

\clearpage
\includegraphics{Figs/fig2.pdf}
Version Control

▶ Your manuscript is under version control, right?
Version Control

- Your manuscript is under version control, right?
- Local or private repository for the whole thing
 - including reviewers’ reports and my response
 - PDF of submitted and final manuscript
- Snapshot of the final version as a public repository
 - I don’t really want to show the whole history
With papers led by a collaborator, I’m usually stuck with Word.

But my analyses and figures are fully reproducible.

Create an R Markdown document with the detailed results.
Summary

- \LaTeX{} is brilliant for fine control and for equations
- Floating figures and tables can be a pain
- You use KnitR with \LaTeX{} much the same way as you’d used it with Markdown.
- Ensure that every statistic, figure, and table in your paper are fully reproducible.
- Use xtable to make tables.
- Separate out the code for the figures.
- Use version control!