
Big jobs/simulations
Tools for Reproducible Research

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman
Course web: kbroman.org/Tools4RR

http://kbroman.org
http://kbroman.org
http://github.com/kbroman
https://twitter.com/kwbroman
http://kbroman.org/Tools4RR

But first…

Suppose I've just written an R function and it seems to
work, and suppose I noticed a simple way to speed it up.

What should I do first?

2

But first…

Suppose I've just written an R function and it seems to
work, and suppose I noticed a simple way to speed it up.

What should I do first?

▶ Make it an R package

2

But first…

Suppose I've just written an R function and it seems to
work, and suppose I noticed a simple way to speed it up.

What should I do first?

▶ Make it an R package
▶ Write a test or two

2

But first…

Suppose I've just written an R function and it seems to
work, and suppose I noticed a simple way to speed it up.

What should I do first?

▶ Make it an R package
▶ Write a test or two
▶ Commit it to a git repository

2

So what's the big deal?

▶ You don't want knitr running for a year.
▶ You don't want to re-run things if you don't have to.

3

Unix basics

nice +19 R CMD BATCH input.R output.txt &
fg
ctrl-Z
bg
ps ux
top
kill
kill -9
pkill

4

Disk thrashing

In computer science, thrashing occurs when a computer's
virtual memory subsystem is in a constant state of paging

,
rapidly exchanging data in memory for data on disk, to the
exclusion of most application-level processing.

– Wikipedia

5

http://en.wikipedia.org/wiki/Thrashing_(computer_science)

Disk thrashing

In computer science, thrashing occurs when a computer's
virtual memory subsystem is in a constant state of paging,
rapidly exchanging data in memory for data on disk, to the
exclusion of most application-level processing.

– Wikipedia

5

http://en.wikipedia.org/wiki/Thrashing_(computer_science)

Biggish jobs in knitr

▶ Manual caching
▶ Built-in cache=TRUE

▶ Split the work and write a Makefile

6

Manual caching

```{r a_code_chunk}
file <- "cache/myfile.RData"

if(file.exists(file)) {
load(file)

} else{

....

save(object1 , object2 , object3 , file=file)
}
```

7

Chunk references

```{r not_shown , eval=FALSE}
code_here <- 0
```

```{r a_code_chunk , echo=FALSE}
file <- "cache/myfile.RData"

if(file.exists(file)) {
load(file)

} else{
<<not_shown >>

save(code_here , file=file)
}
```

8

A cache gone bad

9

Knitr's cache system

```{r chunk_name , cache=TRUE}
load("a_big_file.RData")
med <- apply(object, 2, median, na.rm=TRUE)
```

▶ Chunk is re-run if edited.
▶ Otherwise, objects from previous run are loaded.
▶ Don't cache things with side effects

e.g., options(), par()

10

Cache dependencies

Manual dependencies

```{r chunkA, cache=TRUE}
Sys.sleep(2)
x <- 5
```

```{r chunkB, cache=TRUE, dependson="chunkA"}
Sys.sleep(2)
y <- x + 1
```

```{r chunkC, cache=TRUE, dependson="chunkB"}
Sys.sleep(2)
z <- y + 1
```

11

Cache dependencies

Automatic dependencies

```{r setup, include=FALSE}
opts_chunk$set(autodep = TRUE)
dep_auto()
```

12

Parallel computing

If your computer has multiple processors, use
library(parallel) to make use of them.

▶ detectCores()

▶ RNGkind("L'Ecuyer-CMRG") and mclapply
(Unix/Mac)

▶ makeCluster, clustersetRNGStream, clusterApply,
and stopCluster (Windows)

13

Systems for distributed computing

▶ HTCondor and the UW-Madison CHTC
▶ Other condor-like systems
▶ "By hand"

– e.g., perl script + template R script

14

http://research.cs.wisc.edu/htcondor
http://chtc.cs.wisc.edu/
http://en.wikipedia.org/wiki/Comparison_of_cluster_software

Simulations

▶ Computer simulations require RNG seeds
(.Random.seed in R).

▶ Multiple parallel jobs need different seeds.
▶ Don't rely on the current seed, or on having it

generated from the clock.
▶ Use something like set.seed(91820205 + i)

▶ An alternative is create a big batch of simulated data
sets in advance.

15

Save everything

▶ RNG seeds
▶ input
▶ output
▶ version numbers, with sessionInfo()

▶ raw results
▶ script to combine results
▶ combined results
▶ ReadMe describing the point

16

One Makefile to rule them all

▶ Separate directory for each batch of big
computations.

▶ Makefile that controls the combination of the results
(and everything else).

▶ KnitR-based documents for the analysis/use of those
results.

17

Potential problems

▶ Forgetting save() in your distributed jobs
▶ A bug in the save() command
▶ make clobbers some important results

– Scripts should refuse to overwrite output files

18

Summary

▶ Careful organization and modularization.
▶ Save everything.
▶ Document everything.
▶ Learn the basic skills for distributed computing.

19

