
BMI 826-003
Tools for Reproducible Research

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman
Course web: kbroman.org/Tools4RR

This is the introductory lecture for a special topics course at
UW–Madison on tools for reproducible research.

A minimal standard for data analysis and other scientific
computations is that they be reproducible: that the code and data are
assembled in a way so that another group can re-create all of the
results (e.g., the figures in a paper). The importance of such
reproducibility is now widely recognized, but it is not so widely
practiced as it should be, in large part because many computational
scientists (and particularly statisticians) have not fully adopted the
required tools for reproducible research.

In this course, we will discuss general principles for reproducible
research but will focus primarily on the use of relevant tools
(particularly make, git, and knitr), with the goal that the students
leave the course ready and willing to ensure that all aspects of their
computational research (software, data analyses, papers,
presentations, posters) are reproducible.

Karl -- this is very interesting ,
however you used an old version of
the data (n=143 rather than n=226).

I'm really sorry you did all that
work on the incomplete dataset.

Bruce

2

This is an edited version of an email I got from a collaborator, in
response to an analysis report that I had sent him.

I try to always include some brief data summaries at the start of such
reports. By doing so, he immediately saw that I had an old version of
the data.

Because I’d set things up carefully, I could just substitute in the
newer dataset, type “make”, and get the revised report.

This is a reproducibility success story. But it took me a long time to
get to this point.

Reproducible

vs.

Replicable

3

Computational work is reproducible if one can take the data and code
and produce the same set of results. Replicable is more stringent: can
someone repeat the experiment and get the same results?

Reproducibility is a minimal standard. That something is
reproducible doesn’t imply that it is correct. The code may have
bugs. The methods may be poorly behaved. There could be
experimental artifacts.

(But reproducibility is probably correlated with correctness.)

Note that some scientists say replicable for what I call reproducible,
and vice versa.

Levels of quality

▶ Are the tables and figures reproducible from the code
and data?

▶ Does the code actually do what you think it does?

▶ In addition to what was done, is it clear why it was
done?

(e.g., how were parameter settings chosen?)

▶ Can the code be used for other data?

▶ Can you extend the code to do other things?

4

Reproducibility is not black and white. And the ideal is hard to
achieve.

Basic principles

▶ Everything via code

▶ Everything automated
Workflow and dependencies clearly documented

▶ Get the data in the most-raw form possible

▶ Get any/all data and meta-data possible

▶ Keep track of the provenance of all data files

▶ Be self-sufficient

5

Pointing and clicking is not reproducible. Ideally, you press just one
button.

Make sure you have all of the data and that you know exactly where
it came from.

But what is raw data? How far back should you go? Data that I get
from collaborators has usually gone through a considerable amount of
pre-processing. Should we have captured that, in order for the work
to be considered reproducible?

If your collaborator asks, “In what form would you like the data?”
you should respond, “In its current form.”

Why do we care?

▶ Avoid embarrassment

▶ More likely correct

▶ Save time, in the long run

▶ Greater potential for extensions; higher impact

6

Doing things properly (writing clear, documented, well-tested code) is
time consuming, but it could save you a ton of aggravation down the
road. Ultimately, you’ll be more efficient, and your work will have
greater impact.

Your code and analyses will be easier to debug, maintain, and extend.

Your closest collaborator is you six months ago,
but you don't reply to emails.

7

I heard this from Paul Wilson, UW-Madison.

I think he got it from a tweet by Karen Cranston:
http://bit.ly/motivate_git

What could go wrong?

▶ "The attached is similar to the code we used."

▶ "Where did this data file come from?!"

▶ "Can you repeat the analysis, omitting subject X?"

▶ "This part of your script is now giving an error."

8

If you’ve not heard any of these things, it’s just a matter of time.

Need to avoid

▶ Open a file to extract as CSV

▶ Open a data file to do even a slight edit

▶ Paste results into the text of a manuscript

▶ Copy-paste-edit tables

▶ Copy-paste-adjust figures

9

If you do anything “by hand” once, you’ll have to do it 100 times.

Basic tools

▶ Automation with Make

▶ Unix command line

▶ Latex and Markdown

▶ Knitr

▶ Version control with git

▶ R packages

▶ Python (or Ruby or Perl)

10

These are the basic tools that I think are important for reproducible
computational research; they form the core topics for the course.

Make is for automation and for documenting dependencies. For
reproducibility, the command line is your best friend. Latex and
Markdown allow preparation of beautiful documents without pointing
or clicking. Knitr is for combining code and text; knitr and make are
the key tools for reproducibility. Version control isn’t strictly
necessary for reproducibility, but once you get the hang of it, you’ll
never go back. R’s packaging system is among its best features. A
scripting language like Python is invaluable for manipulating data
files. Many things that are awkward in R are easy in Python.

