BMI 826-003
Tools for Reproducible Research

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman
@kwbroman
Course web: kbroman.org/Tools4RR
Karl -- this is very interesting, however you used an old version of the data (n=143 rather than n=226).

I'm really sorry you did all that work on the incomplete dataset.

Bruce
Reproducible
Reproducible vs. Replicable
Reproducible

vs.

Correct
Levels of quality

- Are the tables and figures reproducible from the code and data?
- Does the code actually do what you think it does?
- In addition to what was done, is it clear why it was done?
 (e.g., how were parameter settings chosen?)
- Can the code be used for other data?
- Can you extend the code to do other things?
Basic principles

▶ Everything via code

▶ Everything automated
 Workflow and dependencies clearly documented

▶ Get the data in the most-raw form possible

▶ Get any/all data and meta-data possible

▶ Keep track of the provenance of all data files

▶ Be self-sufficient
Why do we care?

- Avoid embarrassment
- More likely correct
- Save time, in the long run
- Greater potential for extensions; higher impact
Your closest collaborator is you six months ago, but you don't reply to emails.
What could go wrong?

- "The attached is similar to the code we used."
- "Where did this data file come from?!"
- "Can you repeat the analysis, omitting subject X?"
- "This part of your script is now giving an error."
Need to avoid

- Open a file to extract as CSV
- Open a data file to do even a slight edit
- Paste results into the text of a manuscript
- Copy-paste-edit tables
- Copy-paste-adjust figures
Basic tools

- Automation with Make
- Unix command line
- Latex and Markdown
- Knitr
- Version control with git
- R packages
- Python (or Ruby or Perl)
Other topics

- Organizing projects
- Writing clear code
- Don't Repeat Yourself (DRY)
- Testing and debugging
- Handling big jobs
- Licenses; human subjects data
Don't Repeat Yourself

- In code, in documentation, etc.
- Repeated bits of code are harder to maintain
 Write a function
- Use documentation systems like Roxygen2
 Documentation in just one place
- Make use of others' code
This course

- Brief intro to various tools and concepts

- Try everything out as we go along
 Ask questions!

- I don't know everything
 Make suggestions!

- Project
 - Write a bit of R code
 - Use version control
 - Make it an R package
 - Write a vignette
The most important tool is the mindset, when starting, that the end product will be reproducible.

– Keith Baggerly
Automation with GNU Make

- **Make** is for more than just compiling software
- The **essence** of what we're trying to do
- Automates a workflow
- Documents the workflow
- Documents the dependencies among data files, code
- Re-runs only the necessary code, based on what has changed
Example Makefile for a paper

mypaper.pdf: mypaper.bib mypaper.tex Figs/fig1.pdf Figs/fig2.pdf
 pdflatex mypaper
 bibtex mypaper
 pdflatex mypaper
 pdflatex mypaper

cd R has to be on the same line as R CMD BATCH

Figs/fig1.pdf: R/fig1.R
 cd R; R CMD BATCH fig1.R fig1.Rout

Figs/fig2.pdf: R/fig2.R
 cd R; R CMD BATCH fig2.R fig2.Rout
Fancier example

FIG_DIR = Figs

mypaper.pdf: mypaper.tex ${FIG_DIR}/fig1.pdf ${FIG_DIR}/fig2.pdf
 pdflatex mypaper

One line for both figures
${FIG_DIR}/%.pdf: R/%.R
 cd R;R CMD BATCH $(<F)

Use "make clean" to remove the PDFs
clean:
 rm *.pdf Figs/*.pdf
How do you use make?

- If you name your make file `Makefile`, then just go into the directory containing that file and type `make`.

- If you name your make file `something.else`, then type `make -f something.else`.

Actually, the commands above will build the first target listed in the make file. So I'll often include something like the following:

```makefile
all: target1 target2 target3
```

Then typing `make all` (or just `make`, if `all` is listed first in the file) will build all of those things.

- To be build a specific target, type `make target`. For example, `make Figs/fig1.pdf`.