Other topics

▶ Organizing projects

▶ Writing clear code

▶ Don't Repeat Yourself (DRY)

▶ Testing and debugging

▶ Handling big jobs

▶ Licenses; human subjects data

11

We’ll also cover all of these things.

The organization of the data and code for a project is a major
determinant of whether others will be able to make sense of it. Good
code is not just correct but is clearly written. Code is easier to
maintain and understand if it is modular. Adding good tests will help
you to find problems in your code earlier rather than later. But you’ll
spend a lot of time debugging, so we should talk about debugging
strategies. Big computational jobs (particularly big computer
simulations) raise additional issues; reproducibility is especially tricky.
Finally, code that you distribute should be licensed. And if you’re
working with data on human subjects, you need to be extra careful.

Don't Repeat Yourself

▶ In code, in documentation, etc.

▶ Repeated bits of code are harder to maintain
Write a function

▶ Use documentation systems like Roxygen2
Documentation in just one place

▶ Make use of others' code

12

DRY is among the more important concepts/techniques.

For example, I helped organize a meeting in Madison in 2013. The
program book and website both drew information from a single basic
source. Change that one document and both the program and web
site are updated.

My R/qtl package is an anti-example.

This course

▶ Brief intro to various tools and concepts

▶ Try everything out as we go along
Ask questions!

▶ I don't know everything
Make suggestions!

▶ Project
– Write a bit of R code
– Use version control
– Make it an R package
– Write a vignette

13

About this course: I’m trying to get you started; pointing you in the
right direction. But I don’t know everything, and I don’t always do
things in the most efficient way possible: please offer me suggestions!

We won’t have time for a comprehensive introduction to the tools.
My main goal is to convince you of their importance: to motivate you
to adopt them.

The most important tool is the mindset,
when starting, that the end product

will be reproducible.

– Keith Baggerly

14

So true. Desire for reproducibility is step one.

Automation with GNU Make

▶ Make is for more than just compiling software

▶ The essence of what we're trying to do

▶ Automates a workflow

▶ Documents the workflow

▶ Documents the dependencies among data files, code

▶ Re-runs only the necessary code, based on what has
changed

15

People usually think of Make as a tool for automating the compilation
of software, but it can be used much more generally.

To me, Make is the essential tool for reproducible research:
automation plus the documentation of dependencies and workflows.

Example Makefile

Example Makefile for a paper
mypaper.pdf: mypaper.bib mypaper.tex Figs/fig1.pdf Figs/fig2.pdf

pdflatex mypaper
bibtex mypaper
pdflatex mypaper
pdflatex mypaper

cd R has to be on the same line as R CMD BATCH
Figs/fig1.pdf: R/fig1.R

cd R;R CMD BATCH fig1.R fig1.Rout

Figs/fig2.pdf: R/fig2.R
cd R;R CMD BATCH fig2.R fig2.Rout

16

You can get really fancy with make, but this example shows you the
basics.

Records look like target: dependencies and are followed by a set of
lines of code for creating the target from the dependencies. Those
lines of code must start with a tab character (not spaces), and if you
need to change directories, you have to do that on the same line as
the command.

If you type make (or make Makefile), the mypaper.pdf file will be
created; but first, any dependencies will be updated, if necessary,
based on the time the files were last modified.

So, for example, if fig1.R had been edited, then the commands to
construct fig1.pdf would be constructed, followed by the commands
to construct mypaper.pdf.

Fancier example

FIG_DIR = Figs

mypaper.pdf: mypaper.tex ${FIG_DIR}/fig1.pdf ${FIG_DIR}/fig2.pdf
pdflatex mypaper

One line for both figures
${FIG_DIR}/%.pdf: R/%.R

cd R;R CMD BATCH $(<F)

Use "make clean" to remove the PDFs
clean:

rm *.pdf Figs/*.pdf

17

As I said, you can get really fancy with GNU Make.

Use variables for directory names or compiler flags. (This example is
not a good one.)

Use pattern rules and automatic variables to avoid repeating yourself.
With %, we have one line covering both fig1.pdf and fig2.pdf. The
$(<F) is the file part of the first dependency.

Look at the manual for make and the many online tutorials, such as
the one from Software Carpentry.

How do you use make?
▶ If you name your make file Makefile, then just go into the

directory containing that file and type make

▶ If you name your make file something.else, then type
make -f something.else

▶ Actually, the commands above will build the first target
listed in the make file. So I'll often include something like
the following.

all: target1 target2 target3

Then typing make all (or just make, if all is listed first in
the file) will build all of those things.

▶ To be build a specific target, type make target. For
example, make Figs/fig1.pdf

18

I can’t believe that I forgot to explain this the first time I gave this
lecture.

